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As do many other immunity-related blood cells, platelets release antimicrobial peptides
that kill bacteria, fungi, and even certain viruses. Here we review the literature suggesting
that there is a similarity between the antimicrobials released by other blood cells and the
amyloid-related Ab peptide released by platelets. Analyzing the literature, we also propose
that platelet-generated Ab amyloidosis may be more common than currently recognized.
This systemic Ab from a platelet source may participate in various forms of amyloidosis in
pathologies ranging from brain cancer, glaucoma, skin Ab accumulation, and
preeclampsia to Alzheimer’s disease and late-stage Parkinson’s disease. We also
discuss the advantages and disadvantages of specific animal models for studying
platelet-related Ab. This field is undergoing rapid change, as it evaluates competing
ideas in the light of new experimental observations. We summarized both in order to clarify
the role of platelet-generated Ab peptides in amyloidosis-related health disorders, which
may be helpful to researchers interested in this growing area of investigation.
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INTRODUCTION

Amyloidosis represents a diverse group of diseases characterized by the common factor of
deposition of twisted b-pleated sheet fibrils (amyloid) and their aggregates. The b-pleated sheet
itself is not abnormal; it is a common motif, usually conserved across species, and a standard
secondary structure in proteins, allowing different protein strands (subunits) of a functioning
protein to be joined together with hydrogen bonds. The b-pleated sheet forms the basis for uniting
subunits in many enzymes and immunoglobulins, as well as channel-forming subunits of specific
ion channels and pores. Formation of b-pleated sheet hydrogen bonds between two or more parallel
protein strands requires standard spacing between amino acids in these parallel polypeptides. It also
requires correct subunit assembly and the right organization of the process (1). Unfortunately, this
bond formation between parallel chains may occur pathologically because of mutations augmenting
the binding propensity of particular polypeptides or the elevated concentration or overproduction
of specific peptide chains, allowing the formation of polymeric ß-pleated sheets consisting mainly of
multiple copies of the same type of chain. This interaction causes the proteins to form misfolded
pathologic polymers, usually fibrils and aggregates, in a process called amyloidosis. The different
forms of amyloidosis are classified by the composition of the amyloid fibrils and the manner of their
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deposition, which may be local or systemic. In amyloid light-
chain (AL) amyloidosis (also known as primary amyloidosis, as it
is the most common form), the free light chain of the
immunoglobulin molecule (termed in clinical practice the
Bence Jones protein) is hyper-secreted by lymphocyte cells in
blood plasma. In many cases, it is linked to cancer) (2, 3). While
in the immunoglobulin fold, on which the b-sheet formation is
healthy, the high concentration of only the light chain makes this
process abnormal (2, 4). The accumulation of AL amyloid, which
can be local or systemic, disrupts the tissue architecture and, in
conjunction with a toxic effect from the oligomeric light chains
(5), leads to severe organ damage that may involve the kidneys,
heart, liver, peripheral nerves, and even bones. Systemic
amyloidosis (which can be of the senile type or an early-onset
familial type) is the result of the deposition of transthyretin
(TTR) protein. TTR is a serum and cerebrospinal fluid carrier
known for its transport of retinol, the thyroid pre-hormone
thyroxine (T4), and also some peptides. It usually circulates as a
homo-tetramer, but, due to genetic mutation, tetramers can
dissociate into monomers that then misassemble into amyloid
fibrils (6). In their senile form, TTR monomers become
fragmented and mix with full-size monomers, leading to
misfolded aggregates (7). Reactive systemic amyloidosis is the
result of an overproduction of a non-immunoglobulin protein,
AA, which is associated with blood serum. There can also be
amyloidosis related to the overproduction of b2 microglobulin
(B2M amyloidosis), a free protein with an antibacterial activity
that is a light chain of the major histocompatibility complex
protein (8). The production of amyloidogenic proteins in all the
abovementioned forms of amyloidosis directly originates in
blood cells or is related to blood plasma. Generally speaking,
the depositions, in many cases, spread from the blood to inside
the organs, with the highest concentration around blood vessels.
In previously described types of amyloidosis, blood vessel
damage is also common (9, 10).

Alzheimer’s disease (AD) is the only well-known form of
severe amyloidosis in which the amyloidogenic peptide is
believed to be produced in organ tissue and not systemically in
blood plasma. The main component of amyloid fibrils and other
amyloid aggregates in AD are the amyloid beta (Ab) peptides.
Another common component of these aggregates is the amyloid
P component (AP), a normal blood plasma constituent (11)
produced by the liver, and its concentration in blood plasma has
been shown to be about five-fold elevated in AD (12).

This exclusive association of brain tissue with the production
of materials that form plaques in AD may be explained
historically. Amyloid cerebrovascular senile plaques were
described by Dr. Alois Alzheimer in the brain of dementia
patients a century ago, and it was found later that these
plaques contain Ab peptides (13), while both neurons and
astrocytes can produce these peptides (14). In addition, animal
models that used neuron-associated promoters to generate the
aggregation-prone mutated Ab had shown many similarities in
morphology and pathophysiology with the brains of AD patients
[for review see: (15)]. This mechanism was therefore
extrapolated to late-onset AD. Recently, multiple findings have
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emerged suggesting that there may be a flow of Ab from blood to
the brain in AD in which platelets are vital players [reviewed in
(16)]. Platelets were also suggested as the most important source
of Ab in glaucoma [reviewed in (17)]. In this review, we used the
Web of Science, PubMed, and Google patent databases to search
for studies examining the role of systemic release of Ab in a
variety of health complications that exhibit Ab accumulation of
oligomers or plaque deposition. We ask related questions that
have not been discussed in previous reviews and discuss the
advantages and disadvantages of existing animal models for
studying platelet-related Ab in AD and other diseases.
Ab PEPTIDE ACCUMULATION IS
ASSOCIATED WITH A VARIETY OF
DISEASES

Ab peptides may be of varying length (<46 amino acids) and
have a specific sequence, which differs only slightly across
mammalian species (18). Due to hydrogen bonding between
the parallel monomers, Ab peptides are prone to form dimeric,
tetrameric, or higher-order oligomers, even at very low
concentrations (µm range), while at higher concentrations they
associate into filaments that tend to join in misfolded
aggregations known as amyloid plaques (19–21). The presence
of Ab extracellular plaques suggest that the concentrations of Ab
are elevated in the affected tissues. However, Ab aggregation can
start at lower concentrations due to specific mutations within Ab
and its precursor. For example, such mutations are the basis of
hereditary early-onset familial AD (22). Ab peptides of different
lengths also have different propensities to aggregate (15), and the
amyloidogenic properties of Ab peptides from humans and other
mammals may be different. For example, the propensity of
murine Ab to produce insoluble amyloid aggregations is limited
(23), (also see below), and the majority of murine transgenic AD
models involve the expression of mutated human Ab.

However, besides AD, a variety of health problems have, as a
common component, the accumulation of Ab in tissues at
elevated concentrations, sometimes leading to its aggregation.
It was discovered that plasma levels of Ab peptides in pancreatic,
as well as in esophageal, colorectal, hepatic, and lung cancer
patients were significantly higher than in healthy controls (24,
25). In glioblastoma, Ab was found in both oligomeric and
aggregated forms to be associated with glioma cells as well as
localized in the tumor extracellular space, and it was proposed
that blood could be the source of this peptide (26, 27). It was
shown that platelets are activated near cancer tumors, playing the
role of “first responders” during cancer development and
metastasis (28).

Ab is elevated near blood vessels and forms transient amyloid
plaques in the zone of traumatic brain injury or stroke (29–35). It
was proposed that Ab accumulation in astrocytes and on blood
vessel walls is related to ischemia in these processes, while both
brain cells (30) and platelets (35–38) can be the source of Ab.
Using immunocytochemistry, we detected a massive release of
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Inyushin et al. Platelet-Generated Amyloid Beta (Ab)
Ab peptides in and around blood vessels in the brain and skin
after experimental thrombosis, and we determined the source of
these peptides to be platelets (39, 40). Interestingly, according
to evidence in the literature, murine Ab deposits are transient
after traumatic brain injury, while in humans, they are
relatively stable.

Ab peptides also accumulate in the myocardium with
ischemic heart failure, while circulating levels of Ab are
predictive of cardiovascular mortality in patients with coronary
heart disease (41, 42). The sources of Ab involved in this process
are still not known, but we propose that Ab generated from a
platelet precursor could be at least one of these sources.

Ab (and other amyloidogenic proteins) also accumulate in the
placenta during preeclampsia, a leading contributor to maternal
and perinatal morbidity and mortality worldwide. There are
malformations to placental blood vessels in this condition. The
attempt of the body to compensate these malformations
probably leads to extremely high blood pressure. This induces
vessel damage and inflammation in the placenta, leading to local
amyloid accumulation, including Ab (43). This condition usually
produces hemolysis and affects blood composition (44).

During glaucoma, Ab accumulates in the retina, mainly
within the layer of apoptotic retinal ganglion cells (RGC) near
the region of microvascular changes in the eye. During this
disease, the rearrangement of damaged blood vessels occurs in
the zone of the entrance of blood vessels and the optic nerve into
the retina, producing anatomic changes, termed cupping. Ab
released in this area thus may be the cause of retinal cell death,
previously associated only with the effects of high intraocular
pressure (17, 44–46). It was found that application of synthetic
Ab induces significant RGC apoptosis in vivo, while anti-Ab
treatment was effective in the prevention of RGC apoptosis in
glaucoma patients (17, 47–51). Additionally, some anti-glaucoma
medicines have apparent anti-platelet effects, suggesting that
platelets participate in glaucoma development (52).

Also, accumulation of Ab is evident in the advanced stages of
Parkinson’s disease (PD) (53–55). While PD motor impairment,
which develops due to a-synucleinopathy and dopamine
deficiency, is devastating, later progressive cognitive
impairment and dementia (PDD) eventually become the major
debilitating symptoms for 80% of PD patients, and these have no
cure (54, 56). From the early stages, after a-synucleinopathy
advances in PD patients, Ab becomes visible in the brain as well
(57), and after 20 years approximately 50% of PDD patients
develop extensive neuropathologies similar to AD. These include
misfolded Ab plaques and tau neurofibrillary tangles, mainly in
the frontal cortex and striatum (58, 59), while the scale of Ab-
produced damage and its effects on PDD development are still
being debated (54, 55, 57, 60–62). It was also found that there is
an accumulation of insoluble Ab around blood vessels (cerebral
amyloid angiopathy, CAA) in 53% of PD patients (63). In
sporadic AD, striatal depositions are rare (but common in
early-onset AD, (64), while they are predominant in PD and
PDD. Although the striatum and frontal cortex are the zones of
massive degeneration of the neuronal processes of dopamine
neurons as well as inflammation in PD (65), it is still difficult to
Frontiers in Immunology | www.frontiersin.org 3
differentiate the role of Ab in “pure” AD from PD with Ab
depositions and to determine the source of these depositions
in PD.

Here it should be remarked that, while it is known that Ab
peptides in humans can be of different lengths, with different
properties, reported measurements of the Ab40/Ab42 ratio in
many pathologies (except AD) are unfortunately rare, and we
will not discuss this issue here. Moreover, the buildup of
extracellular plaques due to Ab aggregation occurs in brain
tissue, in the vicinity of skin blood vessels, or in peripheral
blood vessels in internal organs (40, 66). Most likely, it is related
to the difference in blood vessel wall structure in these areas and
in other parts of the body. It is known that brain blood vessels
and peripheral blood vessels have a size barrier formed by the
inter-endothelial junctions (IEJs) between endothelial cells (67,
68). This junction barrier defines paracellular permeability, not
allowing phagocytes to enter the nearby tissue and producing a
“no-cleanup” zone in brain and around peripheral blood vessels,
shifting the balance between accumulation and removal of
extracellular plaques.

There are other health conditions in which the occurrence of
Ab oligomers, fibrils, and plaques are common (16).
Nevertheless, the best-studied disease related to Ab is AD.
Ab IN ALZHEIMER’S DISEASE

Ab was found to be the major component of amyloid depositions
described in the brain of AD patients (13), while Ab oligomers at
high concentrations probably ignite the disease itself (15, 21). Ab
oligomers damage neurons, inducing tangle formation. Neuronal
tangles start to appear (those that correlate with brain
impairment) when amyloid concentration is high, and greater
concentrations of Ab oligomers and amyloid plaques correlate
with tangle spread (69).

While Ab deposition in AD was discovered first in the brain,
deposits or high concentrations of oligomers of Ab were later
described in peripheral tissues during the course of this disease. It
can be found in the skin, certain muscles, heart tissue, the eye (in
the retina and the lens), and even the intestines of patients (66,
70–73).

The presence of Ab aggregates locally or systemically during
many health problems, together with the known antibiotic
activity of Ab (see below), led many researchers to suggest that
hyperproduction of Ab is a typical defensive reaction of innate
immunity (16, 17). The generation and release of Ab in large
quantities (hyperproduction) in pathological cases results in its
aggregation and accumulation as a side effect of this response.
The ultimate cause of the disease can be various infections or
mechanical damage that activates this systemic release of Ab.
Released for protection against multiple invasions, Ab later
becomes the damaging factor for the tissue, creating a positive
feedback in the vicious cycle of the disease. The question arises:
where is the systemic production of Ab concentrated, and how
does it work?
October 2020 | Volume 11 | Article 571083
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Ab IS AN INNATE IMMUNITY WEAPON
RELEASED BY PLATELETS

Ab Is an Antibiotic Agent
Ab peptides have strong antibiotic activity against both Gram-
negative and Gram-positive bacteria, as well as fungi and viruses
(74–77). Ab also combats mouse microbial infections in vivo (78).
Extracellular entrapment of the invading agent may be one of the
mechanisms of this antibiotic effect. As an example, it was shown
that certain defensins, peptides produced by neutrophils and certain
other blood cells, have a propensity to arrange themselves in
amyloids. For instance, human a-defensin 6 forms ß-pleated
sheet fibrils with antimicrobial properties entangling the bacteria
in net-like structures (79, 80). Similarly, it was shown that Ab
peptide oligomers aggregated into fibrils entrap microbes (78) or
can bind herpes virus surface glycoproteins, accelerating Ab
deposition and leading to protective viral entrapment (81). Other
defensins can form large, weakly anion-selective ion channels, and
this channel-forming ability contributes to their antimicrobial
properties (82). Equally, we have shown that a synthetic Ab
peptide perforates the external membrane of yeast (40), and it is
known that natural peptide antibiotics with channel-forming
activity kill target cells, including fungi, by this same mechanism
(83, 84). It was shown earlier that soluble Ab peptide oligomers at
low concentrations perforate cell membranes by forming
tetrameric/octameric channels penetrable by K+ ions, while at
higher concentrations they form large, non-selective pores (85–
89). An excess of Ca++ permeability through these pores induces
calcium dyshomeostasis and is extremely toxic (90, 91). Large pores
also allow large molecules entry into the cell. Based on these
findings, it has been suggested that, like defensins, Ab is a
previously unrecognized antimicrobial agent that usually functions
in the innate immune system (16, 38, 75, 78, 92). Other researchers
and our group believe that Ab may be released as a response to
infection (16, 81), and this release is likely triggered by tissue
damage and inflammation (17, 40).

Platelets Are the Primary Source of
Systemic APP and Ab
Amyloid beta (Ab) peptides may be of various lengths (<46
amino acids) but have a specifically conserved sequence, with
90% similarity between vertebrate species but still with
significant differences [see (18)]. These peptides are produced
by a two-step (ß+g) cleavage from a longer amyloid precursor
protein (APP), a process occurring in many cell types, for
example in neurons and astrocytes in the brain (15). This APP
processing is known as the amyloidogenic pathway, because it
produces Ab and is enhanced during pathology; for example, it
was found to occur in AD (93), while the same APP is processed
differently (the non-amyloidogenic pathway) under normal
physiological conditions. Due to hydrogen bonding between
parallel monomers, Ab may form dimeric, tetrameric, or higher-
order oligomers, even at very low concentrations. At higher
concentrations, it associates into larger b-pleated sheets, forming
filaments tending to join in misfolded aggregations known as
Frontiers in Immunology | www.frontiersin.org 4
amyloid plaques (19, 20). The buildup of extracellular plaques in
AD and other conditions (e.g., brain trauma and cancer) suggests
that the concentration of Ab is elevated in an affected individual’s
tissue. Ab aggregation can start at a lower concentration, due to
specific mutations within Ab and its precursor that augment the
propensity of Ab peptides to aggregate, forming the basis for
hereditary early-onset familial AD (22). Our group and others
have already reviewed the literature on the possible sources of Ab
in AD and certain other diseases (16, 46, 94), and it has been
suggested that there is significant local production of Ab by neurons
and probably astrocytes and that APP processing can be found in the
brain and enteric nervous system (15, 95, 96). There is strong
evidence that cultured neurons may produce Ab and even form
“plaques in the dish” (16). Multiple AD murine transgene models
with human mutant Ab generated in neurons under the control of
specific neuronal promoters have shown important characteristics of
AD, such as extracellular amyloid plaques, cerebral amyloid
angiopathy (CAA), and sequential development of tauopathy (97–
99). Although none of the animal models fully replicates the human
disease, they have contributed essential insights into the
pathophysiology of Ab biology and toxicity.

However, there is another systemic source of APP and Ab:
platelets, which are small nuclear cells formed from the pro-platelet
processes of the megakaryocyte (MK) precursor cell (100, 101).
While MK cells originate in the bone marrow, and many
researchers believe that platelets also originate there (102), it has
been shown that at least 50% of platelets are generated from
megakaryocyte-type extravascular progenitors in the pulmonary
capillary bed of the lungs at the site of high oxygen tension (103–
106). Platelet production from MK cells is tightly regulated by
diverse humoral factors (100, 101). Platelets contain various types of
granules, including a-granules, dense granules, and lysosomes
(107). Besides coagulation factors, platelet a-granules contain
APP, which is expressed predominantly as two isoforms of
increasing length (751 and 770 amino acids), both containing a
Kunitz proteinase inhibitor (KPI) domain (108, 109). APP can be
liberated upon platelet degranulation (110–115) and represents
about half of all protein secreted from agonist-treated platelets
(111). APP with a Kunitz-type protease inhibitor can effectively
inhibit chymotrypsin, trypsin, and other proteolytic enzymes (111,
116) and promotes activation of coagulation factor XII, affecting the
hemostasis and temporal stability of the thrombus (117, 118).
Platelets may also generate Ab peptides and are the primary
source (~90%) of this peptide in human blood (119). While APP
processing in platelets under normal physiological conditions is
mostly non-amyloidogenic, it changes during the response to
pathology. Investigators studying AD biomarkers used platelets to
examine the components of both the non-amyloidogenic and
amyloidogenic cascades, finding that platelets are an excellent
model with which to study blood-based AD-related biomarkers,
reflecting a shift in Ab production during AD (120). It was
previously suggested that whether platelets generate soluble APP
or either of the Ab peptides is determined by a specialized regulated
secretory vesicle pathway (121, 122) different from any found in
neurons. In either setting, APP or its cleavage products are released
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mainly within extracellular vesicles, although with a different type of
g-secretase and localization of APP during the two-step
(ß+g) cleavage:

(1) In its neuronal secretory pathway, APP is always a type 1
transmembrane protein and is located in the membrane. First,
cleavage of APP by b-secretase occurs in a soluble environment,
while secondary cleavage by g-secretase occurs within the
transmembrane domain of the APP when inserted into the
membrane, thus liberating Ab outside the cell or inside certain
cellular vesicles (123, 124). In neurons, g-secretase is a proteolytic
complex consisting of four proteins. Presenilin (PS) is the active
core, while the other three proteins provide support functions
(125). In neurons, Ab is released at nerve terminals in the CNS
after the precursor APP is transported there by axonal transport
(126, 127). Cleavage processing most probably occurs in a type of
endosome known as a multi-vesicular body (MVB) in the
terminals, the intracellular structures that contain smaller vesicles
released from the cell in the form of exosomes when theMVB fuses
with the plasma membrane (128, 129). These exosomes contain
mainly APP cleavage products and have a variety of receptors
reacting with nearby neurons and astrocytes (130).

(2) In the secretory pathway, vesicles may release both full-
length, soluble APP, and/or Ab. This event is known to occur in
platelets (110, 111) and in chromaffin cells (131), and both cell
types have specialized secretory vesicles. Full-length APP within
vesicles exists mainly in its soluble form. It has b- and g-secretase
sites accessible for proteolytic cleavage inside the vesicle’s soluble
environment, thereby also releasing Ab inside the vesicle lumen
(131). The content of vesicles is released by the cell in a regulated
process, and it may be APP that is released, or APP may be
processed further inside the vesicle. In platelets, a-granules
represent the final evolution of MVBs and contain exosomes,
similar to the MVBs in neurons (132). The a-granule content
can be extruded or fused to the external membrane (133),
liberating exosomes, as also occurs in neurons. The cathepsin
B and D enzymes, which can cleave soluble APP, are described as
a b-secretases in this pathway. It was suggested that this
regulated secretory pathway (121, 122, 134) produces the
major portion of secreted, extracellular Ab peptides.

It was also found that macrophages may engulf platelets and
process APP to produce Ab in atherosclerosis (135). In addition,
brain vessel endothelial cell enzymes can cleave the platelet-
released APP, forming Ab, most efficiently if the activated
platelets adhere directly to the endothelial cells (136). Leukocytes
can also produce and release Ab, but the amounts are small
relative to that produced by platelets (137). Similarly, many other
cells, such as fibroblasts and endothelial cells, may produce small
amounts of Ab (138). Summarizing, we can say that platelet-
generated Ab may be a significant component of systemic Ab.
Now the question arises: what is the role of systemic Ab?
Ab IS A VITAL DEFENSE PROTEIN WITH
MULTIPLE ROLES

Evolutionarily, mammalian platelets became denucleated and
reduced in size to small (1–2 µm) cells, thereby having a high
Frontiers in Immunology | www.frontiersin.org 5
surface-to-volume ratio that accelerated the speed of reception
and granule secretion, with the further ability to easily transit
from tissue to blood and back through gaps between endothelial
cells everywhere except in the brain. These advantages made
them useful as first responders, which are most important in
hemostasis and innate immunity. In this review, we are primarily
focused on the link between tissue damage and inflammation
and the generation of platelet-associated Ab peptides. Many
comorbid bacteria and viruses were found in patient brains
during AD or glaucoma (17). We suggest that Ab peptides can
be generated from APP released by platelets in response to
inflammation of septic, mechanical, or chemical origin.

Ab Is Generated by Platelets During
Coagulation
We used immunostaining to visualize Ab after photothrombosis
in mouse brains and found that, upon coagulation, the increased
concentration of platelets allows enhanced release of Ab. Ab
immunostaining was intense inside and near blood vessels in the
thrombotic zone, with the maximum intensity near the vessel
walls (39). Similarly, Ab generated from precursors released from
platelets might be the source of its accumulation in mouse skin,
as it was found to be concentrated around blood vessels after
experimental thrombosis (40). A similar accumulation of Ab
around blood vessels in the skin of AD patients and generally in
older patients was described many years ago (66, 139). Moreover,
we recently reported that Ab immunofluorescence accumulated
on blood vessel walls in the damaged part of the brain and on
nearby astrocytes after middle cerebral artery occlusion (35).
Temporary accumulation of Ab in GFAP-positive astrocytic
bodies and processes that formed clusters with specific small
vessel-like structures was reported previously (29, 140–143), see
also review: (38). Ab-containing plaques, as determined by
immunofluorescence, but not plaques staining positive for
Congo red or thioflavin (aggregation-specific amyloid stains)
can persist for up to 9 months after arterial occlusion (144). Also,
temporary Ab plaques appeared in the brain of an AD mouse
model after mild brain trauma. They then disappeared after
7 days, which was correlated with the post-traumatic
concentration of soluble Ab oligomers in the brain (145). Ab
plaques and oligomers may also be found in the brains of human
patients within hours of traumatic brain injury (TBI) in non-AD
patients (33, 146, 147). These findings, taken together, suggest
that trauma followed by coagulation is an important cause of Ab
accumulation in tissues.

Platelets in the Immune Response
It is known that platelets act as important mediators of innate
defenses: platelet adhesion, activation, and degranulation are the
essential steps in this process, in which platelet-associated surface
receptor molecules play a pivotal role in the development of
inflammation (148).

Platelets express CD40L and toll-like receptors (TLR), which
recognize microbe-associated threats and may modulate innate
immunity or directly interact with microorganisms and viruses
(17, 149–152). Platelets can engulf bacteria and viruses in
endosome‐like vacuoles that fuse with a‐granules with
October 2020 | Volume 11 | Article 571083
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antimicrobial contents (153). When directly activated by viral and
bacterial antigens, platelets release microbicidal peptides (16, 154–
162). We have shown that Ab peptides perforate yeast cell
membranes while not affecting somatic cell membranes at the
same concentration (40). Apart from Ab peptide, there are other
antibacterial peptides released by platelets. Like Ab, one of these
antibacterial peptides from rabbit platelets is cleaved from a longer
precursor and has a variable length of 72–73 amino acids (159).

Moreover, platelets 1) interact with other immune cells using
cell-specific adhesion molecules, 2) attach themselves to neutrophils
and monocytes at the site of lesion and also activate these cells as
well as themselves, 3) release multiple antibacterial factors, and 4)
participate in both innate and acquired immune responses (163,
164). In addition, platelets have close interactions with the innate
complement system, while being protected themselves from
complement-mediated damage by soluble and membrane-
expressed complement regulators. Still, they also bind several
complement components on their surface and trigger
complement activation in the fluid phase (165). The best-studied
mechanism is the joint work of platelets and neutrophils in forming
circulating platelet–neutrophil complexes: stimulation of the
neutrophil surface receptor TLR type 2 (TLR2) amplifies the
release of a‐granules and membrane expression of P-selectin on
the surface of platelets. P-selectin allows adhesive interactions with
leukocytes and endothelial cells via P-selectin glycoprotein ligand 1,
which activates leukocyte production of cytokine cascades and
initiates or further promotes inflammation (166). At the same
time, platelets promote the recruitment of neutrophils to sites of
tissue damage. They bind with activated neutrophils and endothelial
cells on vessel walls, forming platelet–neutrophil aggregations and
FIGURE 1 | Interaction between platelets and neutrophils is one of the key elements
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stimulating the production of filamentous neutrophil extracellular
traps (NETs), which trap and kill pathogens (132, 151, 167–170). It
has been shown that aggregated platelets at high density secrete
mainly Ab peptides ending at residue 40 (Ab40) as a final product,
while the Ab42 level is not affected by cell density (171).

Additionally, an unusual reverse influence of neutrophils on
platelets, known as emperipolesis, was reported. In this process
megakaryocytes engulf neutrophils, fusing with their membranes
and subsequently producing “daughter” platelets containing
neutrophil membrane and membrane receptors. The entire
process of emperipolesis takes a few minutes, after which the
neutrophil liberates itself and egresses intact from the
megakaryocyte. This process enables neutrophils passing
through the megakaryocyte cytoplasm to modulate the
production and membrane content of platelets (172). All these
interactions between neutrophils and platelets in normal blood
and during infection, inflammation, and thrombosis are the
pillars of the immune–hemostatic continuum [Figure 1, (166,
173–175)]. The connection between neutrophils and platelets led
us to compare their antimicrobial arsenals, and they showed
striking similarities.

The Similarities Between Ab Peptides and
Defensins
While there are a variety of mammalian defensins, all are
synthesized as a larger precursor molecule and then cleaved a
varying number of times to obtain the final product. They are
active against bacteria, fungi, and many different viruses. For
example, human neutrophil peptides (HNP)-1–3 are first
synthesized as the 94-amino-acid (aa) preproHNP, which is
of innate immunity in mammals (see text).
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converted to 75-aa proHNPs by cotranslational removal of a 19-
aa endoplasmic reticulum signal peptide. At the promyelocytic
stage of myelopoiesis, proHNPs are further cleaved and
accumulate in azurophil granules in neutrophils as 29–30-aa
HNPs. By contrast, the proHNPs produced by more mature
myeloid cells undergo a high degree of constitutive exocytosis
without cleavage. These prodefensins have no antimicrobial
potential, and the significance of their secretion is unknown
(176, 177). Antimicrobial action is mediated via several
mechanisms, including pore formation or aggregation. For
example, the antimicrobial peptide human defensin 6 (HD6)
can aggregate, forming amyloid filaments with a strong affinity
for bacterial surfaces and thereby trapping bacteria (69). By
contrast, (HNP)-1–3 at low concentrations form a lipophilic b-
sheet-rich dimer with additional disulfide bonding, but at higher
concentrations they can oligomerize into tetramers, hexamers,
and larger oligomers, creating a variety of pores or less-well‐
defined apertures, termed “giant aggregate channels,” in plasma
membranes, thereby killing cells (178).

Ab peptides, while relatively short, are synthesized as longer
(680–780 aa) APPs. Then, like defensins, the APPs are cleaved
twice (with b- and g-secretases) to obtain a final length of 36–
43 aa for the mature Ab peptide. They are also active against
bacteria, fungi, and many different viruses, and their
antimicrobial action is mediated via several mechanisms,
including pore formation and aggregation. Soluble Ab peptide
oligomers at low concentrations (50–200 nM) perforate cell
membranes by forming tetrameric channels penetrable by K+

ions and do so at higher concentrations by creating Ca++-
permeable hexameric pores, while they may also form large
pores (86–88). The main toxic effect that has been suggested is
related to the excess Ca++ permeability through these pores,
which induces calcium dyshomeostasis (90, 91). Other toxic
agents may also enter the membrane aperture to kill the cell
(179). In our experiments, the external membrane of the yeast
was perforated by synthetic Ab at a 5-mM concentration (40). A
similar range of concentrations (10–40 µM) was shown for
synthetic defensin-forming channels in fungal membranes
(180). We also suggest that the effective concentration of
peptides (lipophilic defensins and Ab) for pore formation can
be much lower if they are solubilized with selective carriers, such
as transthyretin or apolipoproteins. Recently, it was shown that
certain external compounds that react with Ab might modulate
its effects by working as carriers (181).

It is known that small and double-bridging peptides are resistant
to many proteases, tolerating digestion, even following oral
administration (182). A structure with four sulfide bridges and
multiple b-strands linked to an a-helix is typical of defensins,
making them resistant to proteases. Additionally, certain defensins
have antipeptidase activity themselves or may regulate secretory
leukocyte protease inhibitor a2 macroglobulin, which allows them
to block microbial proteases with synergistic combinations of
defensin and protease inhibitor (183) but also allows them to
resist host proteases.

Ab oligomers usually lack disulfide bridges, except for certain
mutant peptides (184), but they have multiple b-strands
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reinforced with salt bridges (185). Besides, in many cases Ab
peptides are released jointly with a full-size APP or its fragments
with Kunitz-type domains, which block protease activity and
protect the released Ab peptide. It was shown that the amount of
released Kunitz-APP is vital for AD development and is
correlated with the number of neurotic plaques (186).

It is common knowledge that Ab concentration is augmented
in AD and certain other conditions, but the same is true for
defensins. Rapid accumulation of defensins proximal to the site
of brain inflammation occurs with neurodegeneration (187),
including in AD (188), bacterial and viral infection, and brain
trauma (188–190). Antimicrobial peptide b-defensin-1
expression is also upregulated in AD brain, especially in the
choroid plexus but also in astrocytes and blood vessel walls (191,
192). Under physiological conditions, dendritic cells are
restricted to the meninges and choroid plexus of the brain and
are generally not present within the brain parenchyma (193). In
addition, there are several antimicrobial peptides with a clear
structural resemblance to defensins, with similar pore-forming
and mesh-forming activities [for a review see: (194)].
A POSSIBLE RODENT MODEL OF
PLATELET-GENERATED Ab

Studies of platelet-generated Ab must reproduce the following
effects: 1) induced APP is expressed in platelets; 2) platelet-
generated Ab is prone to aggregation; 3) platelet-generated Ab
can be transported from the blood to the brain or some other
tissue of interest, as some Ab mutants are not transportable.

Expressing an APP of Interest in Platelets
Using Different Promoters
The expression of Ab in a transgenic model depends on the type
of promoter used to control its expression. Different promoters
have a stably recurring expression in specific cells, while some
have remarkable variation in expression patterns (195). Of the
most common promotors used in mouse transgenes, the prion
promoter element (PrP) is most promising. It is mainly active in
brain neurons but also in extraneuronal regions, especially in
cells with secretory granules (196). It was found that exosomes
release cellular prion protein from activated platelets (197, 198).
Similarly, APP was found to be concentrated in exosomes of a
specific size in platelets (199). This gives hope that a transgene
with an inserted variant of APP and under control of the PrP
promoter can generate both APP and Aß in association with
platelets as well as with neurons.

Another promising promoter is the rat platelet factor 4
promoter element (rPF4). A transgenic mouse that generated
modest overexpression of induced human wild type APP (770
isoforms) in platelets was constructed (200). However, in this
animal model, mouse and not human Aß was found in the brain
(201), raising the possibility that human wild type Aß has a
transport impediment at the blood–brain barrier (BBB) in mice.

The popular mouse Thy 1.1 promoter is used in many murine
transgenes that develop Ab accumulation in brains of mouse and
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rat and CAA-type aggregation in blood vessels (202, 203).
However, this promoter does not transcribe well in platelets
and is usually manipulated (by intron 3 deletion) to remove its
transcription in cells other than neurons (204, 205). Therefore,
platelets have no expression of transgenic APP, but express only
endogenous wild type APP. There are reports that truncated Thy
1 can also be activated in endothelial cells by inflammation (206).
Interestingly, blood vessel damage in organotypic wild type brain
slices was ascribed to platelets because of their platelet-generated
Ab (207). Platelets were harvested from Tg-SwDI mice with APP
expressed under a Thy 1 promoter, and therefore we suggest that
Aß in platelets from these animals was mainly wild-type and not
transgenic. Kniewallner et al. showed that these AD-derived
platelets more aggressively damage healthy vessels in any case
and that matrix metalloproteinase hyperactivation was involved.
Thus, even wild-type platelet-generated Aß can produce damage
if platelets are hyperactivated.

Summarizing, the majority of murine transgenic models of
AD use the insertion of mutated human APP variants, and many
of these transgenes do not express human Ab in platelets. This
must be taken into account when evaluating platelet-related
studies of Ab accumulation.

Aggregation of Generated Ab and Transit
Barriers
It is known that Ab wild type and variants have different tendencies
to aggregate. Human Ab(1–40) and Ab(1–42) differ in their ability
to form amyloid fibrils (208), while it was also shown that both
variants can co-aggregate, creating mixed b-sheets (209). In
addition, there is a species-related difference: the propensity of
murine Ab to produce amyloid deposits is limited, even in aged
mice. This is because human andmurine APPs differ at three amino
acid residues within the Ab peptide sequence and are cleaved
differently by b-site APP cleaving enzyme 1 (BASE1), thereby
producing mainly shortened Ab fragments not prone to
aggregation or easily soluble aggregates in wild type rodents (23,
210). Therefore, practically all transgenic mouse models of AD
amyloid deposition use somewhat humanized APP. It can be a
mutated human APP or a murine APP that is chimerized to include
human-type early-onset mutations to generate Ab deposits. Human
presenilin (a component of the cleaving mechanism) must be added
to produce longer Ab peptides. For example, when expressed in
mouse APP695, a transgene with mutations resembling Swedish
human mutations leading to early-onset AD (APPswe) and
reinforced by a human presenilin exon-9-deletion variant
(PS1dE9) can produce amyloid deposits consisting entirely of
mouse Ab peptides that are morphologically similar to deposits
found in humans during early-onset AD (211). Recently, using a
parabiosis procedure on this APPswe/PS1dE9 transgenic ADmouse
with their wild-type littermates, it was directly established that
human Ab originating from the transgenic AD mouse model
entered the circulation, accumulated in the brains of the wild-type
mice, and formed cerebral amyloid angiopathy and Ab plaques after
12 months of parabiosis (212). The authors did not determine the
source of blood-derived Ab but suggested that the source may be
platelets. This chimerical mouse/human amyloid precursor protein
Frontiers in Immunology | www.frontiersin.org 8
(Mo/HuAPP695swe), together with mutant human presenilin 1
(PS1-dE9), was directed to CNS neurons and platelets with a PrP
promoter. It is possible that the Ab in this model first penetrated the
BBB from the brain of the transgenic mouse and then once again
the BBB of the littermate, passing through this barrier twice.
Alternatively, Ab may simply be transported from platelets in the
circulation to the littermate brain. In any case, at least one BBB
transit mechanism was involved. The same mouse model (APPswe/
PS1dE9) was used to show that thrombotic cerebrovascular lesions
induce a rapid transient increase in amyloid plaque burden and
amyloid angiopathy in the area immediately surrounding the
infarcted area, (213). These and other results suggest that this
model (APPswe/PS1dE9) is the best for studying the effects of
platelet-generated Ab.

Another interesting problem is hybrid aggregation. Wild type
Ab from one cell type and a mutant Ab from neurons may
aggregate, forming hybrid (hetero-)oligomers, thus affecting
amyloid formation. For example, if a heterozygote animal has
two different Ab variants, one variant could reduce self-assembly
of the fibrils of the other variant. Some Ab mutants even have
opposite parallel or antiparallel b-sheet arrangements in
oligomers [as was shown for the Italian E22K and Iowa D23N
mutations; (214)]. It is known that shorter Ab fragments can
aggregate with full-length Ab, and the resulting oligomers will
block self-assembly of the fibrils and amyloid (215). Thus, wild
type Ab fragments from platelets being transported to the brain
may interfere with fibril formation by mutant Ab from a
neuronal source in transgenic animals. Are Ab peptides
transported to the brain and back? Fragments of mutant and
hybrid Ab oligomers may have transit barriers at the BBB, and
this possibility has been largely unstudied.

Abmay be transported in and out of the brain parenchyma by
several physiological mechanisms. The vascular luminal receptor
for advanced glycation end products (RAGE) is thought to be a
primary transporter of Ab across the BBB into the brain from the
systemic circulation. The low-density lipoprotein receptor-related
protein (LRP)-1 (expressed mainly at the abluminal side of the
BBB) mediates transport of Ab out of the brain (216–219).

The Italian E22K and Iowa D23N mutations can result in the
formation of Ab oligomers and fibrils, with an antiparallel b-
sheet structure predisposing them to be deposited in cerebral
blood vessels rather than accumulating mainly in plaques
through distinct interactions with the receptors responsible for
Ab clearance across the BBB (214). As already mentioned,
human Ab probably encounters a transit barrier in murine
models. For example, poor clearance of human Dutch/Iowa
mutant Ab40 peptides from mouse and rat brain was shown
(203, 220). This factor may also be important for studying
platelet-generated amyloid peptides in murine models.
CONCLUSIONS

• There are a number of health complications in which high
levels of Ab peptides and Ab amyloid aggregates occur.
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• While many cells may produce Ab, including neurons and
astrocytes, platelets are theprimary sourceof systemicAPPandAb.

• Platelets are a vital part of intrinsic immunity, and Ab is an
essential defense protein released during trauma and
coagulation and as a response to inflammation. Ab has
evident antimicrobial and antiviral properties, suggesting
that inflammation-related tissue accumulation of Ab may
be an overreaction against microbial or other aseptic causes.

• Platelets are essential players in tissue Ab accumulation in
AD, glioma, and glaucoma and may be involved in other
neurodegenerative diseases, such as PD.

• While the direct release of APP and its non-amyloidogenic
products is prevalent in platelets under normal physiological
conditions, our literature review suggests that, in many
pathologies, platelet activity shifts to Ab production and
that inflammation is one of the triggers.

• The propensities of Ab from different animal species and
humans to aggregate are different, and murine Ab does not
form stable aggregates. Thus, the majority of murine
transgenic models of AD use the insertion of mutated
human APP variants, and many of these transgenes do not
express human Ab in platelets. This must be considered when
Frontiers in Immunology | www.frontiersin.org 9
interpreting the results of platelet-related studies of Ab
accumulation. Some human Ab may also encounter a
transport filter at the mouse blood–brain barrier.
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