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Abstract: Aflatoxins (AFs) are highly toxic and cancer-causing compounds, predominantly synthe-
sized by the Aspergillus species. AFs biosynthesis is a lengthy process that requires as minimum as
30 genes grouped inside 75 kilobytes (kB) of gene clusters, which are regulated by specific transcrip-
tion factors, including aflR, aflS, and some general transcription factors. This paper summarizes the
status of research on characterizing structural and regulatory genes associated with AF production
and their roles in aflatoxigenic fungi, particularly Aspergillus flavus and A. parasiticus, and enhances
the current understanding of AFs that adversely affect humans and animals with a great emphasis
on toxicity and preventive methods.
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1. Introduction

Aflatoxins (AFs) are secondary metabolites predominantly synthesized by Aspergillus
flavus and A. parasiticus. They are highly toxic, mutagenic, carcinogenic, immunosuppres-
sive compounds with severe detrimental effects on the human liver [1]. AFs contamination
in food products is a worldwide issue and a possible risk to human and animal health [2,3].
The threat of AFs to human and animal health was first recognized after their identification
as a causal agent of turkey X infection in poultry in the UK. The toxin was detected in feeds,
and its properties and biological impacts were then investigated [4]. The term AF was given
to the toxin since it was produced by A. flavus. In tropical and subtropical regions, billions
of people were impacted by AFs adversely by consuming contaminated foods and water [5].
AF exposure is closely related to increased risk of hepatocellular carcinoma (HCC), AIDS,
stunting, and malnutrition in children in America, Asia, and Africa [6–14]. Contamination
of corn, peanuts, rice, and cottonseed with AF has been linked to agricultural losses and
increased liver cancer incidence in Central America, Africa, and Asia. The study on the
mechanism of AF production directly influences our capacity to diminish AF adulteration
in the food supply chain.

Consequently, AF production has been developed into the most extensively stud-
ied biological activity. In the early 1990s, molecular biologists began to pay attention to
AF biosynthesis, and the primary genes responsible for AF-production (nor-1 and ver-1)
were identified and transcribed [15]. Later, the complete gene cluster for AF was iden-
tified [16,17]. Thus far, several genes, proteins, and regulatory mechanisms have been
extensively investigated. Thus, the AF’s biosynthetic pathway helped to develop an out-
line for the production of mycotoxins and metabolic pathways in eukaryotic organisms.
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This paper will review the characterization and functions of structural genes involved
in the production of AFs, genetic regulation and toxicity of AFs, and serval novel meth-
ods developed over the last few decades to minimize humans’ vulnerability to AFs in
high-risk communities.

2. Biosynthetic Pathway of Aflatoxins

Following the revelation of Turkey X disease, researchers began studying AF biosyn-
thesis by developing ultraviolet variants [18]. Different researchers recently characterized
the entire 75-kb cluster on chromosome 3′s subtelomeric locus [19]. Although the gene
cluster of A. flavus is similar to A. parasiticus in terms of sequencing, they are markedly
different in deletion, ranging between 0.8 kb (L-strain) and 1.5 kb (S-strain). This deletion
extends from the 5′ end of aflF, aflU to the whole 279 bp intergenic loci, preventing A. flavus
from producing AFG1 and AFG2. DNA analysis revealed that strains of A. flavus and A.
parasiticus exhibit approximately 96% affinity for this gene cluster [20]. Research on A.
parasiticus identification found that 30 genes are located in this gene cluster [21]. The genes
and enzymes associated with the AF biosynthesis pathway in A. parasiticus are presented
in Figure 1. Two substrates contribute to AF biosynthesis, known as 1-Acetyl-CoA and 9-
Malonyl-coA. Here, we will discuss the genes, encoding proteins, and precursors involved
in AF production.
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Figure 2 demonstrates each phase of the AF biosynthesis pathway. Norsolorinic acid
(NOR) is the primary step of the AF biosynthesis pathway.
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2.1. Synthesis of Norsolorinic Acid (NOR)

Three proteins, including fatty acid synthase α (aflA), fatty acid synthase β (aflB), and
polyketide synthase (aflC), are responsible for the production of NorS. NorS plays a vital role
in the synthesis of the hexanoyl primer through integrating with malonyl-CoA molecules.
Afterward, the hexanoyl primer is moved to the region of β-ketoacyl synthase [24] and
combined with malonyl-CoA to form norsolorinic acid anthrone (NAA). Due to its high
reactivity, this metabolite is rapidly converted into NOR by NAA oxidase [25]. NOR, an
essential metabolite synthesized in the AF’s biosynthetic pathway, exhibits a red–orange
color in mutant strains of aflD (nor-1) of A. parasiticus [26].

2.2. NOR Conversion to Averantin (AVN)

AflD, a ketoreductase, reduces the NOR 1’-keto group to the AVN 1′-hydroxyl group [27].
Even though its role is defined, the mutant strain of aflD does not always result in AVN
formation. The other processes contributing to this reduction remain unknown at this point.

2.3. AVN Conversion to 5′-Hydroxyaverantin (HAVN)

AflG, a monooxygenase of cytochrome P450, catalyzes the breakdown of the 5′-keto
group of AVN to the 5′-hydroxyl group of HAVN [28].

2.4. HAVN Conversion to Averufin (AVF)

The HAVN dehydrogenase facilitates the dehydrogenation of the HAVN’s 5′-hydroxyl
group to 5′-oxide group of oxoaverantin (OAVN) [29]. The deleted aflH mutant consistently
demonstrates its ability to synthesize OAVN, suggesting the involvement of other potential
mechanisms. In contrast, aflK is an OAVN cyclase that catalyzes the dehydration of 5′-oxide
of OAVN to form the 2′-5′ AVF [30].

2.5. AVF Conversion to Versiconal Hemiacetal Acetate (VHA)

Being a cytochrome P450 oxidoreductase, aflV can reduce the hydride group of
AVF [31]. The projected compound becomes hydrated, while aflI presumably functions as
an oxidoreductase [32]. On the other hand, aflW monooxygenase is vital for incorporating
the O2 atoms within the 4’-5′ ketone groups of HAVN, forming VHA.

2.6. VHA Conversion to Versiconal (VAL)

AflJ, an esterase enzyme that stimulates VHA acetate eradication, results in converting
the latter into VAL [33].

2.7. VAL Conversion to Versicolorin-B (VERB)

AflK, a cyclase that catalyzes the cyclodehydration of VAL into VERB [23]. This is a
crucial phase in the AF’s biosynthetic pathway as the closure of the bisfuran ring occurs at
this stage. Additionally, it serves as the final precursor for the biosynthetic pathways of
AFB1-AFG1 and AFB2-AFG2.

2.8. VERB Conversion to Versicolorin A (VERA)-AFB1-AFG1 Pathway

AflL, a monooxygenase of cytochrome P450, is responsible for converting the tetrahy-
drofuran ring to a dihydrobisfuran ring [34].

2.9. VERA Conversion to Demethylsterigmatocystin (DMST) and VERB Conversion to Dihydro
Demethylsterigmatocystin (DHDMST)

AflM, aflN, aflY, and aflX are putative enzymes involved in DMST formation in the
biosynthetic pathway of AFB1-AFG1 [35]. The same enzymatic steps have been suggested in
the biosynthetic pathway of AFB2-AFG2, but using VERB as a substrate rather than VERA,
resulting in DHDMST formation. The discrepancy amid DMST-DHDMST is comparable to
that of VERA-VERB, owing to the bisfuran double bond.
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2.10. DMST Conversion to Sterigmatocystin (ST) and DHDMST Conversion to
Dihydrosterigmatocystin (DHST)

AflO, an O-methyltransferase, is responsible for transmitting the S-adenosylmethionine
methyl group, DMST hydroxyl group, and synthesis of DHDMST to ST and DHST based
on biosynthetic pathways [36].

2.11. ST Conversion to O-Methylsterigmatocystin (OMST) and DHST Conversion to
Dihydro-O-Methylsterigmatocystin (DHOMST)

AflP is a second O-methyltransferase of AF biosynthesis appropriate for ST and DHST
substrates [37]. Strains of A. nidulans preclude the synthesis of AF as they lack the aflP
orthologue [38].

2.12. OMST Conversion to AFB1 and DHOMST Conversion to AFB2

AflQ, another monooxygenase of cytochrome P450, transforms OMST into AFB1 [39].
Yu [40] suggested a comprehensive metabolic pathway in which aflQ is replicated in C-11
hydroxylation, while aflLa may serve as a source of O2 for the keto-tautomer 11-hydroxy of
OMST. These reactions might result in the formation of 370 da metabolites. On the other
hand, it is assumed that AflMa is responsible for demethylating the A-ring and might work
in conjunction with a cytochrome P450 as a final phase of the AF biosynthesis pathway.

2.13. Bis. OMST Conversion to AFG1 and DHOMST Conversion to AFG2

The 370-da metabolites could serve as substrates in aflU oxidation, which results in
the synthesis of AFG1 and AFG2 [41]. Thus, NadA and aflF could be suitable candidates
for enhancing aflU activity in the production of AFG1 and AFG2.

3. Genetic Regulation of Aflatoxin Biosynthesis

The above-mentioned phases of AF production are regulated by certain specific
transcription factors such as aflR and aflS and some general transcription factors.

3.1. AflR, a Specific Transcription Factor

AflR is the ninth gene of the AF biosynthetic cluster that encodes the Cys6Zn2 tran-
scriptional factor required for AF production. Figure 3 represents the structure of the aflR
transcriptional factor.
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The N-terminal part of the aflR (C6 cluster) includes the NLD (Nuclear Localization Do-
main), which is required for aflR movement from the cytoplasm to the nucleus [42], while the
linkage portion may contribute to DNA-binding affinity. The DNA sequence is 11 bp long
(5′-TCGSWNNSCGR-3′), featuring the highest binding affinity for 5′-WCGSNNNSCGA-3′.
These aflR-binding loci are typically located at the 200 bp exterior to the translation start
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point of the AF gene. Upstream of the aflR gene’s translation start point, a partial aflR
binding site indicates autoregulation. Other binding sites of diverse DNA binding proteins
in the same intergenic region show that different regulatory networks could regulate the
expression of aflR. Price et al. [43] analyzed 40% transcriptomes of A. parasiticus in its
wild-type and aflR-mutated strains that cannot generate AFs. They discovered that the aflR
mutant lacks most of the AF genes in the cluster except for aflF, Ma, N, and Na.

3.2. AflS, a Putative Transcription Factor

AflS is the 10th gene in the cluster of AF biosynthesis pathways, sharing a similar
intergenic region with aflR. Although the knockout mutants demonstrated that aflS is
needed for AF’s synthesis, its exact role is yet to be determined. The three possible
functions of aflS are as follows:

i. It may operate as an aflR coactivator [44], although its deletion has little effect on
aflR transcript levels.

ii. It strongly affects the early genes involved in AF production [45].
iii. AflS mutants inhibit the aflC, aflD, aflM, and aflP’s transcription by up to 20 times

yet do not affect the expression of aflR. In contrast, other researchers ruled out the
effects of aflS on aflM and aflP’s expression.

iv. It is vital for LaeA to target a particular gene cluster. Furthermore, it is sensitive to
temperature during incubation; henceforth, the expressions of aflS and aflR were
increased by 24 times at 30 ◦C compared to 37 ◦C [46].

3.3. General Transcription Regulators

Seven well-known general transcriptional regulators control the biosynthetic mech-
anism of AFs. Each pathway is crucial to our research as it explains how specific genes
of AFs are expressed or inhibited. A complex network of proteins regulates the synthesis
of secondary metabolites of fungi [47]. Figure 4 shows the three essential pathways that
regulate AF production.
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The heterotrimeric G-protein pathways (G proteins) are general transcription regu-
lators linked to the plasmid membrane of the cell and function as transduction impulses
in reaction to foreign stimuli to maintain the cell’s physiologic conditions. The G proteins
have three subunits—α, β, and γ—that abandon their function once reassembled into a
trimeric form (Figure 4). The instigation occurs because of GTP binding to the G subunit.
Regarding AF biosynthesis, it has been demonstrated that two subunits of Gα (GanB and
FadA) prevent ST/AF synthesis in the presence of GTP through the suppression of aflR
activity [48,49]. Nevertheless, it was shown that the Gβγ subunits (SfaD and GpgA) stimu-
late ST synthesis, implying that the G protein subunits analyzed have distinct functions in
ST biosynthesis [50].

Moreover, the response to Reactive Oxygen Species (ROS) is a second transcription
regulator. Figure 4 illustrates a suggested mode of action for such reactions. YapA gene’s
mutation increases AF production, indicating that YapA may act as an inhibitor of ROS
buildup. It was discovered that in the presence of ROS, four DNA-binding transcriptional
factors, such as MsnA, AtfB, and AP-1/SrrA complexes, entangle to the specified DNA to
stimulate AF production by boosting AF genes [51]. Similarly, the light-sensitive complex
(VeA, VelB, and LaeA) is a third transcription regulator (Figure 5) that exhibits a low amount
of VeA activity in light inside the cytoplasm. Nonetheless, VeA expression increased in the
dark and was carried into the nucleus via the importer α carrier (KapA) [52]. Therefore, LaeA
should be bound to a VeA/VelB compound to have an inhibitory impact over HepA. HepA is
a spatial adaptor that plays a vital role in chromatins’ molecular compounds [53,54]. The
HepA’s suppression prevents the transition of heterochromatin towards euchromatin in the
aflR region [55].
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Additionally, the ppoABC genes contain three distinct putative fatty acid oxygenases
involved in producing oxylipins by fungi (Figure 6) [56]. The VeA, hydroxylated linoleic
(psiα), and oleic acid (psiβ) proteins are thought to be involved in the shift from sexual
to asexual reproduction in fungi [57]. A dual deletion in the ppoABC gene resulted in the
inhibition of ST production, but a single loss of ppoB enhanced ST accumulation (Figure 6).
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Recent research indicates that diverse Ppo oxygenases may result in the aggregation
of oxylipin exterior to the cell of fungi and may stimulate the activity of G-proteins. Three
additional general transcription regulators are activated in response to external stimuli
(Figure 7), which are briefly discussed here. CreA is a zinc transcription factor that responds
to carbon supply by triggering metabolic activities [58,59]. Additional characterization is
necessary to have an in-depth insight into the fundamental processes. Likewise, AreA is
the zinc transcriptional factor regulating the nitrogen pathway [60]. The aflS-aflR intergenic
region has an AreA-binding site that may induce AF production.
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Likewise, PacC is a transcription factor that negatively regulates the ST’s biosynthetic
pathway in A. nidulans under alkaline conditions [61]. Its inactivation is pH-dependent and
may be reversed under acidic conditions. In addition to the above-mentioned regulatory
mechanisms, other processes, including the production site and excretion process, may
affect AF synthesis.

4. Aflatoxins Toxicity

AFs are the most significant food safety concern since they are widely distributed in
foods and feeds and are highly toxic. AFs carcinogenicity has long been linked with the
liver, where they produce transitional metabolites; however, recent epidemiological and
animal trials revealed that they were carcinogenic to organs other than the liver, including
the pancreas and kidneys, bones, bladder, and central nervous system [62]. Other than
that, other AF-induced long-term health impacts include anemia, malnutrition illnesses,
retardation in physical and mental growth, and nervous system maturation. Despite these
challenges, their modes of action need further clarity [63].

4.1. Chronic Aflatoxicosis

The consumption of AF-contaminated foods is typically linked with HCC and bile
duct hyperplasia [64]; however, other organs, including kidneys, the viscera, lung, bladder,
and bone, were also found to develop cancer once exposed to AFs. AFs also cause lung [65]
and skin [66] cancer mainly through inhalation and direct contact. Other complications
resulting from AF consumption include immunosuppression, mutagenicity, teratogenicity,
and cytotoxicity in mammals, particularly in rats and humans [67]. Furthermore, AFs are
associated with nutritional disorders, including kwashiorkor and growth faltering, possibly
influencing the accumulation of iron, zinc, vitamin B, protein synthesis, and other enzyme
activities [68,69]. Lower doses of AFs are often detrimental to the health, productivity, and
reproduction of livestock and increased vulnerability to infections. Despite the insidious
property of chronic aflatoxicosis, its health impacts are more catastrophic and costlier than
acute infections. Chronic aflatoxicosis with hepatitis B (HB) has been reported to increase
AFB1 potency up to 60-fold. According to the latest IARC Global Cancer Observatory
statistics, over 841,080 new liver cancer cases and 781,631 fatalities were recorded in 2018.
It equates to the age-standardized frequency of 9.3 per 100,000 persons and a fatality ratio
of 93%. It is the fifth most prevalent malignancy and the primary cause of cancer-related
deaths. The continents of Asia and Africa consistently produce the newest incidents,
with 64,779 (7.7%) and 609,596 (72%) cases, accounting for over 80% of the total cases
globally. AFB1 alone was expected to induce 25,200–155,000 infections each year [70,71], of
which almost 40% of cases were reported in Africa, whereby AF-induced liver cancers are
responsible for one-third of all liver cancers [72]. China holds the world’s highest rate of
liver cancer at a country level, most of which were reported in the country’s southern part,
where dietary AF exposure and HB chronic diseases are prevalent [73–77].

4.1.1. Immunotoxicity

An increased prevalence and severity of infectious diseases and extended healing time
with reduced vaccine effectiveness have established that AFs impair the innate and adaptive
immune system [78–81]. Some recent studies have reported that AFBO interacts with innate
and immune-competent cells in the body, influencing their reproduction and generation of
immune response mediators, impeding the establishment of adaptive and innate immune
systems. Research conducted for observing the toxicity mechanisms in animals and humans
has discovered the immunotoxicity of AFB1 on human cell lines in highly exposed regions
of Ghana [82,83]. Alternatively, some researchers have examined the immunotoxicity of
AFs rather than AFB1 [84–87]. Meanwhile, a general agreement exists that low to medium
levels of AFB1 may not have detrimental effects on the immune system, although cell-
mediated immunity is highly susceptible to AFs compared to hormonal immunity [88,89].
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4.1.2. Innate Immunity

The breakdown of physiological barriers, such as epidermal and gastrointestinal
mucosal tissues with pathogen invasion, has been shown in vitro and in vivo studies.
For example, animal skin contact with AFB1 has been reported inducing various lesions,
including intra-epidermal vesicle production and squamous cell carcinoma [90–93]. Pigs
fed with a mixture of AFB1 and AFB2 for 28 days developed irritation and cutaneous
ulcers on the nose, lips, and labial commissure of the mouth. Another study has shown
that AFs impair the intestinal mechanical barrier integrity by intervening with the cell
cycle or disrupting epithelial cells and tight junctions, cementing them together. These
results have recently been supported by research in which a broiler chicken was fed
with a feed comprising 0.6 mg AFB1/kg for 21 days and reported various structural and
functional variations in the gastrointestinal tract, such as the contraction of mitochondria
and depletion of absorptive cell goblets [94,95]. Such alterations drastically change the
intestine’s ability to absorb nutrients and the innate immune response that protects against
the invasion of pathogens and toxins. The impacts of AFs on immune cells, including
macrophages, monocytes, natural killers, and dendritic cells, have been well established.

Additionally, AFB1 and AFM1 have been found to decrease the feasibility, multipli-
cation, and necrosis of macrophages and cytokines’ production, including TNF-a and
IL-1 [96–99]. Recently, autophagy was reported to influence the innate immune system,
particularly M1-type macrophages, which are involved in inflammation responses induced
by proinflammatory cytokines. Feeding research has also shown a reduced complement
behavior in livestock and poultry at varying levels [100].

4.1.3. Adaptive Immunity

The inhibition of adaptive immunity following AF’s exposure is well documented,
demonstrating improved susceptibility of exposed hosts to contagious agents and weak-
ened vaccine defense [101,102]. The epidemiological research demonstrated that vaccina-
tion failed to protect poultry from bronchitis [103] and Newcastle disease once exposed
to AFs. The same types of suppressive impacts have been observed in swine, in which
vaccine treatment did not defend them against E. rhusiopathiae once exposed to AFB1 [104].
It is also reported that reduced replication, activation, and lymphocyte activity are critical
elements of humans’ adaptive immunity. Dose and time-dependent apoptotic impacts
have been seen in human blood cells after being incubated with 3.12–2000 g/L of AFB1
solution for 2–72 h [105,106]. Recent research also found that AFB1 and AFM1 substantially
improved the IL-8 activity, which is connected with innate immunity.

Similarly, in humans, a high level of AFB1 is closely associated with reduced lympho-
cyte percentages and plays an essential role in immunization and inflammatory responses
to microbial infections. In addition, previous studies’ results indicate that AFB1 inhibits
cell-mediated immunity in human beings, weakening their tolerance to infection [107].
It is noteworthy, however, that humoral immunity and cell-mediated immunity might
not always be distinguishable. For instance, the deregulation of dendritic cell prolifer-
ation and expression of TLRs can affect both innate and adaptive immunity since such
antigen-producing cells serve as critical intermediaries for both forms of the immune
response [108,109].

4.1.4. Teratogenicity

AF exposure to pregnant females or animals may inhibit the growth and develop-
ment of embryos in the womb, leading to different health problems and pathological
outcomes [110]. In Asian and African countries, mothers are highly exposed to AFs; they
transmit AFs to their fetuses through blood circulation. AFs and their resultant biomarkers
(AF metabolites, AF-DNA, and AF-albumin adducts) were found in both fetal cord and
mother’s blood samples [111,112]. Hence, it is inferred that AFs and their metabolites are
passed to the fetus metabolized by the same pathway as adults [113]. As a result, maternal
risk factors greatly influence fetal growth, causing weight loss and premature delivery.
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An inverse correlation between birth weight and the number of suitable biomarkers in
umbilical cord blood samples has been established in humans and animals [114–116].

On the other hand, very few studies have correlated AF consumption in pregnant
ladies with early delivery and miscarriages [117]. Apart from the above stated detrimental
health impacts, AF contaminated meals during pregnancy impair pregnant women’s
well-being and expose their fetuses to indirect risks of congenital anomalies, including
impeding placental growth, stillbirth, miscarriage, and premature birth. Additionally, AFs
interfere with the availability of iron, selenium, and vitamins and result in anemia and low
fetal development, or premature childbirth. However, data are scarce on the relationship
between AF exposure and inflammation-related anemia among pregnant females. The
data on dose, procedures and sensitivity to AFs exposure in pregnant women need further
studies to improve pregnancy and delivery safety.

4.1.5. Malnutrition

Along with the essential toxicological impacts discussed above, AFs cause various
other detrimental health effects by overlapping processes and risk factors, including mal-
nutrition disorders (stunting), delayed physical and mental growth, fertility problems,
and nervous system disorders [118,119]. Malnutrition has garnered enormous attention
because of its detrimental effects on children worldwide, especially in underdeveloped
nations wherein kids suffer food scarcity. To be specific, one must ensure that kids ob-
tain physiological and cognitive maturity and are ready for adulthood as responsible
and productive persons. AF exposure deprives children of these vital micronutrients and
often enhances their vulnerability to AFs, which they usually detoxify with the help of
endogenous antioxidants [120–122]. Consequently, exposed children can experience de-
velopment defects beginning from the gestational phase, resulting in stunted growth and
delayed physiological and psychological development. The stunted growth in kids under
the age of five in African nations has been linked to chronic exposure of AFs since they
depend upon indigenous agriculture items such as corn, peanuts, and derivatives as staple
foods [123]. Protein-energy malnutrition illnesses, including kwashiorkor and marasmic
kwashiorkor, have also been linked to the higher level of AF exposure in various African
nations [124–127]. A study on malnourished Sudanese children with kwashiorkor and
marasmic kwashiorkor reported that their serum and urine samples had a substantially
greater concentration of AFB1 than children undernourished with marasmus. The re-
searchers concluded that kwashiorkor was related to the long-term exposure of AFs, owing
to the liver injury or an etiological element of such sickness that has not yet been identified.

4.1.6. Neurodegenerative Diseases

Apart from the well-established detrimental health impacts of AFs, there is a growing
realization indicating that long-term AF exposure may often lead to neurodegenerative
diseases. The AFBO and ROS synthesized by the CY450 enzyme and AF-induced oxidative
stress interact with active molecules in neurons, inhibiting lipid and protein production
and damaging fatty and polypeptide molecules. Additionally, AFs have been found to
impair the mitochondrial activity of neurons, which results in apoptosis [128]. Furthermore,
the discovery of AFs in kwashiorkor-deceased children’s brain tissues and their relation to
cerebellar edema suggests that AFs can cross the brain–blood barriers, and penetrate the
neurological system. The epidemiological research on the neurotoxicity of AFs has found
AFs in human and animal nervous systems. In addition to oxidative stress, AFs encourage
neurodegenerative issues by degenerating immunocompetent cells’ immune responses
and producing proinflammatory situations in the brain and spinal cord.

4.2. Acute Toxicity

Acute toxicity is predominantly linked to AFs protein adducts since they inhibit
enzymes involved in metabolic pathways, protein production, DNA replication, and
immune responses. Moreover, there is a mounting indication that AFs phospholipid
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adducts are the primary cause of disruption and dysfunction of neurons, mitochondria, and
endoplasmic reticulum [129,130]. Moreover, enhanced DNA fragmentation is a significant
impact of acute aflatoxicosis reported in mouse testicles given a daily dosage of 2000 mg of
AFB1 for three weeks [131]. However, a recent report investigating acute aflatoxicosis of
AFB1 in chickens indicated that AF-dihydrodiol is an essential compound involved in acute
aflatoxicosis as it produces AF-albumin adducts [132]. Furthermore, it is proposed that
AFB2a and AFB1-phase-I metabolites contribute to acute toxicity. Other than that, AFB2a
has been shown to interact with cell phospholipids and proteins, producing lipid and
protein adducts and acute aflatoxicosis [133]. Notably, chronic exposure of AFs may cause
similar impacts to acute toxicity; however, such impacts could be mitigated by detoxifying
phase-2 enzymes and antioxidative protection pathways and DNA repairment to avoid
gene mutations. On the contrary, these toxins progressively accumulate with continual
exposure to small doses and develop into liver cancer such as a typical chronic exposure
effect. Thus, acute aflatoxicosis can occur with a sharp accentuation of most of the harms
listed above in a short period if the dosage was massive [134,135].

5. Strategies for Aflatoxin Mitigation

In Central America, Asia, and Africa, populations consume a high concentration
of AF in their diets, as corn is a staple crop in these regions. Therefore, eradicating or
reducing AF contamination is critical from a public health and economic perspective. Due
to advancements in AF research over the past few decades, several novel techniques have
been developed to mitigate human exposure to AFs in populations with an increased threat
of aflatoxicosis; some of these strategies have been tried in real-life situations in developed
nations. The primary approach is to employ genetically modified (GM) Bt corn to inhibit
AF infection. The second strategy involves using NovaSil clay as a dietary supplement to
aid in the absorption of AFs within the digestive system, limiting its solubility. Thirdly,
non-aflatoxigenic strains of A. flavus (AF−) are used to competitively eradicate the harmful
aflatoxigenic strains of A. flavus (AF+) in the field. Finally, although still in its infancy, the
last method explores the usage of plant-based volatile compounds to prevent AF corruption
in seeds during storage.

5.1. Bt Corn

Bt corn is a GM crop containing genes from Bacillus thuringiensis (soil-borne bacte-
ria), encoding for Cry; the Cyt protein endotoxin, exhibiting many insecticide activities
towards lepidopteran coleopteran pests, which often inhabit cereal crops [136]. Several
Bt crops have been developed by inserting the B. thuringiensis gene, encoding endotoxins
with an expanded pesticide range, and improved manifestations [137,138]. Other than
corn, other GM crops include wheat, cotton, rice, peanuts, tomato, tobacco, and walnuts.
Notably, immunological and metabolomics studies revealed that inclusion of the Bt protein,
endotoxin Cry1Ab to swine and rats had a minimal allergic effect and slightly changed
metabolomic markers and IL-6, IL-4, and CD (+) t cells production [139]. Pest invasion is
closely associated with spore transmission of fungi and plant injury, resulting in a rise in
fungal colonization and mycotoxin buildup.

Nevertheless, it is believed that fungal mycotoxins, such as AF, are critical for fungal
protection against fungivores and other pathogens [140]. Nevertheless, another potential
consequence of mycotoxins’ existence in commercial crops is that they could act as pesti-
cides for the host plants. Nonetheless, lessening insects’ infiltration by the use of GM Bt
corn provides a possible approach for reducing humans’ exposure to food-related myco-
toxins. While field research in South Africa revealed a ten times reduction in fumonisin B1
(FB1) levels in Bt corn relative to non-Bt corn, the efficacy tests for Bt corn to a lower AF
level in field crops exhibited varying outcomes [141]. This discrepancy could be elucidated
by the presence of Bt-resistant pests on corn. Henceforth, the trials that produced adverse
outcomes indicate that further study is needed to comprehend the complex mechanism
of preventing AF contamination in field crops [141]. Surprisingly, the Bt Cry1Ab protein
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manifestation within the corn genotype did not increase AF resilience among developed
testcrosses [142]. Nevertheless, the testing of attained hybrids against diverse insect stresses
is yet to be conducted.

5.2. Biocontrol

The use of competitive non-aflatoxigenic strains of A. flavus and A. parasiticus has
shown tremendous success in the biocontrol of AF contamination in both pre-and post-
harvest crops [143]. Numerous field studies, especially corn, peanuts and cotton, have
consistently shown a substantial reduction in AF production ranging from 70 to 90% when
non-aflatoxigenic strains of A. flavus were used [144–146]. Recently, the US Environmen-
tal Protection Agency (EPA) has registered two products derived from non-aflatoxigenic
strains as bio-pesticides to reduce AF contamination in cotton and peanut crops in different
states of America [144]. This approach employs non-aflatoxigenic strains to competitively
exclude aflatoxigenic strains that compete for agricultural resources in the same niche [147].
Cotty [148] examined the potential of AF36 (non-aflatoxigenic strains of A. flavus) for
reducing AF contamination in cottonseed and corn, and found that it substantially de-
creased AF levels when co-inoculated with aflatoxigenic strains. Another non-aflatoxigenic
strain, A. flavus NRRL21882 (known as Afla-Guard), was tested for AF mitigation that was
highly efficient in reducing AF production in both pre-and post-harvest stages. Likewise,
some other nontoxigenic A. flavus strains (CT3 and K49) were assessed in the US and
were effective in reducing AF levels in corn [149]. In Africa, a non-aflatoxigenic strain
(BN30) significantly reduced AF contamination in corn when co-inoculated with an afla-
toxigenic S-strain [150,151]. In Australia, the use of non-aflatoxigenic strains of A. flavus
markedly reduced (approximately 95%) AF contamination in peanuts [152]. In China, a
non-aflatoxigenic strain of A. flavus (AF051) has lowered the population of aflatoxigenic A.
flavus by up to 99% in peanut fields [153].

5.3. Clay

Clinical trials have been performed in Africa to assess the effectiveness and safety of
the food supplement called NovaSil [154]. NovaSil clay comprises an extremely disinfected
clay that serves as a mycotoxin absorbent in the digestive tract. NovaSil clay considerably
decreased the AFB1-albumin adducts’ amount in blood when orally taken every day before
each meal for three months. After three months of its application, the amounts of AFM1
were reduced by up to 60% in urine. These findings proposed that NovaSil could be used
to inhibit AF-related harmful effects during prolonged dietary exposure to clay, but not for
a short interval of time (one month). Other toxic compounds, such as polycyclic aromatic
hydrocarbons, were also absorbed by the clay with no side effects on the liver and kidney
functions [154].

5.4. Plants Volatiles

Despite the positive results obtained with the techniques mentioned earlier, several
barriers in adopting these novel approaches for AF reduction in commercial crop produc-
tion remain in developing nations of the world. For instance, there is some reluctance
in growing GM crops. Additionally, industrial biohazards are related to handling vast
quantities of fungal spores and the unviability of clay application as an everyday food
supplement. Consequently, innovative, safe, and feasible approaches must supplement the
established methods that present effectiveness and acceptability. Previous studies have
proven that plant-based volatile compounds such as CO2 [155], ethylene [156,157], crotyl
alcohol [158,159], cotton-leaf volatiles [160], and corn-based volatiles [161,162] may hinder
AF’s biosynthesis. Plant-based volatile compounds in controlling AF contamination in
crops are highly beneficial from a food safety perspective.
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6. Conclusions

We have made significant progress in understanding the mechanism of AF biosyn-
thesis, control, and adverse effects of AFs on human health. The main obstacle of existing
and future research will be identifying diverse regulatory system members that relate AF
biosynthesis to the unrest of cell metabolism, particularly oxidative stress. Additionally,
missing enzymes in AF biosynthesis must be identified to put the puzzles of AF biosyn-
thesis together. The analysis of the AF biosynthetic pathway resulted in the development
of a safety system that defends humans from AF’s detrimental effects. Conversely, in
developing countries where foodborne AFs are a source of dietary exposure, there is a need
for safe, economical, and practical methods to minimize AF contamination in food.
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