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Abstract: Currently, functional single-stranded oligonucleotide probes, termed aptamers, generated by
an iterative technology, Systematic Evolution of Ligands by Exponential Enrichment (SELEX), are utilized
to selectively target molecules or cells with high affinity. Aptamers hold considerable promise as
multifunctional molecules or conjugates for challenging nanotechnologies or bioapplications now and in
the future. In this review, we first describe recent endeavors to select aptamers towards live cancer cells
via cell-SELEX. We then introduce several characteristic applications of selected aptamers, especially in
imaging, drug delivery and therapy. In part, these advances have been made possible via synthesis of
aptamer-based nanomaterials, which, by their sizes, shapes, and physicochemical properties, allow such
aptamer-nanomaterial complexes to function as signal reporters or drug carriers. We also describe how
these aptamer-based molecular tools contribute to cancer biomarker discovery through high-affinity
recognition of membrane protein receptors.
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1. Elucidation

Aptamers, sometimes called “chemical antibodies”, are single-stranded DNA or RNA
oligonucleotides commonly containing 20~100 nucleotides. However, aptamer molecules and
antibodies are very different in terms of properties and structure [1–5]: (1) antibodies are produced
in vivo in a living organism, while aptamers may be developed in vitro by selection and chemical
synthesis, allowing easy, fast, and economical reproducibility in different batches; (2) aptamers can
be easily conjugated with a series of functional groups or functionalized with different substrates [6]
to achieve various diagnostic and therapeutic objectives, with additional advantages of reversible
denaturation ability [7,8] and long-term stability in solution or as dry powder; (3) aptamers can bind
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with their targets with remarkable affinity (Kd ≈ µM to pM range) by the ability to fold into secondary
or tertiary structures. Aptamers can specifically recognize their targets, including, but not limited to,
metal ions, nanomaterials, molecules, chemical linkers, fluorophores, as well as proteins and intact
cells [9,10], with selectivity comparable to that of antibodies; (4) aptamers are, moreover, nontoxic and
exhibit rapid tissue penetration, with little immunogenicity compared to antibodies. These desirable
features make aptamers ideal and valuable tools in many fields, such as molecular medicine, especially
cancer diagnostics, therapeutics and theranostics.

2. Generation of Aptamers by Cell-SELEX

Aptamers are generated by a process called Systematic Evolution of Ligands by Exponential
Enrichment (SELEX), first reported in 1990 [11,12]. A variety of targets, including metal ions, small organic
molecules, viruses, parasites, tissues and bacterial cells [2–5], can be utilized for aptamer selection [13].
More importantly, intact cells, especially diseased cells, can act as targets in SELEX [14,15]. In addition,
other SELEX methods, such as in vivo SELEX [16], tissue SELEX [17], and 3D cell-SELEX [18], have also
been developed. Many techniques, such as surface plasmon resonance [19], robotic SELEX [20], capillary
electrophoresis [21] and microfluidics [22] have been used for aptamer selection.

The cell-SELEX process (Figure 1) commonly begins with a large random library of about
1× 1013~1× 1016 ssDNA or ssRNA molecules. These molecules are repeatedly incubated with two types
of cells, including specific cancer cell types, as the targets, and normal cells, or other types of cancer cells,
as counter controls. These molecules undergo repeated interaction with the target of interest, progressively
winnowing out non-binders, thus making it possible to obtain aptamer probes which specifically bind
only to the targeted cancer cells, while molecules with nonspecific binding to the counter control cells are
removed. These enriched molecules are amplified by polymerase chain reaction (PCR). The survivors are
sequenced and used as molecular probes [23].
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However, some obstacles complicate this process. In particular, aptamers are known to have poor
nuclease resistance, although such degradation can be avoided by introducing nucleotide substitution on
the 5′-α-P-site or on the 2′-carbon of ribose or by using artificial riboses in the modified library to enhance
nuclease resistance [24]. Moreover, natural oligonucleotides have low information density, which can limit
functionality and binding affinity. This drawback can be addressed by adding functional groups [25–27]
or artificially expanded nucleobases [28–30] to mimic amino acid side chains in DNA/RNA.

Based on the advantages and technical advances noted above, unprecedented opportunities for
biomarker discovery lie ahead for aptamers, in particular for cancer theranostics based on specific
recognition. In fact, using cell-SELEX, a number of aptamers for cancer cells have already been
selected [31], including breast cancer cells [32], lung cancer cells [33], and leukemia cells [15,34].
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3. Aptamer-Based Applications

3.1. Imaging

The use of aptamers as in vivo imaging probes was introduced in 1997 [35] with a better
signal-to-noise ratio compared with the corresponding antibody counterparts. Aptamers have no
inherent imaging capacity, thus necessitating conjugation with functional groups or agents with
imaging properties, such as fluorophores, iron oxide nanoparticles or other nanoparticles [36].
Fortunately, aptamers can be easily chemically modified, and researchers have developed a wide array
of functionalized aptamers for in vivo molecular imaging.

Fluorophores can be modified on the end of an aptamer through phosphoramidite chemistry.
The aptamers will then emit fluorescence for in vivo imaging when the needed photons are provided.
The signal for a single aptamer is low, but it will increase when the aptamers circulate and accumulate
after reaching the desired target. Further, multiple dyes can be labeled on a given aptamer via chemical
reactions or interactions, such as biotin and streptavidin pairing [37], to further amplify fluorescence
signaling, enabling easy and rapid identification of the target cells for diagnosis. Hu et al. [38]
reported DNA nanoflowers (NFs) conjugated with a fluorescent resonance energy transfer aptamer
by rolling circle replication reaction (RCA) to realize cellular imaging and cancer-targeted treatment
(Figure 2). NFs covalently modified with three dye molecules generated multifluorescence emissions
by a single-wavelength excitation.

Cancers 2018, 10, x  3 of 19 

 

adding functional groups [25–27] or artificially expanded nucleobases [28–30] to mimic amino acid 
side chains in DNA/RNA. 

Based on the advantages and technical advances noted above, unprecedented opportunities for 
biomarker discovery lie ahead for aptamers, in particular for cancer theranostics based on specific 
recognition. In fact, using cell-SELEX, a number of aptamers for cancer cells have already been 
selected [31], including breast cancer cells [32], lung cancer cells [33], and leukemia cells [15,34]. 

3. Aptamer-Based Applications 

3.1. Imaging 

The use of aptamers as in vivo imaging probes was introduced in 1997 [35] with a better signal-
to-noise ratio compared with the corresponding antibody counterparts. Aptamers have no inherent 
imaging capacity, thus necessitating conjugation with functional groups or agents with imaging 
properties, such as fluorophores, iron oxide nanoparticles or other nanoparticles [36]. Fortunately, 
aptamers can be easily chemically modified, and researchers have developed a wide array of 
functionalized aptamers for in vivo molecular imaging. 

Fluorophores can be modified on the end of an aptamer through phosphoramidite chemistry. 
The aptamers will then emit fluorescence for in vivo imaging when the needed photons are provided. 
The signal for a single aptamer is low, but it will increase when the aptamers circulate and accumulate 
after reaching the desired target. Further, multiple dyes can be labeled on a given aptamer via 
chemical reactions or interactions, such as biotin and streptavidin pairing [37], to further amplify 
fluorescence signaling, enabling easy and rapid identification of the target cells for diagnosis. Hu et al. 
[38] reported DNA nanoflowers (NFs) conjugated with a fluorescent resonance energy transfer 
aptamer by rolling circle replication reaction (RCA) to realize cellular imaging and cancer-targeted 
treatment (Figure 2). NFs covalently modified with three dye molecules generated multifluorescence 
emissions by a single-wavelength excitation. 

 
Figure 2. Schematic illustration of aptamer-conjugated DNA nanoflowers (NFs) by rolling circle 
replication reaction (RCA) to realize cellular imaging with fluorescent resonance energy transfer 
(FRET) for tracking DOX drug. Reprinted with permission from © (2014) WILEY-VCH Verlag GmbH 
& Co. KGaA [38]. 

Aptamers can be conjugated to paramagnetic molecules, such as super-paramagnetic iron oxide 
nanoparticles (SPIONs) and paramagnetic metal chelates [39], to realize magnetic resonance-based 

Figure 2. Schematic illustration of aptamer-conjugated DNA nanoflowers (NFs) by rolling circle replication
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DOX drug. Reprinted with permission from © (2014) WILEY-VCH Verlag GmbH & Co. KGaA [38].

Aptamers can be conjugated to paramagnetic molecules, such as super-paramagnetic iron oxide
nanoparticles (SPIONs) and paramagnetic metal chelates [39], to realize magnetic resonance-based
molecular imaging. Li et al. reported the use of aptamer-conjugated Au-coated Fe3O4 nanoroses
for selective and efficient imaging, diagnosis and therapy (Figure 3) [40]. Fe3O4 nanoroses served
as a magnetic resonance imaging (MRI) agent, which could probe variable relaxation rates of protons
or certain other nuclei. The relaxation rates vary with nanoparticle interactions, such as aggregation,
and can be distinguished by MRI with endogenous contrast.
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To make aptamers effective for in vivo imaging, nanoparticles, or DNA-based nanostructures, can
be combined with aptamers to gain greater signal, as well as deeper tissue penetration. Kuai et al. [41]
developed circular bivalent aptamers with imaging capability to selectively target cancer cells.
Zhao et al. designed a dual-activatable fluorescence/MRI bimodal platform based on a redox-active
manganese dioxide (MnO2) nanosheet aptamer nanoprobe for targeting cancer cells (Figure 4) [42].
The enhancement in fluorescence signals facilitated in vivo imaging through the reduction of MnO2 by
GSH and resulting generation of large amounts of Mn2+ ions.
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3.2. Targeted Drug Delivery

Aptamers conjugated with delivery vector systems, such as liposome vesicles, have attracted
attention for targeted intracellular drug delivery [43,44]. Most existing aptamers cannot directly
migrate through the cell membrane, which calls for the development of new aptamer probes able
to penetrate cells for drug delivery. Up to now, the aptamer with most frequent clinical use has
targeted prostate-specific membrane antigen (PSMA) [43,45,46]. The Tan group also developed
aptamers Sgc8 and TDO5 which act as recognition molecules to bind CCRF-CEM and Ramos cells,
respectively. In particular, aptamer Sgc8 is strongly internalized by CEM cells [15] and accumulates
in the endosomes. Furthermore, Sgc8 exhibits low cytotoxicity to CEM cells, suggesting that these
aptamers can be functionalized for cell type-specific intracellular delivery. Different modes, such as
covalent crosslinking, intercalation and self-assembly, can be used to load the drug.
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For instance, covalent crosslinking can be used for aptamer-based drug delivery owing to the facile
functionalization of aptamers [47]. Niu et al. presented an approach based on the covalent binding
of a cytotoxic N-heterocyclic carbene (NHC)-Au complex to a DNA aptamer. The experimental
results showed clear evidence that the NHC-Au1-aptamer conjugate was efficient and selective for
delivery of doxorubicin (Dox) into CCRF-CEM leukemia cells (Figure 5) [48]. Wang et al. designed
aptamer-drug conjugates (ApDCs) for targeted drug delivery with reduced toxicity (Figure 6) [49].
They realized automated and modular synthesis of ApDCs and efficiently incorporated multiple drugs
into ApDCs at predesigned positions by a solid-phase therapeutic module for targeted drug delivery.
Zhu et al. [50] coupled photosensitizer, single-walled carbon nanotubes (SWNTs) and ssDNA aptamer
to form a molecular beacon structure for controllable generation of singlet oxygen (1O2). The produced
1O2 could selectively kill SK-BR-3 breast cancer cells, not normal cells. This method should gain wide
acceptance as an alternative noninvasive treatment for cancer.
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Figure 6. Schematic illustration of automated and modular chemical synthesis of aptamer-drug
conjugates (ApDCs) from phosphoramidites A, T, C, G and D. Reprinted with permission from © (2014)
American Chemical Society [49].

In addition to covalent crosslinking, intercalation is another efficient drug-loading method for
cancer therapy. Double-stranded sequences rich in CG or GC base pairs can intercalate the anticancer
drug Dox. With these CG or GC sequences present in the aptamer sequence, internalization can
be achieved with decreased cytotoxicity of Dox drug in nontarget cells. Wang et al. combined two
functional DNA groups to form a G-quadruplex-aptamer-drug platform by intercalation. One group
can recognize the target cells and another can act as a drug delivery carrier for TMPyP4 (Figure 7) [51],
which binds and stabilizes the G-quadruplex. Zhu et al. developed aptamer-based DNA nanotrains by
hybridization chain reaction (HCR) and utilized them to carry anticancer drugs for cancer therapy [52].
Two molecular beacon-structured DNA sequences self-assembled into tandem “boxcars” were used as
carriers to transport the drugs into target cells with no indication of selective cytotoxicity.
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Figure 7. Schematic illustration of a G-quadruplex-aptamer. TMPyP4 is delivered with the G-quadruplex as
the drug carrier and the aptamer as the targeting molecule. The helical strand is the aptamer. Reprinted with
permission from © (2011) WILEY-VCH Verlag GmbH & Co. KGaA [51].

Other researchers [53–57] have combined aptamer-based mesoporous nanomaterials as nanotools
to effectively enhance drug-carrying capacity. The transported drug could be released by the reduced
size of the single-stranded neck region. The strategy is applicable to the transport of anticancer drugs,
such as paclitaxel, DOX and camptothecin, with highly efficient delivery.

3.3. Therapy

The aim of molecular medicine is evidence-based therapy, i.e., the adoption of a treatment based on
cognition of molecular change. Targeted therapy can enhance the curative effect at the molecular level
owing to lower cytotoxicity, fewer side effects and higher efficacy. Up to now, some targeting components,
such as peptide-, protein- or immunoconjugates, have been recruited to improve the efficiency for targeted
cancer therapy [44,58]. Moreover, the Tan group has significantly improved the design of targeted therapy
regimens, including targeted phototherapy, gene therapy and chemotherapy, by taking advantage of
cell-SELEX to produce cell-specific aptamers having multiple chemical properties against different cancers.

3.3.1. Phototherapy

Recently, photodynamic therapy (PDT), which makes use of a photosensitizer to generate reactive
oxygen species under irradiation, has attracted attention in cancer therapy [59,60]. You et al. developed
a DNA-based device capable of performing autonomous logic-based analysis of two or three cancer
cell-surface markers for cancer therapy (Figure 8) [61]. Multicellular marker-based cancer analysis
was based on modular AND, OR and NOT Boolean logic gates using the specific target-recognition
properties of DNA aptamers with toehold-mediated strand displacement reactions. A general method
was developed for assembling these modular logic gates to execute programmable and higher-order
profiling of multiple coexisting cell-surface markers with the capacity to report a diagnostic signal
and/or deliver targeted PDT. Wu et al. designed a multifunctional aptamer-based DNA nanoassembly
(AptNA) for potential targeted cancer phototherapy (Figure 9) [62].
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(a) Two-input trivalent “Y”-shaped Nano-Claw and (b) Three-input tetravalent “X”-shaped Nano-Claw.
(c,d) Flow cytometry experiments to determine the best cDNA sequences with high Cy5.5 fluorescence signal
(from biotin-labeled TC01, Sgc4f or Sgc8c aptamer) and low FITC fluorescence signal (labeled on
the candidate strands). Reprinted with permission from © (2014) American Chemical Society [61].
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Many DNA-based building units with 5′-modification of acrydite groups were further
photocrosslinked into an aptamer-based nanoassembly structure to realize selective recognition and
transport with high programmability, and excellent biostability and biocompatibility. The Tan group also
developed other strategies for photothermal therapy based on nanomaterial-aptamer conjugates [63,64].

3.3.2. Gene Therapy

Genetic therapy has been introduced into somatic tissues to treat many diseases, including cancer, using
antisense oligonucleotides, plasmid DNA, or RNA interference [65–69]. DNA fragments can hybridize with
these complementary sequences, e.g., the loop portion of a molecular beacon structure [70,71], which greatly
facilitates the improvement of gene therapy or disease diagnosis. Li et al. reported size-controllable and
stimuli-responsive DNA nanohydrogels, incorporating aptamers as effective targeted gene therapy vectors
(Figure 10) [72]. DNA was used for gene therapy vectors constructed through a self-assembly process
using three kinds of building units. Through this facile modular assembly, these aptamer-based DNA
nanohydrogels hold great promise for targeted gene therapy with superior biocompatibility and efficient
cellular uptake. Chen et al. designed a sensitive and selective approach based on molecular beacon micelle
flares (MBMF) for mRNA detection and gene therapy (Figure 11) [73]. MBMF hybridization can lead to
apoptosis of cancer cells by inducing gene silencing.
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Figure 11. Schematic illustration of molecular beacon micelle flares (MBMFs) for gene therapy.
Diacyl-lipid-molecular-beacon conjugates (L-MBs) self-assemble into MBMFs and enter living cells.
Before binding their target mRNA, the fluorophore and the quencher of the MBMFs are in close proximity
(OFF state). Hybridization between the loop region and the target mRNA separates the fluorophore
and the quencher, producing a fluorescence signal (ON state) and a DNA/RNA heteroduplex for RNase
H action. Reprinted with permission from © (2013) WILEY-VCH Verlag GmbH & Co. KGaA [73].

3.3.3. Chemotherapy

Enhancement of chemotherapy efficacy and comprehensive toxicity reduction can be achieved
through conjugation of anticancer agents to targeting antibodies and aptamers [74,75]. Wang et al. [49]
utilized solid-phase synthesis technology to generate DNA from individual phosphoramidite building
blocks, namely, A, T, C and G, which can be used for automated and sequence-predesigned
DNA synthesis. Using this technique, next-generation aptamer-drug conjugates were designed for
targeted chemotherapy.

Chen et al. reported a smart multifunctional nanostructure (SMN) constructed from a porous
hollow magnetite nanoparticle (PHMNP), a heterobifunctional PEG ligand and an aptamer to achieve
targeted chemotherapy and magnetic resonance imaging of cancer cells in vitro (Figure 12) [76].
The PHMNPs were synthesized by a three-step reaction, including functionalization with PEG ligands
and modification with DOX. Targeting aptamers were then introduced by reaction with the PEG
ligands. Huang et al. [77] linked DNA aptamer Sgc8c to the anticancer agent Dox via covalent bonding.
Compared with other reported ineffective Dox-conjugates, strategies based on the Sgc8c-Dox conjugate
endowed targeted chemotherapy with enhanced feasibility, multiple potency and broad implications
for targeted chemotherapy [74].
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4. Biomarker Discovery for Cancers

According to the definition from the National Institutes of Health [78], a biomarker is
“a characteristic that is objectively measured and elevated as an indicator of normal biological processes,
pathogenic processes or pharmacologic response to a therapeutic intervention”. For cancer, the definition
narrows to “a biological molecule found in blood, other body fluids, or tissues that is a sign of a normal
or an abnormal process, or of a condition or a disease such as cancer” [79]. Thus, a biomarker can be
applied to prognosis or diagnosis in a clinical setting. It can also be applied to either monitor disease
progression or identify possible biochemical origins, achieving both by an immortalized cell line related
to cancers, essentially because a biomarker molecule can differentiate “normal” from “abnormal” cells.
Although some molecular markers have been established, such as nucleic acids, serum proteins, peptides,
antibodies, tissues, biological fluids or small molecules (sugars, steroids or any other molecule present in
cells) [80], biomarker discovery remains an urgent challenge in the field of molecular medicine [81,82],
especially for cancers, because early diagnosis and effective therapy are greatly impeded by the lack of
discriminatory biomarkers.

What mainly limits the current progress of biomarker discovery is under-representation of membrane
proteins in proteome analysis. In addition, membrane proteins account for 30% of the proteins in
the body, but fewer than 5% of membrane proteins can be recognized using two-dimensional gel
electrophoresis combined with mass spectrometry (2D-GE-MS) [83]. However, differential selection
of aptamers based on cell-SELEX promotes discovery of membrane protein biomarkers [81], as described
in the following sections.

In exploratory work to establish cell-SELEX, the Tan group found the biomarker protein for
target CEM cells by using highly specific aptamer Sgc8 [84]. A library of 1015 random DNA
sequences was incubated with T-ALL cells (CCRF-CEM) using Ramos cells for counter selection.
After selecting Sgc8 as a promising aptamer candidate, the target membrane protein was then identified.
First, a target cell lysate was prepared, and the membrane protein fraction was separated from the total
soluble proteins by a membrane protein extraction kit according to the manufacturer’s instructions.
Then biotinylated Sgc8 aptamer and streptavidin magnetic beads were used to capture and isolate
the membrane proteins having high affinity to aptamer. It was observed by flow cytometry that
anti-protein tyrosine kinase 7 (PTK7) antibody and Sgc8 co-bind, rather than competitively bind,
with the transmembrane protein PTK7 (Figure 13). Subsequently, the target membrane protein
was separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and
sequenced by liquid chromatography-mass spectrometry (LC-MS). After confirmatory experiments,
PTK7, a transmembrane receptor commonly found on cancer cells, was finally identified and verified
as the target biomarker [84]. These results indicated a relationship between T-ALL cancer cells
and overexpression of PTK7. Aptamer Sgc8 is now used as a molecular recognition probe with
various nanomaterials in a wide range of bioapplications, including tumor imaging [42,85,86],
cancer therapy [48,62,87,88], targeted delivery [49,52,89,90], and cancer detection [61,91].

The same biomarker elucidation process was used with aptamer TDO5 to identify
the immunoglobulin heavy mu chain (IGHM) as a biomarker for B-cell Burkitt’s lymphoma cell
line [92]. In that selection case, UV-induced group 5-iododeoxyuridine (5-dUI) was covalently linked
with biotinylated aptamer TDO5 by replacing several deoxythymidines (dTs). The overexpressed
immunoglobulin heavy mu chain (IGHM) on premature B-lymphocytes was determined to be the target
of TDO5 aptamer with close correlation to Burkitt’s lymphoma research [93,94]. The target Ramos cells
were lysed, and aptamer-conjugated proteins were isolated by streptavidin beads, followed by cleavage
of the disulfide bonds in the captured aptamer-protein complex to release the target. The results of
LC-MS and SDS-PAGE also demonstrated the target protein to be B-cell receptor IGHM [94]. Utilizing this
covalent linkage process, the capture, enrichment and aptamer-based isolation of target protein receptors
have been improved (Figure 14) [95].
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Figure 14. Aptamer-based isolation of target protein biomarkers with crosslinking aptamers and target
proteins for cancer cell surface biomarker discovery. (A) Cell-SELEX technology selects a panel of aptamers
capable of distinguishing molecular differences between two types of cells. (B) Aptamer-assisted affinity
purification without cross-linking aptamers and target proteins as targets proteomics strategy for cancer cell
surface biomarker discovery. (C) Aptamer-assisted affinity purification with cross-linking aptamers and
target proteins as targeted proteomics strategy for cancer cell surface biomarker discovery. Reprinted with
permission from © (2017) American Chemical Society [95].

According to Benner, et al. [96], if “the Watson-Crick model supported an enlarged molecular system
and an enlarged molecular biology,” then an artificially expanded genetic information system, such as
that described by Zhang, et al. [95], should bring “enlarged functional potential,” with concomitant
implications for biomarker discovery. More specifically, in their expanded system for SELEX biomarker
discovery, Zhang, et al. utilized an artificial base pair to select aptamers against living cells [28,29]
and cell-surface target proteins [96] (Figure 15). In this research, a pool of six-nucleotide aptamers was
used to target cells with specific overexpression of glypican 3 protein (GPC3) on the cell surface, along
with counterselection by laboratory in vitro evolution (LIVE). The selection-counterselection strategy
starts with a known biomarker protein, which means the aptamer recognition biology is already well
established. Implantation of these two artificial bases improved the functionality of the DNA library pool
and tremendously enhanced information feedback from the conjugated complex. Also, based on negative
selection, this new SELEX technology with expanded artificial bases virtually guarantees the removal of
off-target binding DNAs.

Very recently, Wang et al. exploited the bioorthogonal interaction between protein and aptamer for
biomarker discovery. They selectively conjugated DNA aptamers with a protein via a protein-aptamer
template (PAT)-directed reaction because interactions between protein and aptamer are bioorthogonal
(Figure 16) [97]. A modified aptamer library reservoir was used in the PAT-directed reactions, and
an α,α-gem-difluoromethyl carboxyl group (F-carboxyl) was found to be suitable for selective and
site-specific combination and functionalization. This approach of conjugating the aptamer to ascertain
the interaction location, i.e., the protein, on the cell surface is promising for oriented modification of
functional molecules and groups in biomedical and biological research.
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genetic information system (AEGIS) in Laboratory In Vitro Evolution (LIVE). (a) Molecular structures and
space-filling models of C:G, T:A, and Z:P pairs showing their similarity; (b) Application of the artificial
aptamers in biomarker discovery based on the AEGIS-LIVE selection procedure. Reprinted with permission
from © (2016) WILEY-VCH Verlag GmbH & Co. KGaA [96].

A superior strategy called “parallel mode” was introduced by Shangguan and Wang et al. using
a formaldehyde crosslinking concept [98]. Two aptamers, Sgc3b and Sgc4e, were successfully utilized to
identify the corresponding biomarker protein selectin L and integrin α4 of Jurkat cells. A fluorophore
was linked with the aptamer to track and optimize the binding by flow cytometry analysis. The authors
adopted a quantitative proteomic method by labeling a stable isotope on amino acids when culturing
Jurkat cells, and they utilized crosslinked, aptamer-based affinity purification by a streptavidin agarose
resin. Finally, the target proteins were identified via SDS-PAGE and LC-MS/MS after heating for 1 h at 95 ◦C.
They recommended this method for elucidation of general protein targets.

Figure 16. Schematic illustration of (a) one-step bioorthogonal reaction for biomarker discovery;
(b) PAT-directed reactions for the preparation of protein-aptamer conjugates (PAC, route I) or
protein-oligonucleotide conjugates (POC, route II). Reprinted with permission from © (2016) Royal
Society of Chemistry [97].

In another example, Yang et al. reported an adhesion molecule biomarker, epithelial cell
adhesion molecule (EpCAM), on the surfaces of epithelial cells (circulating tumor cells (CTCs)) [99].
In the SELEX process, recombinant EpCAM was labeled by His-Tag, and this complex served as target.
Random DNA aptamers were delivered to target EpCAM protein and EpCAM-expressing cell lines.
Subsequently, aptamer SYL3C was verified and is now broadly applied for cell-related research [87,100,101].
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Recently, Yarden et al. developed a 14-nt aptamer to target a biomarker for native human
epidermal growth factor receptor 2 (HER2) protein [102]. HER2 protein is a member of the rbB family
of receptor tyrosine kinases overexpressed in many tumors that can be targeted to develop anticancer
drugs. The results showed that the selected aptamer-based trimer could be effectively delivered to
inhibit the growth of tumor cells and that the efficacy was better by almost two-fold compared to
delivery by anti-HER2 mAb. The mechanism indicated that the conjugation of aptamer with HER2
receptor could induce cellular internalization, cytoplasmic translocation, and lysosomal degradation
to suppress tumor growth.

Many other researchers have also devoted themselves to SELEX and biomarker discovery-related
studies. Mayer et al. exploited a click-chemistry approach to functionalize the oligonucleotide library
for further versatility [103]. Bertozzi et al. induced a proximity-increased bioorthogonal ligation
strategy for crosslinkage between azidosugar-labeled glycoproteins and an aptamer conjugated with
cyclooctyne [104]. Vinkenborg et al. developed a strategy for aptamer-based affinity labeling of
protein using three aptamers with different structures and a phenylazide as photocrosslinker [105].
Kimoto et al. reported a method to enhance affinity for biomarker discovery by adding a fifth nucleotide
with a hydrophilic functional group to the aptamer library [30].

The aforementioned works indicate that the cell-SELEX technique and its numerous iterations
and variations will only accelerate the development of biomarker discovery. They also implicate that
the selected aptamers have potential for alternative theranostic applications by specific recognition
of target biomarkers. All these efforts continuously improve the progress in biomarker discovery
by focusing on cell-surface proteins, and they will, as a result, significantly contribute to the broad
development of personalized medicine.

5. Conclusions and Perspectives

SELEX technologies and aptamers have been studied for more than a quarter century since first
reported, and applications have been developed to meet the needs of molecular-level personalized
medicine. Many kinds of aptamers have been successfully selected and continuously applied in multiple
biotechnical fields and clinical practice, such as imaging, drug delivery, therapies and biomarker discovery.
However, some difficulties still remain, despite the great progress in aptamer and aptamer-based
cancer biomarker discovery, and applications are still in an early stage. Moreover, the applications in
commercial areas are limited, although aptamers are widely studied in many fields. First, for cell-SELEX,
the aptamer selection process usually takes more than 30 days, while the results still display some
degree of randomness, which blocks the improvement of aptamer-based biomarker discovery in some
aspects. Successful aptamer selection will be evaluated by the elimination of phenotypic heterogeneity
from different cell passages and shortened turn-around time, with ideally just one round needed to
precisely select effective aptamers. Second, it is time-consuming to identify aptamers specific for
different cancer-related samples, which are necessary for the discovery of more cancer biomarkers.
Third, binding affinity enhancement between aptamers and their targets is still urgently needed
to avoid off-target recognition and to improve protein extraction efficiency from complex samples
(e.g., the cross-linking methods). The fourth concern is the natural self-disadvantages of DNA/RNA
molecules as binding moieties. Very limited folding patterns can be produced, because, with only A-T
and C-G building blocks, the possible information density is low. Moreover, the interactions by which
the present bases establish DNA/RNA molecules include only hydrogen bonding between nucleobases,
aromatic ring stacking among nucleobases and electrostatic interactions. Another current major obstacle
for aptamer applications is the need for enhancement and optimization of therapeutic efficacy, stability
and half-life within a patient, especially in complex microenvironments surrounding disease tissue.
To solve this, “locked DNAs” may be one way to improve the stability. In addition, the Tan group has
successfully synthesized artificial DNA bases to endow aptamers with additional innovative properties to
provide even more innovative ways to discover new effective biomarkers, efficient therapeutic pathways,
or approaches for cellular uptake. Continued research will lead to improved understanding of cancer at
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the molecular level. This improvement will further inspire exciting new technologies for imaging, drug
delivery, cancer therapy and cancer biomarker discovery, leading to feasible and realizable personalized
treatment methods.
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