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Brain death is associated with dramatic and serious pathophysiologic changes that adversely affect both the quantity and
quality of organs available for transplant. To fully optimise the donor pool necessitates a more complete understanding of the
underlying pathophysiology of organ dysfunction associated with transplantation. These injurious processes are initially triggered
by catastrophic brain injury and are further enhanced during both brain death and graft transplantation.The activated inflammatory
systems then contribute to graft dysfunction in the recipient. Inflammatory mediators drive this process in concert with the
innate and adaptive immune systems. Activation of deleterious immunological pathways in organ grafts occurs, priming them
for further inflammation after engraftment. Finally, posttransplantation ischaemia reperfusion injury leads to further generation of
inflammatorymediators and consequent activation of the recipient’s immune system.Ongoing research has identified keymediators
that contribute to the inflammatorymilieu inherent in brain dead organ donation.This has seen the development of novel therapies
that directly target the inflammatory cascade.

1. Introduction

Organ transplantation is the gold standard treatment for
patients with end stage solid organ failure. An ever increasing
disparity between available organs and potential recipients
is the cause of avoidable morbidity and mortality [1–4].
Ongoing efforts are being made to increase the quantity and
quality of organs available for transplant. Although outcomes
from non-heart-beating donors have become increasingly
successful [5], the majority of organs are still donated from
donors after brain death (BD). Significant brain injury of
any aetiology will cause a systemic response [6], creating
a proinflammatory environment prior to the occurrence of
brain death itself. BD then also creates a variety of inflam-
matory, haemodynamic and endocrine effects, which induce
adverse sequelae in distant organs [7–10]. Finally, ischaemia-
reperfusion injury (IRI), inherent in transplantation, gener-
ates reactive oxygen species (ROS), activates complement,
and independently drives cytokine release and inflammation

[11, 12]. Every transplanted organ from a BD donor will
face these stages of potential injury. Consequently, donor
managementmust consider each step fromdonor to recipient
in order to maximise recipient outcomes.The purpose of this
paper is to explore the current understanding of the three
main contributors to injury that an organ will travel through
from donor to recipient. Additionally, donor management
and organ preservation strategies that are currently being
investigated will be briefly considered.

2. Stage Zero of Potential
Organ Injury: Current Concepts
in Immunological Signalling

Inflammation, secondary to brain injury, BD, and IRI, is
driven by both the innate and adaptive immune systems.The
complexity of these systems means that our understanding
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continues to evolve at a rapid pace (Figure 1). Prior to review-
ing the specific inflammatory responses at each major step of
the donor organ journey, it is important to discuss current
concepts in the normally functioning immune system.

Traditionally, T-cell responses are grouped according
to the TH1/TH2 paradigm. TH1 lymphocytes (CD4+) are
responsible for cell-mediated immunity through activation
of killer CD8+ T cells and cytotoxic macrophages [13, 14].
TH2 cells are responsible for the control of humoral immu-
nity through antibody producing B cells. Additionally, they
regulate eosinophil and basophil functions. Recent work has
identified TH17 and T-regulatory (Treg) subsets. TH17 cells
have been implicated in autoimmunity [13, 14]. Treg cells are
related to TH17 cells and function to regulate immunological
reactions and prevent uncontrolled inflammation. Each of
these T cells plays a specific role in inflammation and their
actions can be identified by certain inflammatory mediators.
Although cytokinesmay interact withmultiple T-cell subsets,
previous authors have classified the major cytokines into
“types” reflecting the major T-cell subtype to which they are
related [15–18]. This convention will be used in the current
paper.

2.1. T
𝐻
1-Cell-Related Cytokines. Communicating via tumour

necrosis factor (TNF)-𝛼, interleukin (IL)-1, IL-2, IL-12, and
IFN-𝛾 [19–21], TH1 cells play a fundamental role in acute
rejection. These type 1 cytokines are upregulated early in
the inflammatory process. After their release, IL-1𝛽 and
TNF-𝛼 support the inflammatory response via activation
of endothelial cells [22]. These cytokines act early in the
inflammatory cascade, stimulating generation of cellular
adhesion molecules, innate immune defence mechanisms,
and participating in cross-talk between the various inflam-
matory pathways [23, 24]. IL-2 plays an essential role in
resting T-cell activation and proliferation, contributing to T-
cell maturation [25]. After T-cell induction via IL-2, IL-12
directs cellular maturation towards TH1, leading to a cell-
mediated immune response [26]. IFN-𝛾 influences both the
innate and adaptive immune systems and is integral in the
antigen presenting cell (APC) controlled balance between
effector and suppressor T cells [27]. IFN-𝛾 not only acts
as the primary effector cytokine of IL-12 as part of cellular
immunity, but also provides negative feedback control of IL-
12 and indoleamine dioxygenase-mediated T-cell inhibition,
under the control of APC’s [27].

2.2. T
𝐻
2-Cell-Related Cytokines. TH2 cell-related-cytokines

include IL-4, IL-5, IL-10, and IL-13 [14, 28]. Type 2 cytokines
are generally considered anti-inflammatory when associated
with brain injury and BD, and in the early transplant
period [29–31]. IL-4 inhibits formation of TH1 cells and
encourages development of TH2 cells [29]. It also plays
an essential role in B-cell generation of IgE [32]. IL-4
may activate macrophages via an alternative pathway that
reduces inflammation through sequestration andmetabolism
of arginine, an essential requirement for nitric oxide gen-
eration by inflammatory IFN-𝛾-activated macrophages [33].
IL-4 has been postulated to depress T-cell activity through

the production of indoleamine dioxygenase; Wang et al.
demonstrated increased indoleamine dioxygenase produced
by natural killer cells in IL-4-treated rat livers [33]. IL-13
is best known for its role in allergy. Through interaction
with its receptor, IL-13 stimulates inflammatory cells as
well as epithelial and smooth muscle cells [34]. This may
contribute to smooth muscle hypertrophy and pulmonary
hypertension in various lung diseases [34]. IL-13 inhibits cell-
mediated immunity through downregulation of E-selectin,
reduction of neutrophil recruitment, and macrophage inhi-
bition [35]. IL-5 is essential for the development, recruitment
and activation of eosinophils [36]. Once these cells are
recruited to inflammatory sites, IL-5 is a potent costimulator
of eosinophil degranulation and maintains their presence
through inhibition of apoptosis [36, 37]. IL-5 also acts as a key
mediator for generation of antigen-specific IgE. Furthermore,
it is important for terminal B-cell differentiation, including
the switch to mature IgM and IgG1 secreting plasma cells
[38].

IL-10 acts to inhibit the production of inflammatory
cytokines and upregulate inhibitors of IL-1 and TNF [15]. It
may also specifically block the production of IL-1 and TNF
[39]. Direct activity on inflammatory cells impairs or reverses
the effects of proinflammatory mediators [39]. While IL-10 is
classified as a type 2 cytokine, it is also able to be produced by
TH1 cells under the influence of transforming growth factor
(TGF)-𝛽 [19].

2.3. T
𝐻
17-Cell-Related Cytokines. The TH17 cells are identi-

fied by their association with IL-6, IL-17, IL-21, IL-22, and
IL-23 [14, 26, 40]. IL-17 and IL-23 direct TH17 cell differ-
entiation, proliferation, and maturation [26]. Apart from
directing TH17 development, IL-17 functions to stimulate
production of chemokines, IL-1𝛽, TNF-𝛼, IL-6, and IL-8
[19, 41]. Its production is reinforced by IL-6, IL-23, and TGF-
𝛽 [19, 41]. IL-8-related neutrophil attraction and activation
may contribute partly to the inflammatory action of IL-
17 [42]. IL-23 is an important upstream regulator of IL-
17 expression [26, 43]. Generation of IL-17 by 𝛾𝛿-T cells is
directly activated by IL-23, and these cells are an impor-
tant source of IL-17 [43]. Furthermore, IL-23 induces IL-17
production from natural killer T cells [41]. IL-21 stimulates
natural killer T cells, CD40 dependent B-cell proliferation,
and T-cell expansion [44]. Hagn et al. recently demon-
strated that incompletely activated CD4+ T cells, through
expression of IL-21 and CD40 ligand, stimulate B cells to
differentiate into Granzyme B generating cytotoxic B cells
[45].

IL-6 has been extensively investigated in many condi-
tions. It’s pro- and anti-inflammatory effects have recently
been comprehensively reviewed [46]. Briefly, it is a pro-
inflammatory agent which has been classified as a type
17 cytokine [47], although some authors may include it
as a type 1 [48]. IL-6, the prototypical member of its
family, acts through receptor complex formation with gly-
coprotein gp130 on the cell surface [46]. The IL-6 recep-
tor molecule is present on the surface of hepatocytes,
neutrophils, monocytes, and macrophages [46, 49]. Direct
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Figure 1: Primarymediators of peri-transplant related inflammation.Al: aldosterone, APC: antigen presenting cell, APP: acute phase proteins,
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2
: oxygen, Perox: peroxidation, Sel: selectin, SmMc: smooth muscle contraction, TF: tissue

factor, TGF: transforming growth factor, TH1: type 1 helper T-cell, TH17: type 17 helper T-cell, TH2: type 2 helper T-cell, TNF: tumour necrosis
factor, Treg: regulatory T-cell, VC: vasoconstriction, VEGF: vascular endothelial growth factor.

activation of these receptors is associated with an inflam-
matory response [49]. Other cells may also respond to
IL-6 through a process termed trans-signalling [49]. Free
soluble IL-6 receptor binds circulating IL-6 and then interacts
with the ubiquitous cell surface protein, gp130, to affect
cell signalling [46]. The dual roles of IL-6 may be partly
explained by the differing signallingmechanisms. Soluble IL-
6 receptor generated from apoptotic neutrophils in areas of
inflammation activates signalling pathways after interaction
with epithelial gp130, attracting regulatory monocytes and
macrophages and contributing to resolution of inflammation
[46].

2.4. T
𝑟𝑒𝑔

Cells and Related Cytokines. Named due to their
ability to downregulate inflammatory processes, Treg cells
are another important source of the anti-inflammatory IL-
10. Treg are closely related to TH17 cells; both lineages are
derived from the same näıve T-cell precursor in a similar

fashion to TH1/TH2 cells [14, 20]. Deknuydt et al. recently
highlighted the fluidity of the TH17/Treg balance by demon-
strating that Treg cells can be stimulated to become TH17
cells under the influence of IL-1𝛽 and IL-2 [14]. TGF-
𝛽 also directs the differentiation of T-cell populations in
inflammatory conditions and is important in the TH17/Treg
balance. TGF-𝛽 modulates the effects of IL-2, reducing
expansion of inflammatory T-cell populations [19]. When
acting synergistically with IL-2, TGF-𝛽 is able to direct naı̈ve
T cells to become Treg cells [50]. Selective inhibition of TH1
producing mediators by TGF-𝛽 further contributes to the
diversion from inflammatory T cells to Treg cells, mediating
the inflammatory response [19]. However, costimulation of
TGF-𝛽 by IL-6 directs T-cell differentiation towards TH17
cells and production of type 17 cytokines [20]. Treg cells are
immunosuppressive through production of IL-10 and TGF-
𝛽, cellular anergy and direct contact with inflammatory cells
[51].
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3. Stage One of Potential Organ
Injury: Brain Injury

Most brain dead donors suffer from three main causes of
BD: cerebrovascular injury, anoxia, or traumatic brain injury
(TBI) [52, 53]. Donor cause of death can significantly influ-
ence recipient survival rates, though this varies according to
the organ. Renal transplant outcomes are adversely affected
by cerebrovascular causes of BD [54, 55]. Lung transplant
is unaffected by donor cause of death [56], while heart
transplant outcomes remain controversial [57, 58]. For this
reason, it is important to consider the pathophysiologic
responses to severe central nervous system injury, and their
systemic sequelae, prior to brain death.

3.1. Systemic Inflammatory Response Secondary to Brain
Injury. Central nervous system (CNS) injury is associated
with the systemic inflammatory response syndrome (SIRS).
This can occur with an intact blood brain barrier (BBB),
indicating an additional mechanism distinct from CNS-
derived cytokine release [59, 60]. The link between the brain
and SIRS has been comprehensively reviewed recently by
Lu et al. [61]. Briefly, SIRS is associated with leukocyte
mobilisation and recruitment to major organs, activation
and release of inflammatory mediators, generation of ROS,
increased vascular permeability, and organ dysfunction [62,
63]. Brain intraparenchymal injection of TNF-𝛼 recruits
and activates systemic monocytes while IL-1𝛽 activates and
recruits neutrophils via release of chemokines from the liver
[59, 64].

TNF-𝛼 is released from the spleen in the early stages
of brain injury to augment the peripheral inflammatory
response [6, 65]. Lee et al. demonstrated upregulation
of TNF-𝛼, IL-1𝛽, IL-4, and IL-6 in the spleens of rats
with subarachnoid haemorrhage (SAH) [65]. Intravenous
administration of neural stem cells attenuated the inflam-
matory response via a chaperone mechanism which was
localised to the spleen and reversed on splenectomy [65].
Splenic inflammation may also be directly downregulated
via vagal messages from the brain [6]. The SIRS response
activates gut-derived inflammatory mediators, resulting in
leaky gut wall [66]. This contributes to global inflammation
through cytokine generation and systemic endotoxin expo-
sure, worsening pulmonary inflammation and impairing
oxygenation [66–68]. Similar to the spleen, gut generation of
cytokines is also modulated by the CNS through vagal input
[67].

3.2. Localised Response to Brain Injury and Loss of Blood Brain
Barrier Function. Local responses to severe brain injury can
be classified into two phases [69]. The primary phase is due
to the insult itself and includes cellular death, direct BBB
disruption, and cerebral oedema [69].The secondary phase of
injury is caused by elevated intracranial pressure (ICP), global
brain ischaemia, excitotoxicity, metabolic derangements, and
haemodynamic instability [69–71]. Whatever the cause of
brain death, a cytokinaemia secondary to brain injury occurs
prior to brain death itself [72–75].

Local inflammation, and the direct effect of the insult
itself, causes the highly selective BBB to become disrupted
[74, 76]. Matrix metalloproteinases (MMP), especiallyMMP-
9, act to break down extracellular proteins, including basal
lamina and endothelial tight junctions [77]. In a rat model
of closed head trauma, Higashida et al. investigated the role
of MMP-9 and hypoxia inducible factor (HIF) in cerebral
oedema resulting from lost BBB integrity [77]. Inhibition of
MMP-9 in this model significantly reduced the amount of
brain oedema observed after 24 hours. Additionally, inhibi-
tion ofHIF (anupstream regulator of protein expression asso-
ciated with hypoxia) also significantly reduced the expression
of MMP-9 and brain oedema [77]. This observation was
confirmed in an intracranial haemorrhage model in rats; Wu
et al. showed that MMP-9 is upregulated early after injury
and is associated with brain oedema [78]. A postmortem
study of intracranial haemorrhage confirmed these findings
in humans [79].

The effect of the loss of BBB integrity is to allow bidirec-
tional access of inflammatory cells andmediators [76, 80–84].
CNS-derived cytokines are then free to interact at receptors
within the systemic tissues, inducing local inflammation and
“priming” organs for further injury [81, 85]. The importance
of brain injury-derived cytokinaemia was recently demon-
strated byGraetz et al., who reviewed compartmental levels of
IL-6 in SAH and found that elevated plasma IL-6 is associated
with increased mortality [72]. This provides further evidence
that isolated brain injury causes a systemic inflammatory
response and upregulates the peripheral immune system
[67, 83].

3.3. Type 1 Cytokines. Type 1 cytokines are upregulated in
the brain after injury and contribute to BBB breakdown,
vasospasm, and secondary injury [70, 86, 87]. The general
roles of these and other inflammatory mediators have been
previously reviewed [88]. Briefly, IL-1𝛽 is a pleiotropic
proinflammatorymediator that stimulates multiple pathways
of inflammation after brain injury [88]. TNF-𝛼 acts as a
proinflammatory agent early in the inflammatory process
in the CNS [89]. Microdialysis techniques have confirmed
the presence of IL-1𝛽 and TNF-𝛼 in extracellular fluid after
TBI and SAH [72, 87, 90]. Both of these cytokines are
also released peripherally as part of a systemic acute phase
response (APR) [6, 59, 91, 92]. IL-1𝛽 and TNF-𝛼 can be
detected in blood within as little as one hour after brain
ischaemia, even before significant neuronal cell death can be
demonstrated [83, 93]. Quantitative systemic levels of type 1
cytokines may be affected by the type of brain insult; these
were decreased in a middle cerebral artery occlusion model
in mice, partially explaining the mechanism of the observed
shift from TH1- to TH2-driven immunity after-stroke
[16].

The soluble TNF Receptors (TNFR), p55 and p75, also
contribute to the inflammatory process in traumatic brain
injury, though the specifics of their involvement are not
currently clear [84]. They act as anti-inflammatory agents
through free TNF scavenging, although TNFR levels are
more closely correlated to mortality in potential donors than



Journal of Transplantation 5

TNF itself [84, 89]. This observation may actually reflect
an imbalance in pro- and anti-inflammatory mechanisms or
simply be due to the very short half-life of TNF [84].

3.4. Type 2 Cytokines. A recent study of stroke in IL-4 knock-
out mice showed that IL-4 reduces the TH1 : TH2 cell ratio
and infarct volume, and improves neurological outcome [29].
Studies in humans have shown that brain-derived IL-4 can
be detected in the jugular vein in patients with serious head
injury [94]. A post-mortem study of TBI patients confirmed
elevated IL-4 in brain tissue [70]. IL-13 has been less studied
in brain injury. One in vitro study of IL-13 and IL-4 did
show that these mediators induced apoptosis of activated
microglia, which may account for part of the observed anti-
inflammatory effect [95]. IL-13 is not significantly elevated in
the plasma after TBI [31].

IL-10, a type 2 cytokine with anti-inflammatory proper-
ties [29, 30], plays a protective role in the CNS, reducing
infarct size in stroke patients [39, 96]. Analysis of post-
mortem TBI brains confirmed the presence of IL-10, though
levels were more modest than similarly identified pro-
inflammatory cytokines [70]. This was consistent with intra-
parenchymal levels measured by microdialysis in TBI and
SAH patients [90]. Overflow of IL-10 into the cerebrospinal
fluid (CSF) after TBI has also been demonstrated [97].
Systemic IL-10 levels peak early in TBI patients, declining
to baseline within 48 hours [84]. Although IL-10 decreases
inflammation through its immunomodulatory action, it also
increases susceptibility to infection through immune system
downregulation [96].

3.5. Type 17 Cytokines. In the CNS, IL-6 plays a dichotomous
role through modulation of glial responses and neuronal
survival, contributing to the early inflammatory response,
but modulating later inflammatory pathways to assist with
brain recovery [89, 98–100]. While its proinflammatory role
is well known, it has also been shown to protect against
excitotoxicity in vitro and brain ischaemic or excitotoxic
states in vivo [98]. The specifics of how this balance are
achieved are less clear [98]. One suggestion is that the role
of IL-6 depends on the amount of neuronal cell damage
and is concentration dependent, but it is also probably
subject to negative feedback inhibition via crosstalk between
NMDA and IL-6 receptors [98]. It may also downregulate
inflammation through stimulating IL-1 receptor antagonist
[90]. Microdialysis techniques have confirmed that IL-6 is
acutely increased after brain injury [72, 73]. Furthermore,
Graetz et al. demonstrated that IL-6 is released from the brain
parenchyma into the systemic circulation after brain injury,
particularly in the presence of high ICP [72]. Previous studies
have also shown that IL-6 interferes with BBB integrity [72,
80]. Similar to IL-4, IL-6 is detectable in jugular blood, and
the transcranial gradient correlates with poor outcome in
TBI [72, 80]. The APR is stimulated by circulating IL-6 [101]
and this may provide a link between central injury and the
peripheral immune response seen with intracranial injury
[83].

The roles of IL-17 and IL-23 in acute brain injury remain
to be fully elucidated. While a role has been established
in central autoimmune disorders including experimental
models of multiple sclerosis [13], less has been published
on acute CNS injury. Murine models demonstrate that both
of these interleukins are locally upregulated after stroke
[102–104]. Currently, there are no published data on their
peripheral release after acute brain injury.

3.6. The Endothelin Axis in Brain Injury. Endothelin-1 (ET-
1) is the most active member of a family of small polypep-
tides which are potent vasoconstrictors, mitogens of smooth
muscle cells, and stimulators of fibroblasts (Table 1) [105–
109]. ET-1 is an important mediator in TBI, stroke, and SAH
[110–113]. In acute brain injury, ET-1 leads to constriction of
large vessels, altering the normal balance between vascular
relaxation and constriction, resulting in impaired cerebral
blood flow [113]. This alteration of blood flow has been
targeted in studies of SAH [114]. Clazosentan, an ET receptor
A antagonist, reduces large cerebral artery vasospasm in
murine models, but this did not reduce other mechanisms
of secondary brain injury [114]. Salonia et al. analysed
CSF levels of ET-1 in paediatric head trauma [113]. They
found that ET-1 is significantly elevated after injury and
remains so for up to 5 days. Central production of ET-1
in adult TBI was confirmed by Chatfield et al. [111]. Their
analysis of the juguloarterial gradient showed that ET-1 is
produced intracranially and spills over into the systemic
circulation.

4. Stage Two of Potential Organ
Injury: Brain Death

Serious brain injury, augmented by local inflammation,
may eventually lead to an irretrievable state of impaired
brain function and brain death. BD then further causes a
massive autonomic storm and cytokinaemia which increases
the inflammatory state of the individual [126, 140, 141].
A complex interplay of immunologic [142], coagulopathic
[143], autonomic, haemodynamic, and endocrine [144, 145]
dysregulation drives inflammation through local and global
cytokine release, cellular activation, organ priming, IRI, and
secondary ischaemic insult (Figure 2).

4.1. The Autonomic Nervous System during Brain Death.
Brain stem dysfunction is associated with extreme physi-
ological perturbations due to its “master control” function
[146–148]. Brain stem failure secondary to high ICP occurs
in a rostrocaudal direction, with initial hypertension and
bradycardia (classically known as Cushing’s reflex [149, 150]),
followed by an intense “sympathetic storm” which remains
unopposed due to ischaemia of the parasympathetic vagal
nucleus [151, 152]. This storm results from an overwhelming
release of catecholamines in an attempt to perfuse the brain by
increasing themean arterial pressure (MAP) to overcome the
elevated ICP [153, 154]. Such changes in autonomic outflow
can be detected prior to the occurrence of brain death [155].
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The initial massive upsurge in sympathetic tone results in
widespread vasoconstriction and microthrombus formation,
impairing organ and tissue perfusion [146].

As the ICP outpaces the MAP, ischaemia progresses
down the brain stem, sympathetic centres become necrotic,
vascular and myocardial sympathetic stimulation drops and
a second phase of hypotension ensues [146, 156, 157].
The resulting uncontrolled hypotension further impairs the
already tenuous end organ perfusion that resulted during the
sympathetic storm [156].

While the effects of the sympathetic nervous system are
the most obvious clinically during and after BD, inflamma-
tory and haemodynamic responses are also influenced by
the parasympathetic nervous system (PNS). The effect of
BD is to inhibit PNS-mediated anti-inflammatory responses
by direct destruction of vagal centres in the brain stem
[67]. Under normal conditions, vagal stimulation directly
decreases inflammation via cholinergic receptors on inflam-
matory cells [158, 159]. Central activation of vagal efferent
pathways downregulates inflammation in the brain, gut, and
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Table 1: Properties of endothelin.

Endothelin

Endothelin subtypes [105, 106, 115]
ET-1
ET-2
ET-3

Sites of production [105]
Smooth muscle cells
Cardiomyocytes
Leukocytes
Macrophages
Mesangial cells
Airway epithelium
Alveolar epithelial cells

Receptor subtypes [105, 107, 108, 116, 117]
Endothelin receptor A
Endothelin receptor B

Action
Endothelin receptor A

[105, 107, 108, 116, 117]
Smooth muscle contraction
Fibrogenesis

Endothelin receptor B
[105, 107, 108, 116, 117]

Smooth muscle contraction
Smooth muscle relaxation
ET-1 clearance

Localisation of receptors [105, 107, 115]
Heart

Endocardium
Conducting system
Coronary vessels

Lung
Kidneys
CNS
Liver
Neutrophils

Stimulators of release [105]
Endothelial shear stress
Thrombin
AT2
Cytokines
Free radicals
Catecholamines

Inhibitors of release [105]
NO
ANP
Prostacyclin

ET: endothelin, AT2: angiotensin 2, NO: nitric oxide, ANP: atrial natriuretic
peptide, CNS: central nervous system.

spleen [6, 67]. Balance is normally achieved through negative
feedback by the innate immune system interacting with the
PNS via IL-1 receptors in the parasympathetic paraganglia
[67].

4.2. Cytokine Upregulation after Brain Death

4.2.1. Type 1-Associated Cytokines. Cytokine upregulation
after BD has been recognised for many years [66, 160]. Ani-
mal models have shown that serum levels of IL-1𝛽 and TNF-
𝛼 may be influenced by the rate of induction of brain death
[22, 161]. Avlonitis et al. reported that explosive brain death
induced a rapid increase in IL-1𝛽, with significantly elevated
levels detectable within one hour, remaining so throughout
the duration of the study [161]. TNF-𝛼 levels initially rose and
then decreased by five hours, though it remained above base-
line [161]. Zhu et al. showed that gradual induction of brain
death leads to steady elevation of IL-1𝛽 over 24 hours in a pig
model [162]. Conversely, Damman and colleagues, utilising
gradual BD induction in a rat model, showed that IL-1𝛽 and
TNF-𝛼 did not change significantly over the four hours of
their study [101]. Interestingly, this group also analysed serum
cytokine levels in human BD donors and showed that they
were not significantly elevated [101]. Cypel and colleagues
recently reported that TNF-𝛼 and IL-1𝛽 mRNA are signifi-
cantly elevated in lungs rejected for transplant, highlighting
the clinical importance of these proinflammatory cytokines
[163].

4.2.2. Type 2-Associated Cytokines Including IL-10. Early
studies of cytokine upregulation after BD suggested that
type 2 cytokines are not significant contributors to BD-
induced inflammation [160]. Takada et al. did not show
upregulation of IL-4 in rat kidneys, hearts, livers, or lungs
after BD [160]. Weiss et al. studied cytokine expression at
various timepoints during the liver transplantation process
[91]. This group reported that IL-4 expression is increased
after brain death [91]. IL-10 is elevated in the plasma of
human BD donors [66, 123, 126]. Additionally, IL-10 has
been shown to be upregulated in human livers [91] and
kidneys [164]. Work undertaken by Li et al. suggested that
IL-10 expression after BD may be important in stimulating
apoptosis of graft infiltrating lymphocytes through activation
of the Fas/Fas Ligand pathway [165]. There is little pub-
lished in the literature investigating the role of IL-5 and
IL-13 during brain death. This may be an area for future
research.

4.2.3. Type 17-Associated Cytokines. IL-6 is heavily impli-
cated in BD-related inflammation [127, 128], where it is
an important instigator of the generalised APR [101]. The
levels increase in human brain dead donors up until the
time of organ retrieval [101]. Systemic venous and CNS-
derived IL-6 is significantly higher at brain death than at
admission to the intensive care unit (ICU) in TBI patients
that progress to BD [80]. Brain death induces the production
of IL-6 in multiple organs, including the kidney [166], heart
[167], liver [168], and lung [141]. IL-6 signalling induces
nitric oxide synthase in cardiac myocytes [167] and con-
tributes to early haemodynamic compromise in the donor
via direct negative inotropy [121, 127]. IL-6 mRNA and
protein are elevated in nonstructural donor heart dysfunction
[167].
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Damman et al. recently investigated IL-6-related renal
acute phase protein synthesis in rats [101]. As expected, IL-
6 was upregulated after brain death. This correlated with an
increase in renal acute phase proteins, notably complement
3 (C3), fibrinogen, 𝛼2-macroglobulin, and haptoglobin [101].
Furthermore, in vitro analysis indicated that renal production
of C3 is directly related to IL-6 exposure [101].

Overall, elevated plasma levels of IL-6 are associated
with poorer transplantation outcomes [91, 168]. Murugan
and colleagues demonstrated an inverse relationship between
donor plasma IL-6 levels and recipient six-month hospital-
free survival [126]. Kaneda et al. also showed that higher
donor IL-6 levels increased the risk of recipient death within
30 days of lung transplant [169].

TH17 cells, through production of IL-17, stimulate inflam-
mation in donor organs [170]. Pretransplant renal biopsies
fromdeceased donors showed little elevation of IL-17 positive
cells, though few graft infiltrating cells were demonstrated in
the biopsy samples [170]. Although a number of authors have
studied IL-17 in the context of chronic rejection, the role of
BD donor IL-17 currently remains unexplored.

4.2.4. T
𝑟𝑒𝑔

-Associated Cytokines. TGF-𝛽 is upregulated in
heart and lung tissue in animal models [81]. Elevated TGF-
𝛽mRNA has been identified in renal and liver biopsies from
brain dead donors [91, 164]. Weiss et al. showed that the
greatest stimulus for TGF-𝛽 expression in liver grafts is BD
itself [91]. A slight decrease in expression occurred prior to
cold storage and to reperfusion. TGF-𝛽 mRNA expression
increased by one hour after implantation and reperfusion but
did not exceed levels measured before surgical manipulation
(i.e., after BD alone) [91]. Skrabal et al. also demonstrated that
TGF-𝛽 mRNA transcription is increased in donor heart and
lungs in a porcinemodel of brain death [81].The role of TGF-
𝛽 in acute organ injury may relate to its role in the TH17/Treg
balance [20, 50]; however, increased expression prior to trans-
plantation may start fibrotic processes through activation of
MMP’s and tissue inhibitor of metalloproteinases (TIMP’s).
MMP-2, -9, TIMP-1, and -2 expression is increased after BD
in pulmonary tissue [115].

4.2.5. Interleukin 8. IL-8 is a chemokine which attracts and
activates neutrophils [132, 171]. Similar to other cytokines,
IL-8 is produced peripherally after BD where it stimulates
neutrophil-driven angiogenesis and fibroproliferation [132,
172]. IL-8-induced neovascularisation, alveolar-capillary dis-
ruption, and extracellularmatrix deposition contribute to the
development of acute lung injury after brain death [132]. In
lung donors, bronchoalveolar lavage fluid IL-8 levels are pos-
itively correlated with neutrophil infiltration in pretransplant
lung tissue, contributing to early graft dysfunction [132].

4.2.6. The Endothelin Axis. ET-1 release from endothelium
is stimulated by noradrenaline, thrombin, and TGF-𝛽 [139].
Animal experiments have shown that ET-1 is upregulated in
serum and in donor lung after BD and that this is related to
MMP activation [115, 173]. Salama et al. demonstrated a cor-
relation between donor ET-1 and primary graft dysfunction

(PGD) [174]. In this study, ET-1 upregulation (as measured
by donor lung mRNA and donor serum levels) adversely
affected recipients after transplantation, contributing to the
development of PGD.

5. Stage Three of Potential Organ
Injury: Ischaemia Reperfusion Injury

Ischaemia reperfusion injury is implicated in early and late
stage transplant complications [175]. IRI leads to organ
dysfunction through induction of cytokines, generation of
free radicals, and activation of immunocompetent cells [175,
176]. Endothelial cell dysfunction secondary to IRI is a key
contributor to chronic allograft dysfunction in hearts [177],
lungs [11], livers [178], and kidneys [179]. Early injury to cells
occurs as a direct result of ischaemia, with impaired oxygen
delivery, altered energy metabolism, and accumulation of
waste products. Cell death occurs through necrosis and
apoptosis, the latter through caspase signalling [66, 180].
Further injury occurs upon reperfusion, with recruitment of
inflammatory cells, interaction between local and systemic
cytokine signalling systems, and generation of ROS [127, 181,
182].

APC’s of the innate immune system play a key role pro-
viding antigens and costimulatory molecules to activate the
adaptive immune system, contributing to IRI and early graft
dysfunction. Activation of cellular immunity can be classified
as direct or indirect [181]. Direct activation occurs due to
the transfer of donor APC’s in the allograft, which activate
recipient TH1 cells [181]. Atkinson et al. recently demonstrated
that passenger leukocytes are recruited to donor hearts after
BD in a murine model [22]. This finding was also confirmed
in lung [183] and renal allografts [184]. Gelman et al. also
demonstrated that recipient T cells interact with donor APC’s
and that this is sufficient to activate an inflammatory response
[183]. Alternatively, the indirect pathway results from the
interaction of recipient APC’s with native T cells to stimulate
inflammation.

5.1. Contribution of Preservation Strategies to Cytokine Expres-
sion. Hypothermic preservation strategies are widely used
to decrease inflammation, depress the metabolic rate of
cells, and reduce the effects of ischaemia [185]. However,
cold storage does cause cell death via both apoptosis and
necrosis [15]. BD donor organs predominantly display the
latter mechanism [178]. The duration and type (warm or
cold) of ischaemic time may also directly influence cytokine
production. A correlation was recently identified between
cold ischaemia time and levels of IL-1 and IL-8 in human liver
transplants [186]. Warm ischaemia time correlated with IL-6
and IL-10 in the same study. Significantly, the authors found
that the excess cytokines generated by hepatic graft warm
ischaemia time resulted in systemic adverse effects, most
notably increased intraoperative pulmonary shunt [186].
Another study found that, while cold ischaemic time per se
did not adversely affect liver function, the associated graft-
generated IL-8 did correlate with PGD [187]. Weiss et al.,
in a study of transplanted human livers, showed that IL-4
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was increased in BD donors prior to explantation, but cold
ischaemia and reperfusion did not result in further increases
in the cytokine [91]. Indeed, while it was elevated compared
to living donors, it failed to reach statistical significance at
time points other than immediately after laparotomy. IL-10
was highly expressed prior to organ preservation, but cold
ischaemia and reperfusion did not result in further elevation
of this cytokine [91]. Livers from living donors showed a
relatively greater increase in expression of IL-10 one hour after
reperfusion than BD organs, which may partially contribute
to better outcomes with organs from these donors [91].

Delayed graft function in transplanted kidneys has been
shown to be dependent on cold ischaemic time [170].
Kaminska et al. showed that while cytokine upregulation
occurred, associated with brain death, mRNA expression
did not increase further after cold ischaemia and prior to
reperfusion [164]. In keeping with this, de Vries et al. were
unable to detect an arteriovenous difference across human
BD donor kidneys for multiple cytokines, including IL-4, IL-
5, IL-10, and IL-13 [184]. Cold ischaemia and reperfusion do
not induce excess TGF-𝛽mRNA production, indicating that
the primary stimulus for this mediator is brain death itself
[164].

5.2. Other Mediators of Ischaemia Reperfusion Injury. The
combination of BD and IRI activates allografts greater than
either insult alone. Kusaka et al. studied rat renal isografts to
analyse gene activation after BD, IRI, or combined BD/IRI
[175]. They found that BD primarily upregulated cytokines,
chemokines and adhesion molecules while IRI tended to
upregulate transcription factors. Combined BD/IRI was syn-
ergistic in enhancing upregulation of these genes. More
recent work hasmaintained these findings. Inhibition of JNK,
a phosphorylator of the transcription factor c-Jun, decreases
IRI-induced renal damage in rats [179]. In humans, de Vries
et al. demonstrated that reperfusion of BD kidneys generates
higher cytokine levels than living donor allografts (i.e., those
that only underwent IRI) [184].

Complement interacts with, and reinforces, the inflam-
matory process of IRI by increasing TNF-𝛼 and IL-1 [22]. C3a
andC5a, potent anaphylatoxins generated by the complement
cascade, activate mast cells and neutrophils [182]. While
the specific mechanism of complement activation in BD is
unknown, it is postulated that ischaemia leads to defects
in cell membranes, uncovering neoepitopes via exposure of
internal cellular components to the humoral immune system,
which leads to interaction with natural IgM and activation
of the classical complement pathway [182]. ROS generated
during infarction and IRI may lead to lipid peroxidation and
alteration of cellular cytoskeletal structure providing further
neoepitopes for IgM [182].

The importance of toll-like receptors (TLR) in IRI is
currently being investigated. It was previously noted that
low levels of lipopolysaccharide (LPS) may precondition
and therefore protect the lung from IRI [188]. Merry et al.
demonstrated that low-dose preconditioning with LPS in rat
lung ischaemia reduced injury [188]. The authors postulated
that thismay be due to LPS activatingTLR-4 via an alternative

pathway that results in protective interferon and IL-10 gener-
ation. Unfortunately, they did not measure IL-10 protein or
mRNA to confirm this hypothesis. The role of TLR’s in renal
IRI has recently been reviewed elsewhere [12]. TLRs may
also contribute to inflammation through interaction with T
cells via cytokine signalling. APC TLR activation leads to
generation of cytokines, including IL-6, which may decrease
the sensitivity of TH1 cells to the immunosuppressive effects
of Treg cells [189]. Additionally, TLR on Treg cells may directly
inhibit their immunosuppressive effects [189].

ET-1 contributes to IRI through activated neutrophils,
leading to endothelial injury, neutrophil superoxide produc-
tion and generation of ROS [115]. Both ET-1 and its receptors
are upregulated in the lungs after brain death [115]. Alveolar
macrophages have been demonstrated to increase expression
of endothelin receptors in the donor lung in animal models
[115].Thismay then prime passengermacrophages for further
activation by recipient ET-1, which is generated in the pro-
inflammatory environment of chronic lung disease, surgery,
and the posttransplant course [115, 190].

Heme-oxygenase-1 (HO-1) is essential for themetabolism
of heme to carbonmonoxide, free iron, and biliverdin [25]. Its
ability to reduce injury secondary to IRI, with resulting better
recipient outcomes after transplantation, has been the subject
of much research. HO-1 exerts its beneficial effects through
antioxidant, antiapoptotic, and anti-inflammatory mecha-
nisms [25, 191–193]. Carbon monoxide contributes to these
beneficial effects through inhibiting T-cell proliferation and
IL-2 secretion [25]. Zhou et al., in studying a rat model of BD,
demonstrated improved lung function and decreased lung
injury when carbon monoxide was administered at 250 ppm
[194]. Carbon monoxide decreased myeloperoxidase activity,
TNF-𝛼, and IL-6 [194]. More recently, the same group
demonstrated that both carbon monoxide and biliverdin
reduce myeloperoxidase activity and cytokine signalling
while improving respiratory mechanics in rat lung after
BD [195]. HO-1 has also been linked to anti-inflammatory
cytokine generation. IL-10 production secondary to HO-1
is increased in both BD [192] and non-BD models [196].
HO-1 may also be an important mediator of IL-13’s anti-
inflammatory effect [191, 197].

6. Management Implications
and Potential Future Directions

Recipients of organs from brain dead donors continue to
have poorer outcomes than those that receive living donor
organs. Aggressive donor management (ADM) improves
both quality and quantity of organs available for transplant
[198]. Current ADM recommendations include early identifi-
cation of potential donors, ICU admission, pulmonary artery
catheterisation, aggressive fluid management, vasopressors,
hormonal resuscitation therapy, pulmonary toilet, and bron-
choscopy [148, 199–202].

Even with ADM, up to 25% of potential donors are
lost due to haemodynamic instability [148]. Studies com-
paring use of noradrenaline and vasopressin as pressor
agents demonstrate differing effects on transplantable organs.



10 Journal of Transplantation

Table 2: Major cytokines associated with brain injury and BD.

Cytokine/chemokine Organs/cells upregulated in
BD/CNS injury

Stimulation in
BD/TBI Action Potential therapeutic agents

in brain injury

TNF-𝛼

CNS—astrocytes,
microglia, and neurons
[70, 118]
Endothelial cells [118]
Lungs [119]
Splenocytes, macrophages
[6]

Infection, TBI,
SAH [118]

Endothelial cell
detachment/apoptosis, activation
caspase-3, disruption of BBB [118]
Induction of CAM’s, and other
inflammatory cytokines [120]
Impairment of cardiac function
[121]

IFN-𝛽 [119], NNZ-2566
[122], etanercept, and IFN
inhibitors [60]
Haemoadsorption [123]

IL-1𝛽

CNS—neurons, microglia,
and infiltrating
macrophages [124]
Endothelial cells [118]

Neuroexcitation,
infection, and
trauma [124]
SAH [118]

Synaptic modulation, central
regulation of systemic inflammatory
response [124]
Proinflammatory, activation of
NF𝜅B and SAPK with upregulation
of E-selectin/ICAM/VCAM [118]

IL-1RA [124] and
NNZ-2566 [122]
Haemoadsorption [123]

IL-6

CNS—microglia [125]
Kidney, liver, spleen, and
heart [80, 121, 126–128]
Macrophages [121]

IL-1𝛽 [118]
TNF-𝛼 [121]
Sepsis, major
surgery, heart
failure,
multitrauma, and
burns [80, 84, 127,
129, 130]

Regulator of
inflammation—inhibition of TNF
and upregulation of control of glial
responses and neuronal survival
[98–100]
IL-1RA in CNS, induction of NGF
[122]
Disruption of BBB [118]
Inducer of acute phase reaction
[70, 131]
Cardiac dysfunction, fibroblast
activation [127]

Haemoadsorption [123]

IL-8/CXCL-8/MIP-2

Microglia [125]
Lung—alveolar
macrophages, endothelial
cells [132, 133]

Trauma, ischaemia,
SAH, ET-1 [118]
TNF-𝛼, IL-1𝛽 [120]

Disruption of BBB [118, 120]
CXC chemokine—neutrophil
migration and activation [120]
Induces ROS by neutrophils [131]

Haemoadsorption [123]

IL-10

Macrophages, microglia
[125]
Splenocytes [83]

TBI [97]
Burns, MT,
surgery, and
infection [131]

Anti-inflammatory—downregulates
TNF-𝛼, IL-1𝛽, and IFN-𝛾,
upregulates antagonists [39, 134]
Reverses effect of proinflammatory
cytokines directly on cells [39]

Haemoadsorption [123]

E-Selectin Endothelial cells in
multiple organs [119]

IL-1𝛽 [118] TNF-𝛼
[121]
TBI [122]
SAH [118]

Essential for neutrophil rolling,
margination, and diapedesis [118]

ICAM Endothelial cells in
multiple organs [119]

IL-1𝛽 [118] TNF-𝛼
[121]
SAH [118]

Essential for neutrophil rolling,
margination, and diapedesis [118]

Monoclonal antibodies
[118] and IFN-𝛽 [119]

VCAM Endothelial cells in
multiple organs [119]

IL-1𝛽 [118] TNF-𝛼
[121]
SAH [118]

Essential for neutrophil rolling,
margination, and diapedesis [118]

Monoclonal antibodies
[118] and IFN-𝛽 [119]

TGF-𝛽

Macrophages, microglia,
astrocytes, and neurons
[135, 136]
Platelets, choroid
epithelium [137]

Constitutively
expressed by
microglia [134]
SAH [137]

Anti-inflammatory, may block
activation by IL-1𝛽 [125]
Regulates T-cell survival and
function [136]
Suppresses IFN-𝛾-induced
macrophage upregulation, cytokine
and chemokine generation [136]
Downregulation of adhesion
molecules [136]
Reduces COX-2 production in
microglia [125]
ECM component generation [138]
Angiogenesis [137]
ET-1 generation [139]

Haemoadsorption [123]
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Table 2: Continued.

Cytokine/chemokine Organs/cells upregulated in
BD/CNS injury

Stimulation in
BD/TBI Action Potential therapeutic agents

in brain injury

IFN-𝛾 Microglia [125]
Macrophages [122] TBI, SAH [122, 125]

Upregulation of CAM’s,
chemokines, and innate immune
system cells [122]

IFN inhibitors [60]

COX-2 CNS—Microglia,
endothelial cells [125]

Inflammatory
mediators
including IL-1𝛽,
TNF-𝛼, and IL-6
[125]

Production of prostaglandins,
reinforcement of inflammation
[125]

COX inhibitors [125]

BD: brain stem death, TBI: traumatic brain injury, CNS: central nervous system, SAH: subarachnoid haemorrhage, BBB: blood brain barrier, MT:multitrauma,
ECM: extracellularmatrix, COX: cyclooxygenase, IL: interleukin, TNF: tumour necrosis factor, CAM: cellular adhesionmolecule (ICAM: intercellular adhesion
molecule/VCAM: vascular cellular adhesion molecule), NF

𝜅
B: nuclear factor 𝜅 B, SAPK: stress-activated protein kinases, MIP-2: macrophage inflammatory

protein 2, TGF: transforming growth factor, IFN: interferon, NGF: nerve growth factor.

Although no studies directly comparing these agents in
humans have been published, animal models suggest that
both agents decrease lung inflammation and serum cytokine
release [68]. While a similar effect is seen in the kidney,
hepatic inflammation is increased by both agents [203].
Dopamine decreased monocyte kidney graft infiltration and
markers of inflammation in a rat model of BD [193]. Addi-
tionally, dopamine increased the expression of HO-1 [193].
Regardless of the agents used, the evidence supports that
aggressive haemodynamic monitoring and management do
convert marginal donors to acceptable donors [141, 145].

The inflammatory cascade may be downregulated by
ADM. Currently, there are no standard interventions specif-
ically directed at individual cytokines, though many are
being investigated (Table 2). Steroid administration, as part
of hormonal resuscitation, is now commonplace in the
management of organ donors and, in addition to addressing a
relatively inadequate adrenal response, reduces inflammatory
cytokines to levels similar to living donors [141, 151, 168].

Other methods directly addressing anti-inflammatory
mechanisms are currently being investigated. Gene transfer
of IL-10 holds great promise. Manning and colleagues inves-
tigated viral IL-10 (virIL-10) transfer into a rat model of lung
IRI using mesenchymal stem cells [11]. This study showed
that virIL-10 was detectable in the lungs and that presence
of this cytokine was related to improved lung function, less
microscopic pathology, and decreased lung oedema at four
hours after injury. Gene transfer pretreatment of rat liver
grafts to generate recombinant human IL-10 significantly
decreases IRI and markers of apoptosis, with upregulation of
HO-1 and the antiapoptotic agent, Bcl-2 [15]. HO-1 may then
act as a downstream regulator of protective mechanisms in
IRI [15].

HO-1 or itsmetabolites (carbonmonoxide and biliverdin)
may offer potential therapeutic benefits [25, 192, 194, 195].
Overexpression of HO-1, through adeno-associated virus
gene transfer, was associatedwith a beneficial increase inHO-
1 expression [192]. This resulted in downregulation of IL-2
and TNF-𝛼, decreased infiltration of cytotoxic and helper T-
cells, and an increase in IL-10, TGF-𝛽, and Treg infiltration
in transplanted rat livers [192]. IL-13 gene transfer in rat
livers increased HO-1 expression with reduced evidence of
IRI [197]. Inhibition of HO-1 activity reversed this effect,

suggesting that part of IL-13’s anti-inflammatory properties
in IRI is mediated by HO-1 [197].

Hypothermic ischaemic storage prior to transplanta-
tion does not allow sufficient metabolic activity for gene
transfer to be beneficial [204]. Cypel et al. therefore tri-
alled an ex vivo lung perfusion (EVLP) model to transfer
recombinant human IL-10 genes into porcine lungs [204].
Perfusate IL-10 was increased while IL-6 decreased. This
effect was maintained after transplantation and four hours
of reperfusion. Lung function, as assessed by PaO2 : FiO2
ratio, was significantly improved in the transfected lungs.
When transfection was trialled in human lungs rejected for
transplantation, Cypel and colleagues found similar results
including improved gas exchange and pulmonary vascular
resistance [204].

Lung conditioning using EVLP is able to improve the
function of lungs initially rejected for transplant [205].
Sadaria et al. have established a baseline cytokine profile
of human lungs undergoing EVLP [205]. Cytokine analysis
during 12 hours of EVLP showed an upregulation in IL-
6, IL-8, G-CSF, and MCP-1 [205]. IL-1𝛽, IL-4, IL-7, IL-
12, and TNF-𝛼 were detectable but remained unchanged
[205]. IL-17 was undetectable, as were IL-10 and IL-13 [205].
Kakishita et al. also investigated the cytokine profile of EVLP
in pigs [206]. Inflammatory cytokineswere similarly elevated.
Interestingly, based on a previously published concept of
haemoadsorption of cytokines [123], Kakishita investigated
the benefit removing perfusate cytokines within the circuit.
Cytokine levels were significantly reduced with haemoad-
sorption, but oxygenation, pulmonary vascular resistance,
peak airway pressure, and myeloperoxidase activity (as a
marker of neutrophil accumulation) were not statistically
different [206].

Numerous other agents have been investigated as part of
organ protection and preservation strategies. Donor simvas-
tatin may reduce IRI in cardiac allografts [177]. This agent
appears to work through multiple mechanisms and provides
a lasting effect after a single dose to the donor prior to graft
removal [177]. Organ donors in this animal model were not
brain dead; therefore, simvastatin’s effects seem to be related
to downregulation of ischaemia reperfusion injury. A study
of N-acetylcysteine after pig non-BD lung transplantation
demonstrated increased glutathione and downregulation of
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the inflammatory transcription factorNF𝜅B in tissue samples
[171]. IL-6 and IL-8 levels were also reduced. Lung function
was improved despite extended cold ischaemia and reperfu-
sion [171]. Intraoperative administration of N-acetylcysteine
to human liver transplant recipients significantly increased
the transhepatic gradient of IL-4 and IL-10 around the
time of reperfusion, but not at other measured time points
[207]. The authors theorised that the presence of these anti-
inflammatory cytokines at reperfusionmay benefit recipients
through downregulation of inflammation. Unfortunately,
although the agent was administered as a continuous infusion
for 24 hours, no further information is given about levels
of cytokines later than the first hour of transplant, nor
any information about hepatic biochemistry and patient
outcomes.

In renal transplantation, carbamylated erythropoietin
(EPO) downregulated renal IL-1𝛽 and IL-6 in a rat model
of brain death [166]. This agent retains the protective effects
of EPO without stimulating haematopoiesis [166]. Utilising
an isolated perfused kidney circuit, Nijboer and colleagues
demonstrated that carbamylated EPO downregulated IL-1𝛽
and IL-6, reduced neutrophil infiltration, and reversed brain
death-induced renal impairment. Of note, other authors are
also investigating EPO in preventing brain IRI [208]. Such
use in pre-BD conditions may eventually spill over to benefit
the recipients of organs from these patients in the case of
nonsurvival.

Further research is required into the impact of pre-BD
management of organ donors. There are substantial data
examining the management of TBI or SAH patients which
specifically addresses inflammatory/anti-inflammatory inter-
ventions and long-term recovery. The impact of such man-
agement on the transplanted organs of those that fail treat-
ment and become BD organ donors may reveal interesting
results.

7. Conclusion

Engrafted organs undergo significant pathophysiological
challenges as they are transplanted from the donor to the
recipient. Brain injury, brain death, ischaemia, and reper-
fusion all contribute to inflammation and injury. As has
been discussed, a vast amount of research is ongoing at each
of these steps of transplant. Understanding the molecular
inflammatory responses and utilising interventions that can
reduce haemodynamic instability, inflammation, and IRI is
the key to further advancing donor management. With time
and more successful interventions, it may be possible to
further address the ongoing shortage of donor organs and
decrease the number of patients who die whilst waiting for
a transplant.
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“Differences in cerebral extracellular response of interleukin-
1𝛽, interleukin-6, and interleukin-10 after subarachnoid hem-
orrhage or severe head trauma in humans,” Neurosurgery, vol.
68, no. 1, pp. 12–19, 2011.

[91] S. Weiss, K. Kotsch, M. Francuski et al., “Brain death activates
donor organs and is associatedwith aworse I/R injury after liver
transplantation,”American Journal of Transplantation, vol. 7, no.
6, pp. 1584–1593, 2007.

[92] S. J. Campbell, I. Zahid, P. Losey et al., “Liver Kupffer cells
control the magnitude of the inflammatory response in the
injured brain and spinal cord,” Neuropharmacology, vol. 55, no.
5, pp. 780–787, 2008.

[93] K. M.McLean, J. Y. Duffy, P. K. Pandalai et al., “Glucocorticoids
alter the balance between pro- and anti-inflammatory medi-
ators in the myocardium in a porcine model of brain death,”
Journal of Heart and Lung Transplantation, vol. 26, no. 1, pp. 78–
84, 2007.

[94] M. Katsuno, H. Yokota, Y. Yamamoto, and A. Teramoto,
“Increased regional interleukin-4 during the acute stage of
severe intracranial disorders,” Neurologia Medico-Chirurgica,
vol. 46, no. 10, pp. 471–474, 2006.

[95] M. S. Yang, E. J. Park, S. Sohn et al., “Interleukin-13 and -4
induce death of activated microglia,” GLIA, vol. 38, no. 4, pp.
273–280, 2002.

[96] A. M. Planas, R. Gorina, and A. Chamorro, “Signalling path-
ways mediating inflammatory responses in brain ischaemia,”



16 Journal of Transplantation

Biochemical Society Transactions, vol. 34, no. 6, pp. 1267–1270,
2006.

[97] T. Hayakata, T. Shiozaki, O. Tasaki et al., “Changes in CSF S100B
and cytokine concentrations in early-phase severe traumatic
brain injury,” Shock, vol. 22, no. 2, pp. 102–107, 2004.

[98] X.-Q. Wang, Y. P. Peng, J. H. Lu, B. B. Cao, and Y. H. Qiu,
“Neuroprotection of interleukin-6 against NMDA attack and its
signal transduction by JAK and MAPK,” Neuroscience Letters,
vol. 450, no. 2, pp. 122–126, 2009.

[99] I. Dimopoulou, S. Korfias, U.Dafni et al., “Protein S-100b serum
levels in trauma-induced brain death,”Neurology, vol. 60, no. 6,
pp. 947–951, 2003.

[100] A. Quintana, M. Giralt, A. Molinero, I. L. Campbell, M.
Penkowa, and J.Hidalgo, “Analysis of the cerebral transcriptome
in mice subjected to traumatic brain injury: importance of IL-
6,”NeuroImmunoModulation, vol. 14, no. 3-4, pp. 139–143, 2007.

[101] J. Damman, W. N. Nijboer, T. A. Schuurs et al., “Local renal
complement C3 induction by donor brain death is associated
with reduced renal allograft function after transplantation,”
Nephrology Dialysis Transplantation, vol. 26, no. 7, pp. 2345–
2354, 2011.

[102] M. Lv, Y. Liu, J. Zhang et al., “Roles of inflammation response
in microglia cell through Toll-like receptors 2/interleukin-
23/interleukin-17 pathway in cerebral ischemia/reperfusion
injury,” Neuroscience, vol. 176, pp. 162–172, 2011.

[103] F. Konoeda, T. Shichita, H. Yoshida et al., “Therapeutic effect
of IL-12/23 and their signaling pathway blockade on brain
ischemia model,” Biochemical and Biophysical Research Com-
munications, vol. 402, no. 3, pp. 500–506, 2010.

[104] D.-D. Wang, Y. F. Zhao, G. Y. Wang et al., “IL-17 potentiates
neuronal injury induced by oxygen-glucose deprivation and
affects neuronal IL-17 receptor expression,” Journal of Neuroim-
munology, vol. 212, no. 1-2, pp. 17–25, 2009.

[105] A. P. Comellas and A. Briva, “Role of endothelin-1 in acute lung
injury,”Translational Research, vol. 153, no. 6, pp. 263–271, 2009.

[106] B. P. Persson, P. Rossi, E. Weitzberg, and A. Oldner, “Inhaled
tezosentan reduces pulmonary hypertension in endotoxin-
induced lung injury,” Shock, vol. 32, no. 4, pp. 427–434, 2009.

[107] D. Konrad,M.Haney, G. Johansson,M.Wanecek, E.Weitzberg,
and A. Oldner, “Cardiac effects of endothelin receptor antago-
nism in endotoxemic pigs,” American Journal of Physiology, vol.
293, no. 2, pp. H988–H996, 2007.

[108] H. H. Leuchte, T. Meis, M. El-Nounou, J. Michalek, and J.
Behr, “Inhalation of endothelin receptor blockers in pulmonary
hypertension,” American Journal of Physiology, vol. 294, no. 4,
pp. L772–L777, 2008.

[109] V.N. Kuklin,M. Y. Kirov, O. V. Evgenov et al., “Novel endothelin
receptor antagonist attenuates endotoxin-induced lung injury
in sheep,” Critical Care Medicine, vol. 32, no. 3, pp. 766–773,
2004.

[110] S. Kallakuri, C. W. Kreipke, P. C. Schafer, S. M. Schafer, and J.
A. Rafols, “Brain cellular localization of endothelin receptors
A and B in a rodent model of diffuse traumatic brain injury,”
Neuroscience, vol. 168, no. 3, pp. 820–830, 2010.

[111] D. A. Chatfield, D. H. Brahmbhatt, T. Sharp, I. E. Perkes,
J. G. Outrim, and D. K. Menon, “Juguloarterial endothelin-
1 gradients after severe traumatic brain injury,” Neurocritical
Care, vol. 14, no. 1, pp. 55–60, 2011.

[112] H. Vatter, J. Konczalla, and V. Seifert, “Endothelin related
pathophysiology in cerebral vasospasm: what happens to the
cerebral vessels?”ActaNeurochirurgica. Supplement, vol. 110, no.
1, pp. 177–180, 2011.

[113] R. Salonia, P. E. Empey, S. M. Poloyac et al., “Endothelin-1 is
increased in cerebrospinal fluid and associatedwith unfavorable
outcomes in children after severe traumatic brain injury,”
Journal of Neurotrauma, vol. 27, no. 10, pp. 1819–1825, 2010.

[114] M. Sabri, J. Ai, and R. L. MacDonald, “Dissociation of
vasospasm and secondary effects of experimental subarachnoid
hemorrhage by clazosentan,” Stroke, vol. 42, no. 5, pp. 1454–
1460, 2011.

[115] A. J. Sutherland, R. S.Ware, C.Winterford, and J. F. Fraser, “The
endothelin axis and gelatinase activity in alveolar macrophages
after brain-stemdeath injury: a pilot study,” Journal of Heart and
Lung Transplantation, vol. 26, no. 10, pp. 1040–1047, 2007.

[116] B. Reel, G. Oktay, S. Ozkal et al., “MMP-2 andMMP-9 alteration
in response to collaring in rabbits: the effects of endothelin
receptor antagonism,” Journal of Cardiovascular Pharmacology
andTherapeutics, vol. 14, no. 4, pp. 292–301, 2009.

[117] P. Rossi, B. Persson, P. J. M. Boels, A. Arner, E. Weitzberg, and
A. Oldner, “Endotoxemic pulmonary hypertension is largely
mediated by endothelin-induced venous constriction,” Intensive
Care Medicine, vol. 34, no. 5, pp. 873–880, 2008.

[118] H. Kimura, I. Gules, T. Meguro, and J. H. Zhang, “Cytotoxicity
of cytokines in cerebral microvascular endothelial cell,” Brain
Research, vol. 990, no. 1-2, pp. 148–156, 2003.

[119] P. M. Cobelens, I. A. C. W. Tiebosch, R. M. Dijkhuizen
et al., “Interferon-𝛽 attenuates lung inflammation following
experimental subarachnoid hemorrhage,” Critical Care, vol. 14,
no. 4, article R157, 2010.

[120] V. I. Otto, U. E. Heinzel-Pleines, S. M. Gloor, O. Trentz,
and T. Kossmann, “Morganti-Kossmann MCsICAM-1 and
TNF-𝛼 induce MIP-2 with distinct kinetics in astrocytes and
brain microvascular endothelial cells,” Journal of Neuroscience
Research, vol. 60, no. 6, pp. 733–742, 2000.

[121] E. J. Birks, P. B. J. Burton, V. Owen et al., “Elevated tumor
necrosis factor-𝛼 and interleukin-6 in myocardium and serum
ofmalfunctioning donor hearts,”Circulation, vol. 102, no. 19, pp.
III352–III358, 2000.

[122] H. H.Wei, X. C.M. Lu, D. A. Shear et al., “NNZ-2566 treatment
inhibits neuroinflammation and pro-inflammatory cytokine
expression induced by experimental penetrating ballistic-like
brain injury in rats,” Journal of Neuroinflammation, vol. 6, no.
1, article 19, 2009.

[123] J. A. Kellum, R. Venkataraman, D. Powner, M. Elder, G.
Hergenroeder, and M. Carter, “Feasibility study of cytokine
removal by hemoadsorption in brain-dead humans,” Critical
Care Medicine, vol. 36, no. 1, pp. 268–272, 2008.

[124] T. Bartfai, M. Sanchez-Alavez, S. Andell-Jonsson et al.,
“Interleukin-1 system in CNS stress: seizures, fever, and neuro-
trauma,” Annals of the New York Academy of Sciences, vol. 1113,
no. 1, pp. 173–177, 2007.

[125] A. Basu, J. K. Krady, J. R. Enterline, and S. W. Levison, “Trans-
forming growth factor 𝛽1 prevents IL-1𝛽-induced microglial
activation, whereas TNF𝛼- and IL-6-stimulated activation are
not antagonized,” GLIA, vol. 40, no. 1, pp. 109–120, 2002.

[126] R. Murugan, R. Venkataraman, A. S. Wahed et al., “Increased
plasma interleukin-6 in donors is associated with lower recipi-
ent hospital-free survival after cadaveric organ transplantation,”
Critical Care Medicine, vol. 36, no. 6, pp. 1810–1816, 2008.

[127] G. Plenz, H. Eschert, M. Erren et al., “The interleukin-
6/interleukin-6-receptor system is activated in donor hearts,”
Journal of the American College of Cardiology, vol. 39, no. 9, pp.
1508–1512, 2002.



Journal of Transplantation 17

[128] R. Murugan, R. Venkataraman, A. S. Wahed et al., “Preload
responsiveness is associated with increased interleukin-6 and
lower organ yield from brain-dead donors,” Critical Care
Medicine, vol. 37, no. 8, pp. 2387–2393, 2009.

[129] P. Gregoric, A. Sijacki, S. Stankovic et al., “SIRS score on
admission and initial concentration of IL-6 as severe acute
pancreatitis outcome predictors,”Hepato-Gastroenterology, vol.
58, no. 105, p. 263, 2011.

[130] L. Wang, J. Quan, W. E. Johnston et al., “Age-dependent
differences of interleukin-6 activity in cardiac function after
burn complicated by sepsis,” Burns, vol. 36, no. 2, pp. 232–238,
2010.

[131] B.Maier, K. Schwerdtfeger, A.Mautes et al., “Differential release
of interleukines 6, 8, and 10 in cerebrospinal fluid and plasma
after traumatic brain injury,” Shock, vol. 15, no. 6, pp. 421–426,
2001.

[132] A. J. Fisher, S. C. Donnelly, N. Hirani et al., “Elevated levels of
interleukin-8 in donor lungs is associatedwith early graft failure
after lung transplantation,”American Journal of Respiratory and
Critical Care Medicine, vol. 163, no. 1, pp. 259–265, 2001.

[133] S. C. Donnelly, R. M. Strieter, S. L. Kunkel et al., “Interleukin-8
and development of adult respiratory distress syndrome in at-
risk patient groups,”The Lancet, vol. 341, no. 8846, pp. 643–647,
1993.

[134] E. Csuka, M. C. Morganti-Kossmann, P. M. Lenzlinger, H.
Joller, O. Trentz, andT. Kossmann, “IL-10 levels in cerebrospinal
fluid and serum of patients with severe traumatic brain injury:
relationship to IL-6, TNF-𝛼, TGF-𝛽1 and blood-brain barrier
function,” Journal of Neuroimmunology, vol. 101, no. 2, pp. 211–
221, 1999.

[135] M. C. Morganti-Kossman, P. M. Lenzlinger, V. Hans et al.,
“Production of cytokines following brain injury: beneficial and
deleterious for the damaged tissue,”Molecular Psychiatry, vol. 2,
no. 2, pp. 133–136, 1997.

[136] U. Malipiero, U. Koedel, W. Pfister, and A. Fontana, “Bacterial
meningitis: the role of transforming growth factor-beta in
innate immunity and secondary brain damage,” Neurodegener-
ative Diseases, vol. 4, no. 1, pp. 43–50, 2007.

[137] M. R. Douglas, M. Daniel, C. Lagord et al., “High CSF trans-
forming growth factor b levels after subarachnoid haemorrhage:
association with chronic communicating hydrocephalus,” Jour-
nal of Neurology, Neurosurgery and Psychiatry, vol. 80, no. 5, pp.
545–550, 2009.

[138] T. Okamoto, S. Takahashi, E. Nakamura, K. Nagaya, T. Hayashi,
and K. Fujieda, “Transforming growth factor-𝛽1 induces matrix
metalloproteinase-9 expression in human meningeal cells via
ERK and Smad pathways,”Biochemical and Biophysical Research
Communications, vol. 383, no. 4, pp. 475–479, 2009.

[139] Y. Oishi, Y. Nishimura, Y. Tanoue et al., “Endothelin-1 receptor
antagonist prevents deterioration of left ventricular function
and coronary flow reserve in brain-dead canine heart,” Journal
of Heart and Lung Transplantation, vol. 24, no. 9, pp. 1354–1361,
2005.

[140] R. Ferrera, G. Hadour, F. Tamion et al., “Brain death provokes
very acute alteration in myocardial morphology detected by
echocardiography: preventive effect of beta-blockers,” Trans-
plant International, vol. 24, no. 3, pp. 300–306, 2011.

[141] R. V. Venkateswaran, V. Dronavalli, P. A. Lambert et al., “The
proinflammatory environment in potential heart and lung
donors: prevalence and impact of donor management and
hormonal therapy,” Transplantation, vol. 88, no. 4, pp. 582–588,
2009.

[142] A. Catania, C. Lonati, A. Sordi, and S. Gatti, “Detrimental con-
sequences of brain injury on peripheral cells,” Brain, Behavior,
and Immunity, vol. 23, no. 7, pp. 877–884, 2009.

[143] M. Valdivia, C. Chamorro, M. A. Romera, B. Balandı́n, and M.
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[177] R. Tuuminen, S. Syrjälä, R. Krebs et al., “Donor simvastatin
treatment abolishes rat cardiac allograft ischemia/reperfusion
injury and chronic rejection throughmicrovascular protection,”
Circulation, vol. 124, no. 10, pp. 1138–1150, 2011.

[178] S. Ulukaya, E. Ulukaya, I. Alper, A. Yilmaztepe-Oral, and
M. Kilic, “Soluble cytokeratin 18 biomarkers may provide
information on the type of cell death during early ischemia and
reperfusion periods of liver transplantation,”Clinical Transplan-
tation, vol. 24, no. 6, pp. 848–854, 2010.

[179] Y. F. Xu, M. Liu, B. Peng et al., “Protective effects of SP600125
on renal ischemia-reperfusion injury in rats,” Journal of Surgical
Research, vol. 169, no. 1, pp. e77–e84, 2011.

[180] M. L. Blagonravov, M. M. Azova, M. V. Onufriev, and V.
A. Frolov, “Activities of some caspase cascade enzymes and
myocardial contractility in experimental left ventricular focal
ischemia,” Bulletin of Experimental Biology and Medicine, vol.
150, no. 6, pp. 672–675, 2011.

[181] C. Ballet, K. Renaudin, N. Degauque et al., “Indirect CD4+ TH1
response, antidonor antibodies and diffuseC4d graft deposits in
long-term recipients conditioned by donor antigens priming,”
American Journal of Transplantation, vol. 9, no. 4, pp. 697–708,
2009.

[182] M. Zhang, L. H. Michael, S. A. Grosjean, R. A. Kelly, M.
C. Carroll, and M. L. Entman, “The role of natural IgM in
myocardial ischemia-reperfusion injury,” Journal of Molecular
and Cellular Cardiology, vol. 41, no. 1, pp. 62–67, 2006.

[183] A. E. Gelman, M. Okazaki, S. Sugimoto et al., “CCR2 regulates
monocyte recruitment as well as CD4+ T h1 allorecognition
after lung transplantation,” American Journal of Transplanta-
tion, vol. 10, no. 5, pp. 1189–1199, 2010.

[184] D. K. de Vries, J. H. N. Lindeman, J. Ringers, M. E. J. Reinders,
T. J. Rabelink, and A. F. M. Schaapherder, “Donor brain death
predisposes human kidney grafts to a proinflammatory reaction
after transplantation,” American Journal of Transplantation, vol.
11, no. 5, pp. 1064–1070, 2011.

[185] S. A. Hosgood, I. H. Mohamed, A. Bagul, and M. L. Nicholson,
“Hypothermic machine perfusion after static cold storage does
not improve the preservation condition in an experimental
porcine kidney model,” British Journal of Surgery, vol. 98, no.
7, pp. 943–950, 2011.
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