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SUMMARY

Soil-transmitted intestinal worms known as helminths colonize over 1.5 billion people worldwide. 

Although helminth colonization has been associated with altered composition of the gut 

microbiota, such as increases in Clostridia, individual species have not been isolated and 

characterized. Here, we isolate and sequence the genome of 13 Clostridia from the Orang Asli, 

an indigenous population in Malaysia with a high prevalence of helminth infections. Metagenomic 

analysis of 650 fecal samples from urban and rural Malaysians confirm the prevalence of species 

corresponding to these isolates and reveal a specific association between Peptostreptococcaceae 
family members and helminth colonization. Remarkably, Peptostreptococcaceae isolated from the 

Orang Asli display superior capacity to promote the life cycle of whipworm species, including 

hatching of eggs from Trichuris muris and Trichuris trichiura. These findings support a model in 

which helminths select for gut colonization of microbes that support their life cycle.

In brief

Helminth-endemic regions are underrepresented in microbiome studies. Sargsian et al. isolate 

bacteria from individuals in rural Malaysia consisting of both well-studied and uncharacterized 

taxa. Clostridia associated with helminths in the microbiomes of these individuals display 

enhanced capacity to support the life cycle of the helminths Trichuris muris and Trichuris 
trichiura.

Graphical Abstract
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INTRODUCTION

Intestinal parasitic worms known as helminths affect roughly 24% of the world population.1 

The most common species that infect humans are the whipworm Trichuris trichiura, 

roundworm Ascaris lumbricoides, and hookworms Necator americanus and Ancylostoma 
duodenale, which are associated with maladies ranging from diarrhea to stunted growth 

and malnutrition.1,2 Although helminths cohabitate the mammalian gastrointestinal tract 

alongside trillions of microbes and can influence the diversity and composition of 

the microbiome,3 species-level resolution and functional characterization of helminth-

associated bacteria have lagged behind. Microbiome studies have been dominated by those 

examining individuals in industrialized nations,4 where the prevalence of helminths is low. 

Neglecting to study helminth-associated microbes may result in a lack of knowledge of 

“missing microbes” not present in the microbiomes of better-characterized populations.5,6 

Furthermore, medical advances gained from microbiome studies may be biased toward 

individuals in high-income countries and insufficient in addressing the healthcare needs of 

marginalized groups in low- and middle-income countries.

The microbiomes of helminth-colonized individuals display cohort-specific 

compositions.7–13 Inconsistent associations between microbes and helminth colonization 

likely reflect the unique ethnic populations, environment, and parasites associated with 

different geographic regions, highlighting the importance of deeper characterization of 

population-specific microbiomes. We previously reported higher gut microbial diversity in 
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the Orang Asli, an indigenous population in Malaysia with a high prevalence of helminth 

infections, especially T. trichiura, compared with nearby urbanized Kuala Lumpur.14 

Following deworming treatment with the anthelmintic drug albendazole, the microbiomes 

of the Orang Asli showed decreased alpha diversity accompanied by increased Bacteroidales 

and decreased Clostridiales. Colonization of mice with Trichuris muris, the Trichuris species 

that infects mice, or the roundworm Heligmosomoides polygyrus bakeri reveal similar shifts 

in the microbiome that support a positive relationship between helminth colonization and 

species belonging to the Clostridiales order.14,15

Clostridia is a polyphyletic class of Firmicutes that includes pathogenic and commensal 

Clostridiales species with ill-defined taxonomic relationships sharing the key feature of 

being sporeforming obligate anaerobes.16,17 Clostridia species have received considerable 

attention as immunomodulatory members of the microbiota due to their metabolic activity 

and capacity to confer colonization resistance against pathogens.18–23 Expansion of 

Clostridia during helminth colonization mediates amelioration of disease in mouse models 

of inflammatory bowel disease and asthma,14,15 supporting the importance of genomic and 

functional characterization of helminth-associated bacteria in humans.

Furthermore, intestinal bacteria promote gastrointestinal colonization by helminths, 

indicating bidirectional communication between parasites and the microbiome.24,25 For 

example, bacteria promote hatching of T. muris eggs, and T. muris cannot complete its 

life cycle in germ-free mice that lack a microbiome.26–28 It is unclear if specific bacterial 

species display differential effects on helminth reproduction. Here, we report the genomic 

characterization of bacteria isolated from helminth-colonized Orang Asli villagers. Our 

findings identify specific taxa, especially those belonging to the Peptostreptococcaceae 
family, that are uniquely associated with helminth colonization and promote T. muris egg 

hatching and egg laying. Finally, we establish an egg-hatching assay for T. trichiura to 

demonstrate a similar effect of a helminth-associated Peptostreptococcaceae species on 

promoting the human parasite, providing evidence of parasite-microbiome coadaptation.

RESULTS

Isolation and identification of spore-forming Firmicutes from helminth-colonized 
individuals

Our previous analyses of stool specimens from the Orang Asli using 16S sequencing showed 

a positive correlation between T. trichiura burden and relative abundance of Clostridiales;14 

however, we lacked species-level resolution of helminth-associated bacteria. We screened 

stool from Orang Asli in Pangsun village (Trichuris prevalence = 52.63%) to identify 

individuals with high T. trichiura burden to increase the probability of isolating Clostridiales 

(Table S1). We applied a previously described procedure, in which fecal samples are 

enriched for spore-forming bacteria,23 to specimens from Orang Asli individuals with high 

Trichuris burdens (Table S1; Figure S1A). From 75 initial colonies, we used 16S sequencing 

to identify 14 isolates with unique sequences and/or morphologies, designated OA1–14. 

Bacterial colonies displayed distinct visual properties including mucoid and filamentous 

morphologies and hemolytic activity, providing evidence that they represent non-redundant 

isolates (Figure 1A).
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Taxonomic lineage was identified through whole-genome sequencing and the 

GTDB-Tk approach for genomic classification.29 Thirteen isolates belonged to 

Clostridiales, representing five families: Lachnospiraceae (OA1, OA3, OA11, and OA13), 

Peptostreptococcaceae (OA2, OA6, and OA8), Erysipelotrichaceae (OA4, OA5, and OA7), 

Oscillospiraceae (OA9 and OA10), and Clostridiaceae (OA14) (Figure 1B). OA12 was 

identified as Enterococcus hirae. Although Enterococci are not spore formers, they can be 

partially resistant to chemical agents, including chloroform.30,31 All isolates except OA3 had 

an average nucleotide identity (ANI) of at least 95% to previously sequenced bacteria in 

public databases, allowing us to assign a species identifier. With an ANI of 88.32% to the 

closest known relative, OA3 likely represents a new species belonging to the Ruminococcus 
genus, which we have provisionally named Ruminococcus pangsunibacterium.

Genome sizes and GC content for OA isolates were generally typical for their taxa and range 

from 2.85 to 6.95 Mbp and 27.91% to 60.26%, respectively. Phylogenetic comparison with 

related Firmicutes (Figure 1C; Table S2) confirmed the taxonomic relation of OA isolates 

to previously sequenced bacteria. Although some isolates such as OA12 (E. hirae) and 

OA14 (Clostridium perfringens) are extensively studied species, others like OA2 and OA6 

(Romboutsia hominis) and OA9 and OA10 (genus Lawsonibacter) have fewer than 8 other 

deposited genomes and have yet to be functionally characterized (Figure 1B; Table S2).32,33

We created uniform manifold approximation and projection (UMAP) plots of orthogroups 

of genes for each species to compare the total coding potential of the OA isolates with 

their relatives.34 We restricted this analysis to species for which a substantial number of 

sequenced genomes are available: Clostridium innocuum (OA4 and −5), Paraclostridium 
sordellii (OA8), E. hirae (OA12), and C. perfringens (OA14). OA4 and OA5 fell into a 

distinct cluster of C. innocuum genomes, while the other OA isolates aligned with the 

dominant cluster of their respective species (Figures 1D, 1E, S1B, and S1C). The availability 

of 622 C. perfringens genomes facilitated additional analysis of OA14. A UMAP plot of 

KEGG orthologs in the metabolism category revealed that OA14 clusters away from most 

other C. perfringens isolates (Figure 1F). Further analysis revealed that the OA14 cluster, 

consisting of 28 C. perfringens genomes (4.5% of all available genomes) (Figure S1D; Table 

S2), is characterized by a significantly higher representation of metabolic pathways involved 

in glycosphingolipid and N-glycan biosynthesis and metabolism of various compounds, as 

well as several orthologs involved in lantibiotic biosynthesis and transport. In addition, 

OA14 lacks a gene ortholog for an enterotoxin present in over 94% of previously identified 

C. perfringens, suggesting lower virulence of our isolate (Table S3).35

Quantification of how the pangenome, the whole-genomic repertoire of each 

microorganism,36 increases with each added genome revealed that while there have been 

many genomes sequenced for these species, there is great intra-species diversity, and 

information about these taxa has not yet been saturated (Figure 1G and S1E–S1G). Thus, 

OA isolates include both uncharacterized taxa and well-investigated species, which may 

include those with unique properties.
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OA isolates belonging to the Peptostreptococcaceae family are associated with helminth 
colonization

Given that the OA isolates were isolated from two Orang Asli individuals, we tested their 

broader presence in human microbiomes. We collected stool from a large cohort of 351 

Orang Asli from 6 villages and 56 individuals living in Kuala Lumpur.37 In addition to 

comprehensive analyses exploring how helminth infection is associated with microbiome 

composition and diversity, which is reported in Tee et al.,37 we used the metagenomics 

classification tool krakenuniq38 to map 650 metagenomes generated from the above 

Malaysian populations to unique sequences from the whole genomes of OA1–14. We also 

compared these results with 544 stool metagenomes from the Human Microbiome Project 

(HMP), which sampled 242 healthy individuals in the United States.39,40 As expected, we 

detected higher mapping frequency in the Malaysian metagenomes than HMP metagenomes 

to sequences specific to OA1–14, as well as to the OA isolates and their close relatives 

combined (Figures 2A and 2B; Table S4). This was also the case when we examined 

mapping to individual isolates, representing the abundance of taxa closely related to each 

isolate (Figure 2C). Because our computational approach discriminates bacterial genomes 

belonging to the same species, these results do not exclude the potential presence of closely 

related bacteria in HMP metagenomes.

Lachnospiraceae isolates OA11 and OA13 were not detected due to low representation 

across all metagenomes. As krakenuniq functions by mapping metagenomes to unique 

sequences in each genome that are not found in any other genomes, we hypothesized 

that OA5 (C. innocuum) was not detected because its genome is highly similar to OA4 

with an ANI of 99.99%. Indeed, when OA4 was removed from the mapping analysis, the 

mapping percentage of OA5 increased (Figure S1H), indicating that krakenuniq could not 

differentiate between OA4 and OA5. In contrast, our computational approach was able to 

distinguish OA2 and OA6 (both R. hominis), which have an ANI of 99.96%, indicating 

that closely related members of the same species can be differentiated. It is also important 

to note that although krakenuniq can differentiate between two highly similar strains, it 

cannot accurately determine the presence of a specific strain or isolate within a metagenome. 

Therefore, the outcome of our analysis more likely reflects the abundance of species or 

closely related taxa that represent the OA isolates.

We detected several positive correlations between pairs of OA isolates within the Malaysian 

metagenomes, with a particularly strong association between OA2 and OA6, both R. 
hominis (Figure S1I). The lack of strong negative correlations between isolates suggests 

that these bacteria are not in an antagonistic relationship with each other in this population.

The above Malaysian dataset includes individuals living in rural Orang Asli villages and 

urbanized Kuala Lumpur (KL). The Orang Asli samples can be further segregated into 

those taken prior to and after treatment with the anthelmintic drug albendazole (ABZ). 

The helminth prevalence in the Orang Asli population decreased from 67.2% at baseline 

to 22.5% 21 days after ABZ. The helminth prevalence in the urban control population was 

0%.37 To identify helminth-associated bacteria, we determined which taxa corresponding to 

the OA isolates were enriched in pre-ABZ samples compared with post-ABZ and KL. A 

heatmap showing the normalized percentage of k-mers in each metagenome that specifically 
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map to each OA genome revealed that taxa corresponding to OA2, OA6, OA8, OA12, and 

OA14 were generally rare but exhibited high mapping in a small proportion of individuals, 

whereas taxa corresponding to OA1, OA3, and OA10 had a wider distribution of mapping 

across individuals (Figure S2A). While OA2, OA6, OA8, OA9, OA12, and OA14 exhibited 

higher mapping in pre-ABZ Orang Asli villagers than KL, OA1, OA3, OA4, OA7, and 

OA10 displayed similar or lower mapping in the Orang Asli compared with KL, indicating 

that these taxa are associated with the geographical region rather than helminths (Figures 

3A–3H and S2C–S2E).

Strikingly, all three isolates belonging to the Peptostreptococcaceae family, OA2, OA6, 

and OA8, had significantly decreased mapping in post-ABZ Orang Asli metagenomes, 

with these mapping percentages resembling those for KL (Figures 3A–3C and S2B). 

This finding is reminiscent of observations in mice showing that a Peptostreptococcaceae 
species was among the most expanded following H. polygyrus inoculation.41 Lawsonibacter 
sp900066645 (OA9) and E. hirae (OA12) were also reduced in the microbiomes of ABZ-

treated individuals (Figures 3D, 3E, and S2B). The abundance of taxa representing the 

remaining OA isolates had no significant change (Figures 3F–3H and S2C–S2E). For 

129 individuals, matched pre- and post-ABZ longitudinal samples were available. Pairwise 

analyses for these samples confirmed that OA2, OA6, OA8, OA9, and OA12 were reduced 

within individuals following ABZ treatment (Figures 3I–3M). We observed decreased 

abundance of Lachnospiraceae species corresponding to OA1 and OA3 within individuals 

post-ABZ (Figures S2B and S2F–S2K), even though mapping to these isolates was not 

significantly different between pre- and post-ABZ at the population level (Figures S2C and 

S2D). Considering the relatively high mapping of metagenomes to OA1 and OA3 across 

the entire Malaysian cohort (Figure 2C), the data suggest that these taxa are present at 

high enough levels to persist in microbiomes in the region despite decreasing as a result of 

deworming within an individual.

To test if the relationship between OA2, OA6, and OA8 and helminth infection was species 

specific or indicative of a relationship between helminths and all Peptostreptococcaceae, we 

mapped metagenomes to all 113 available complete genomes in this family (Table S4) and 

found that the Peptostreptococcaceae family is indeed enriched in Malaysian microbiomes 

compared with the HMP (Figure S2L). Additionally, there was a significant decrease in 

the abundance of Peptostreptococcaceae within individuals post-ABZ, suggesting a specific 

interaction of this family with helminths (Figure S2M).

The reduced mapping to OA2, OA6, OA8, OA9, and OA12 in KL microbiomes increased 

our confidence that these taxa are helminth associated. Although we cannot rule out 

helminth-independent effects of ABZ, we found that even the highest soluble concentration 

of ABZ did not impair in vitro growth of OA isolates (Figure S2N). We found that the 

individuals who were fully cured from T. trichiura post-ABZ had a lower initial worm 

burden than those who merely decreased in worm burden but were not cured (Figure S3A). 

In addition, individuals who were fully cured of helminths displayed decreased abundance 

of the Peptostreptococcaceae species represented by OA2, OA6, and OA8, whereas those 

who remained colonized by helminths had stable levels of these taxa (Figure S3B). Thus, 

the reduced presence of species corresponding to the above OA isolates in the microbiomes 
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of ABZ-treated individuals is unlikely due to a direct effect of the drug on these bacteria 

and instead is a consequence of deworming, as the continued presence of helminth infection 

within an individual maintains colonization of the OA isolate despite deworming treatment.

Helminth-associated Clostridia promote the Trichuris life cycle

The host acquires Trichuris species following ingestion of embryonated eggs in 

contaminated food or water, which then hatch to larvae in the microbiota-rich cecum and 

mature to adult worms. Adult females lay thousands of unembryonated eggs per day that are 

released through stool to the environment, where they embryonate and can transmit to a new 

host or reinfect the same individual.42,43 To test the hypothesis that Trichuris colonization 

favors the presence of microbiota members that facilitate its life cycle, we examined whether 

helminth-associated OA isolates can promote hatching of T. muris eggs, the helminth 

species for which a bacteria-mediated hatching assay under aerobic conditions has been 

established.27,44 Because Clostridia are obligate anaerobes, we first determined whether T. 
muris eggs (Figure 4A) can hatch in the presence of bacteria under anaerobic conditions. As 

a positive control, we chose the facultative anaerobe Pseudomonas aeruginosa, which was 

previously shown to be a potent inducer of hatching in aerobic conditions.27

Incubation of embryonated T. muris eggs with P. aeruginosa resulted in nearly 100% 

hatching over 3 h compared with the slower inefficient hatching of <30% for eggs 

incubated with media alone (Figure 4B). Thus, bacteria can enhance T. muris egg hatching 

under anaerobic conditions. Using this assay, we tested four OA isolates associated with 

helminths (OA2, OA6, OA8, and OA12) and compared them with two isolates not 

associated with helminths (OA4 and OA14). We also included two Bacteroidales species, 

Bacteroides thetaiotaomicron and Phocaeicola vulgatus (previously Bacteroides vulgatus),45 

which are ubiquitous anaerobes in the human microbiome. In addition, P. vulgatus’s 

growth rate was negatively correlated with Trichuris egg burden in the Orang Asli.37 The 

Peptostreptococcaceae strains OA2, OA6, and OA8 were rapid inducers, with around 20% 

of eggs hatched after 1 h of incubation and >60% hatched by 3 h. Eggs incubated with OA4 

and B. thetaiotaomicron were slower to hatch, while OA12, OA14, and P. vulgatus were 

poor inducers that potentially inhibit hatching (Figures 4B–4E). The degree of hatching did 

not correlate with the rate of bacterial growth (Figures S4A–S4C).

Bacteria-mediated hatching of eggs from T. trichiura has not previously been reported. 

We reasoned that using bacteria isolated from individuals colonized by T. trichiura may 

overcome this obstacle. Compared with a mean hatching rate of 8.8% for T. trichiura 
eggs incubated in media alone for 6 days, incubation with OA8, P. sordellii, increased the 

mean hatching rate to over 26% (Figures 4F and 4G). This effect was species specific, as 

other Peptostreptococcaceae family members and non-helminth-associated controls did not 

increase hatching rates compared with media alone. In addition, OA12, E. hirae, inhibited 

hatching of T. trichiura eggs, mirroring what we observed with T. muris. Although hatching 

occurred more slowly than for T. muris eggs, viability was not impacted by the long 

incubation, as larvae were still motile as observed by light microscopy.

To validate these findings within the mammalian host, we applied a monocolonization 

mouse model we recently established.26 Germ-free mice are not permissive to T. muris 
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colonization; however, reproductively viable adult T. muris can be recovered from germ-free 

mice inoculated with E. coli alone, albeit at lower levels than conventional mice with 

a complete microbiota.26 The number of adult worms from mice monocolonized with 

OA8 (P. sordellii) was comparable to those recovered from mice monocolonized with E. 
coli, despite lower levels of OA8 colonization (Figures 4H and S4D). Worms from OA8-

monocolonized mice were developmentally mature based on their ability to lay eggs after 

overnight incubation. In fact, the number of eggs laid by T. muris recovered from mice 

monocolonized with OA8 was greater than E. coli (Figure 4I). Thus, OA8 is sufficient to 

support T. muris in the murine host and may play a role in the Trichuris life cycle at stages 

beyond egg hatching.

Because we previously showed that the increase in Clostridiales in mice and humans 

colonized with Trichuris is associated with a corresponding decrease in Bacteroidales,14 we 

tested whether the OA isolates directly impact Bacteroidales growth. We found that OA12 

and OA14, two isolates that did not induce T. muris egg hatching, were potent inhibitors of 

P. vulgatus and B. theta growth when cultured together in an in vitro bacterial competition 

assay (Figures S4E and S4F). Altogether, these results indicate that helminth-associated 

Peptostreptococcaceae species promote the Trichuris life cycle, while competition with 

Bacteroides species may not be a unique property of helminth-associated bacteria.

DISCUSSION

Whole-genome sequencing of the OA isolates and the availability of the largest Malaysian 

microbiome dataset to date37 allowed us to uncover differential and high-resolution 

relationships between specific taxa and helminth colonization. Taxa corresponding to only a 

subset of OA isolates decreased in the microbiomes of individuals treated with deworming 

medication. The Peptostreptococcaceae isolates were particularly notable because they also 

mediated superior T. muris and T. trichiura egg hatching. The finding that OA8, P. sordellii, 
conferred greater fecundity of T. muris worms that develop in mice suggests additional 

roles for the microbiome post-hatching. Clostridia species are producers of immunogenic 

metabolites that impact T cell differentiation.23,46–50 Given the known role of T helper 

lineages, including regulatory T cells on T. muris burden,42,51,52 it will be important to 

analyze how the mammalian host immune system is impacted by various OA isolates and if 

this contributes to helminth susceptibility.

These results demonstrating that OA isolates influence hatching rates and adult worm 

fecundity raise the possibility that helminth colonization “primes” the host microbiome 

to be a more hospitable environment for either subsequent infections in the same host 

or infections in other hosts within the same community. Individuals living in the same 

household or environment share microbiome compositions.53,54 Thus, naive hosts may 

acquire a pro-helminth microbiome by living in proximity with colonized individuals, 

thereby creating a positive feedback loop that favors propagation of helminths at 

the community level. A non-mutually exclusive possibility is that eggs shed into the 

environment are coated by bacteria that promote hatching when ingested together. These 

hypothetical mechanisms will be important to test in the future as factors that determine 

helminth burden and susceptibility to reinfection are poorly understood.
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A previous study found that alterations to the microbiome following T. muris colonization of 

mice increases resistance to subsequent parasite colonization.28 One reason for this potential 

discrepancy with our findings is that, depending on the mouse facility, the gut microbiome 

of inbred laboratory mice may not harbor a sufficient number of Peptostreptococcaceae 
or the proper strains necessary to observe enhancement. Similarly, a modest outgrowth of 

pro-helminth bacteria could be insufficient to benefit the parasite if the initial microbiome 

contains a high proportion of bacterial taxa that inhibit hatching. In fact, OA12, E. hirae, was 

found to be helminth associated in our metagenomic analyses while also inhibiting Trichuris 
egg hatching, suggesting that helminth colonization could result in increased inhibitory 

strains as well. However, it is also possible there are fundamental differences between the 

mouse and human parasite. In this context, it is notable that we successfully established a 

bacteria-induced hatching assay for T. trichiura. The criteria for efficient hatching may be 

more stringent for the human Trichuris species because only OA8 enhanced hatching. Serial 

passaging of T. muris in mice potentially selected for parasites that are optimally adapted to 

laboratory conditions. For example, eggs harvested under sterile laboratory conditions would 

not be in danger of pre-mature hatching outside the host upon contact with microbes in 

the soil. We hope that our newly established assay to study T. trichiura outside the human 

host can be applied to better understand the mechanisms involved in host adaptation and the 

dependencies of helminths on specific bacterial taxa.

Finally, regions with the highest incidence of immune diseases are associated with 

the lowest prevalence of helminth infections,55,56 which may be explained by either 

direct effects of parasites on the host immune system or indirect effects through the 

microbiome.14,24,57–59 If the difference in the abundance of species representing the OA 

isolates upon deworming or between rural and urban Malaysian populations reflects a 

larger shift in microbiome compositions, then it is possible that transition from a rural 

lifestyle in a helminth-endemic region to an industrialized setting may be leading to a loss 

of vulnerable low-abundance taxa. Whether the consequence of losing certain microbes 

from our microbiome is harmful or reflects an adaptation to modernization remains to be 

determined.60 Considering the diversity of physiological processes associated with intestinal 

bacteria, we suggest additional investigation of understudied populations, including those in 

helminth-endemic regions, will yield valuable knowledge regarding the consequences of a 

shifting microbiota.

Limitations of the study

Although we validated the presence of taxa representing the OA isolates in a large 

metagenome dataset, our focus was limited to a modest number of species. Our ability 

to compare their abundance between samples was dependent on computational approaches 

that discriminate based on sequence identity and the availability of existing databases. We 

can confidently compare microbiomes at the species level because we are able to distinguish 

taxa with >99% sequence identity, but strains belonging to the same species can have 

important functional differences. A recent phylogenetic study of Lachnospiraceae (family 

within Clostridiales) isolated from individuals in the USA provides compelling evidence 

of substantial inter- and intra-species diversity in metabolic pathways linked with human 

health.61 Given that our OA isolates include understudied taxa and a new species, similar 
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large-scale efforts to isolate and sequence bacteria from the microbiomes of individuals 

living in low- and middle-income countries are warranted. A second limitation of our study 

is the use of T. muris as a surrogate for the human parasite to study colonization of the 

mammalian host. Nevertheless, our observation that bacteria-mediated hatching of T. muris 
and T. trichiura are at least partially translatable is promising for further studies exploring 

the role of Peptostreptococcaceae species, especially P. sordellii, in the helminth life cycle.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents 

should be directed to and will be fulfilled by lead contact, Dr. Ken Cadwell 

(ken.cadwell@nyulangone.org).

Materials availability—All unique and stable reagents generated in this study are 

available from the lead contact with a completed Materials Transfer Agreement.

Data and code availability

• PacBio raw sequences and assembled whole genome sequences reported in this 

study are available under NCBI BioProject: PRJNA800461.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects—Prior to collection of samples from Kuala Pangsun village (Table S1), 

the human study was approved by the Research and Ethics Committee of Universiti Malaya 

Medical Center (UMMC) (i.e., MEC Ref. No. 824.11, No. 943.14 and No. 2017925-5593), 

National Medical Research Register (NMRR), Ministry of Health, Malaysia (Reference No.: 

NMRR-17-3055-37252), the Department of Orang Asli Development (JAKOA) [Ref. No.: 

JAKOA/pp.30.052Jld13 (12) & JAKOA/pp.30.052Jld14 (47)], and NYU IRB# i17-01068. 

Permission was also obtained from the Tok Batin, chieftain of the village. Kuala Pangsun 

village (101.88°E longitude, 3.21°N latitude) is situated in Hulu Langat district, the fifth 

largest district in Selangor state, Malaysia. The selection of this village was favorable in 

terms of logistics and feasibility, coupled with good cooperation from the villagers. The 

purpose and the procedure of this study was explained orally to all the participants by the 

investigator. Written consent was attained from all adult participants aged 18 and above. 

For children under 18 years old, written parental consent was obtained from their respective 

parents or guardian. Study exclusion criteria consisted of pregnant women, breastfeeding 

mothers and presence or perceived presence of any clinically significant disease. Information 

about human subjects from the large Orang Asli and Kuala Lumpur cohort which provided 

metagenomes for our analyses is described in.37
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Germfree mice—Germfree (GF) C57BL/6J were bred and maintained in flexible-film 

isolators at the New York University Grossman School of Medicine Gnotobiotics Animal 

Facility. Absence of fecal bacteria was confirmed monthly by evaluating the presence 

of 16S DNA in stool samples by qPCR as previously described.79 For inoculation with 

spore-forming stool fractions, bacteria and/or Trichuris muris eggs, GF mice were housed in 

Bioexclusion cages (Tecniplast) with access to sterile food and water. An equal amount of 

male and female mice 6–8 weeks of age were used for all experiments. All animal studies 

were performed according to protocols approved by the NYU Grossman School of Medicine 

Institutional Animal Care and Use Committee (protocol # IA16-00087).

Bacterial strains—In addition to the OA isolates from this study, Phocaeicola (previously 

Bacteroides) vulgatus was isolated by our lab previously,62 Bacteroides thetaiotaomicron 
VPI-5482 was kindly provided by E. Martens (University of Michigan Medical School), 

Pseudomonas aeruginosa was kindly provided by A. Darwin (NYU Grossman School of 

Medicine)63 and Escherichia coli strain BW25113 is from the National BioResource Project 

at the National Institute of Genetics, Japan.64 All bacteria except P. aeruginosa and E. coli 
were cultured under anaerobic conditions in an anaerobic chamber (Coy Labs). Frozen 

glycerol stocks (30% glycerol) of all bacteria were prepared. Glycerol stocks of the OA 

isolates and Bacteroides species were streaked onto BRU plates (Anaerobe Systems) and 

incubated anaerobically for 48 hours at 37°C. PYG broth (Anaerobe Systems) inoculated 

with single colonies was grown at 37°C. OA1, 2, 4, 5, 6, 8, 11, 12, 13, and 14 were grown 

for 24 hours. OA3, 7, 9, and 10 required 3 days to reach similar turbidity. P. aeruginosa 
and E. coli glycerol stocks were streaked onto TSA or LB agar respectively and incubated 

aerobically for 24 hours at 37°C, after which single colonies were spiked into TSA or LB 

broth and grown overnight at 37°C with shaking at 225 rpm. To quantify colony forming 

units, we performed serial dilutions of liquid culture in sterile PBS and plated on BRU agar 

for the OA isolates, BBE agar (BD) for Bacteroides species, TSA agar for P. aeruginosa and 

LB agar for E. coli.

Parasite maintenance—Stock eggs of Trichuris muris E strain14 were propagated and 

maintained as previously described.80 Each egg batch was confirmed to hatch at ≥80% in 
vitro using the method described in Venzon et al.26 before use in subsequent experiments.

Stock eggs of Trichuris trichiura were provided by the Trichuris trichiura egg Production 

Unit (TTPU) located at the Clinical Immunology Laboratory at the George Washington 

University. Whipworm eggs were isolated from the feces of a chronically infected human 

volunteer following a qualified standard procedure that includes a modified Simulated 

Gastric Fluid (SGF) method. After isolation, the eggs were stored for two months in 

flasks containing sulfuric acid (H2SO4) maintained at 25–30°C in a monitored incubator. 

Once embryonation was achieved, the eggs were transferred to a locked and monitored 

refrigerator at 2–8°C until further use. Controls for the manufacturing process involved: (i) 

tests for viability (hatching), which confirmed that more than 80% of the eggs were viable; 

(ii) species confirmation by polymerase chain reaction (PCR); and (iii) evaluation of the 

microbiological burden determined by bioburden testing by an outside-certified laboratory.
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METHOD DETAILS

Sample collection from Orang Asli—A total number of 19 fecal samples were 

collected from 19 individuals (9 female, 10 male, ages 5–51) (Table S1). Participants were 

given screw-capped containers labeled with names. Containers with participants’ samples 

were collected the following day, immediately frozen on dry ice, and transported on dry ice 

to the Department of Parasitology, Faculty of Medicine, Universiti Malaya. Fecal samples 

were then separated into three portions: (i) preserved in 2.5% potassium dichromate and 

stored at 4°C for intestinal helminth infection screening, (ii) aliquoted into anaerobic glass 

hungate tubes for isolation of bacteria, and (iii) aliquoted in 1.5mL cryovial tubes for 

long-term storage of samples. Aliquots (ii) and (iii) were transported on dry ice to NYU 

Grossman School of Medicine while aliquot (i) was kept at the University of Malaya to 

quantify helminth burden using Kato-Katz and formalin ether as described in14

Sample collection and processing for the large Orang Asli and Kuala Lumpur cohort which 

provided metagenomes for our analyses is described in.37 In brief, fecal samples were 

collected from Orang Asli villagers right before administration of albendazole (ABZ) at 

400mg/day for 3 consecutive days and follow-up samples were collected after 21 days. 

Individuals in urban Kuala Lumpur were not given ABZ and samples were only collected at 

one timepoint.

Isolation and identification of OA isolates from human stool—Spores were 

enriched from stool using a previously published protocol.23 The following procedure was 

applied to specimens from the Orang Asli individuals with highest Trichuris burdens (Table 

S1 and Figure S1A). However, isolates from samples #88 and #135 were discarded due 

to contamination during the procedure and we proceeded with isolating bacteria from the 

remaining two samples (#20110 and #762) with Kato Katz intensities of 4,375 and 420 eggs.

Fecal samples frozen in hungate tubes were moved into an anaerobic chamber (Coy Labs). 

~50mg of the sample was suspended in 10 times volume (w/v) of sterile pre-reduced PBS 

and passed through a 70 mm cell strainer. Suspensions were mixed with chloroform at a 

final concentration of 3%, shaken vigorously for 30 seconds, then incubated at 37°C for 1 

hour. Chloroform was then removed through evaporation by bubbling with N2 gas for 30 

min. Suspensions from each donor were inoculated into 4–5 germ-free C57BL/6J mice by 

intra-gastric gavage (250ul per mouse). Stools on day 7 post-inoculation were collected and 

suspended in sterile PBS, homogenized in a bead beater in safe-lock tubes with 1.0 mm 

silica beads, streaked onto BRU agar in an anaerobic chamber, and incubated for 2–4 days 

at 37°C. 75 colonies were selected, with the aim of picking as many different morphologies 

as possible, spiked into PYG broth, incubated for 1–3 days at 37°C, and used to prepare 

sterile glycerol stocks. The inoculation loop used to pick each isolate was dipped into PCR 

grade water to perform a 16S colony PCR on each isolate using primers 16S-Fwd and 

16S-Rev65 to remove duplicates from the pool. After identifying 14 isolates with unique 

16S sequences and/or morphologies, we extracted DNA from liquid cultures of these isolates 

using phenol-chloroform, then subcloned and sequenced the full 16S gene using the primers 

16S-Fwd and 16S-Rev and the TOPO™ TA Cloning™ Kit with pCR™2.1-TOPO™ plasmid 
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(ThermoFisher). Sequences were aligned to the EzBioCloud 16S rRNA database66 for initial 

taxonomic identification.

Whole-genome sequencing and genome assembly—DNA was isolated from liquid 

culture of all isolates and lysed overnight in Buffer B1 (QIAGEN) containing 200ug/mL 

RNase A (ThermoScientific), 1250U/ul lysozyme (Epicentre) and 100ul Proteinase K 

(QIAGEN), at 37°C. High molecular weight DNA was isolated using the Genomic-tip 

100/G kit (QIAGEN) and run on the Agilent 2200 TapeStation system with Genomic 

ScreenTape (cat# 5067-5365) to verify large fragment DNA. Once verified, 1.5ug of DNA 

was sheared using the Covaris G-TUBE (cat# 520079) and spun for 2min in each direction 

at 5.4rpm in the Eppendorf 5415 D centrifuge to shear the DNA to an average size of 

13,000bp length. Each sheared sample was barcoded with the PacBio Barcoded Overhang 

Adapter Kit 8A (cat# 101-628-400) during library prep using the PacBio SMRTbell Express 

Template Prep Kit 2.0 (cat# 100-938-900). After barcoding, each sample was verified on the 

Invitrogen Qubit system with the dsDNA HS kit (cat# Q32854) for concentration and on the 

Agilent 2200 TapeStation system for size. Samples were combined to an equal concentration 

using the PacBio Express microbial multiplexing calculator to give an estimated size of 

about 30mb total. The PacBio Sequencing Primer v4 was conditioned and annealed to the 

pooled sample based on the Diffusion loading instructions found on the PacBio SMRT 

Link software version 8.0.0805529. Following primer binding, the diluted PacBio Sequel 

Polymerase 3.0 (cat# 100-500-400) was bound to the sample. After binding, the sample 

was cleaned with PacBio Ampure Beads (cat# 100-265-900) and eluted in PacBio Elution 

Buffer (cat# 101633–500), and the final concentration of the pool was verified on the 

Invitrogen Qubit system as before. The pool was combined with final loading reagents (part 

of the Express kit) and run on CLR mode (continuous long reads) on the PacBio Sequel 

using a 20hr run time with the SMRT Cell 1M v3 LR tray (cat# 101–531-001) and the 

Sequel Sequencing Kit 3.0 reagent plate (cat# 101-597-900). Following the sequencing, all 

genomes were assembled through SMRT Link software except OA2. The OA2 genome was 

assembled using Flye 2.8.1 in pacbio-raw mode with asm-coverage 150, sub-sampling the 

reads for the initial assembly to a coverage of 150x.67

Species identification, phylogenetic analysis, orthogroup and KEGG UMAP 
plots, and pangenome plots—To obtain a phylogenetic context for the OA isolates, a 

total of 190,173 genome assemblies that had been assigned to the phylum Firmicutes (NCBI 

taxonomy ID: 1239) were downloaded from NCBI GenBank (https://www.ncbi.nlm.nih.gov/

genbank/) on November 24, 2021. Of those, only 1,009 were retained after comparing 

them to all assemblies of the OA isolates with fastANI v.1.3268 and filtering for estimated 

average nucleotide identity (ANI) values R0.95. The workflow classify_wf from GTDB-Tk 

v.1.5.029 was applied to 1,023 retained GenBank and OA assemblies to obtain a taxonomic 

classification, using default parameters. We adopted GTDB-Tk taxonomic designations. 

Using fasttree v.1.11.2,69 a phylogenetic tree was calculated with the alignment of 

concatenated marker genes that was produced by GTDB-Tk from all 1,023 assemblies, 

using default parameters. Phylogenies were plotted with iToL.70
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The 1,023 assemblies (above) were annotated with dfast v.1.2.1371 and grouped by 

GTDB-Tk species designation. Orthofinder v.2.5.472 was used with default parameters 

for computing orthogroups (also called clusters of orthologous genes) for each individual 

species group and for all 14 OA assemblies as a group. The phylogenetic tree in Figure 1B 

was produced by orthofinder using the group of OA assemblies only as an input. However, 

the largest group of 623 assemblies classified as Clostridium_P perfringens could not be 

processed with orthofinder due to its size. For this reason, a subset of 221 assemblies 

was chosen from the 623 such that the ANI between the assemblies in the subset was 

maximized. KEGG orthologs were mapped to the predicted proteomes of each assembly 

(dfast, above) using KofamScan v.1.3.0 and HMM profiles downloaded from KEGG on June 

24, 2021.73,74 The resulting sets of KEGG ortholog identifiers were mapped and annotated 

with all KEGG BRITE hierarchies released on March 30, 2020.

The R programming language v.4.1.175 was used for plotting, using ggplot2 v.3.3.578. 

UMAP dimensionality reduction was carried out using UMAP v.0.2.7 within R (https://

github.com/tkonopka/umap). For the orthogroup plots of each species, the input to UMAP 

was a binary matrix indicating presence or absence of an orthogroup in each strain. For the 

plot of KEGG metabolic genes in Clostridium_P perfringens, the numbers of the KEGG 

orthologs in the KEGG BRITE hierarchy 09100 Metabolism were tabulated according to the 

categories of the most specific level of this hierarchy, D, and a matrix indicating the numbers 

of genes in each category and strain was input to UMAP.

On the Clostridium_P Perfringens UMAP plot of metabolic KEGG genes, OA14 appeared 

to form a cluster with 28 other assemblies (Figure S1D and Table S2), henceforth called 

“OA14 cluster”. To learn more about what metabolic functions could set the OA14 cluster 

apart from the rest of the assemblies, we tabulated the occurrence of KEGG orthologs 

and of terms from the KEGG BRITE hierarchy 09100 Metabolism at level per D in each 

Clostridium_P perfringens assembly. We then used the Wilcoxon rank sum test to quantify 

the statistical significance of differences in the prevalence of KEGG orthologs or of BRITE 

terms between the OA14 cluster and the rest of the assemblies.81 The Bonferroni method 

was used to correct p-values for multiple testing.82

To produce pangenome plots for each species, the numbers of orthogroups in the core 

and pan-genome were successively computed for up to 100 size-k subsets of the available 

assemblies. Specifically, we started with k = 2 and successively increased k until it reached 

the number of available assemblies for a species, n. For each k, the number of size-k 
combinations of n genomes, nCk was computed. If nCk % 100, all possible combinations of 

the assemblies were considered when computing core and pangenome sizes. If nCk > 100, 

long computation times and combinatorial explosion were prevented by only considering 

100 size-k random samples of the assemblies that were drawn without replacement. Using 

linear regression, two Heap’s law curves N = βkα were fit for each species: one for the 

median core genome sizes and one for the median pangenome sizes. Only 50% highest 

values of k were used for fitting Heap’s law curves.83

Metagenome classification using Krakenuniq—Malaysian metagenomes were 

obtained from NCBI BioProject: PRJNA79799437 and metagenomes from the Human 
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Microbiome Project (HMP) were obtained from https://www.hmpdacc.org/hmp/.39,40 The 

file type used in the HMP data portal was wgs_raw_seq_set and we only used fecal samples 

from healthy human subjects. Quality control, trimming and human host genome removal 

were performed by KneadData v.0.7.4 with default settings. In KneadData, sequence 

reads were mapped against human reference genome (hg37) using Bowtie2 with default 

parameters (very-sensitive end-to-end alignment) to remove the human host genome.77,84 

Human host genome removal was not performed on HMP metagenomes because the human 

reference genome had already been filtered in the HMP data. Next, FastQC was used to 

verify quality control.78 Krakenuniq was used for taxonomic classification.38 The filtered 

reads from the Malaysia dataset and HMP were mapped against the OA isolate genomes. 

Whole genomes from the 47 closest relatives of the OA isolates were used to ensure 

that mapping reflected matches to sequences found exclusively in our isolates (Table S4). 

In Figure S1H, classifications with lower than 50 k-mer counts were removed due to 

low confidence. To determine the abundance of Peptostreptococcaceae family members, 

filtered reads from metagenomes were mapped against all 113 complete genomes within the 

Peptostreptococcaceae family available on NCBI as of July 2022 (Table S4). The plots in 

Figures S2L and S2M represent mapping percentages at the family level.

Albendazole assay—Albendazole (ABZ) (Sigma) was dissolved in DMSO to make 

2.5mM and 500mM stocks that were diluted with sterile PYG to a final concentration of 

10uM and 200uM. Concentrations used in in vitro experiments were chosen based on max 

solubility in DMSO and max amount of DMSO added to culture (0.5%). Single colonies of 

bacteria were spiked into 5mL PYG containing 10um ABZ, 200uM ABZ or 0.5% DMSO as 

a vehicle control, in duplicates in sterile polypropylene tubes. After incubation for 24 hours 

at 37°C in anaerobic conditions, serial dilutions of the bacterial culture in sterile PBS were 

plated on BRU agar for OA isolates and BBE agar for Bacteroides species and incubated for 

48 hours to count colonies and calculate CFUs/mL of culture.

T. muris egg hatching assay—25ul embryonated T. muris eggs at a concentration of 

1 egg/1ul in sterile water were mixed with 15ul sterile PYG media and 10ul overnight 

bacterial culture in triplicates in a 48 well plate. PYG-control wells contained an additional 

10ul sterile PYG media instead of bacterial culture. Plates were incubated at 37°C in an 

anaerobic chamber and hatched eggs were quantified every hour over the course of three 

hours on the Zeiss Primovert microscope, by counting hatched and embryonated unhatched 

eggs in each well. Unembryonated eggs, which lack visible larvae and have disordered 

contents, were excluded due to their inability to hatch. A separate 48-well plate was used per 

timepoint as the plate needed to be removed from the anaerobic chamber to count colonies at 

each timepoint.

T. muris in vivo infection in germ-free mice—Male and female germ-free C57BL/6J 

mice were monocolonized at 6–8 weeks of age by oral gavage with ~1 × 107 colony forming 

units (CFU) of indicated bacteria. 7 and 28 days later, mice were infected by oral gavage 

with ~100 embryonated T. muris eggs. 14 days after the second gavage of T. muris eggs, 

mice were euthanized, and individual worms were collected from the cecal contents of all 

infected mice and washed in RPMI 1640 (Gibco) supplemented with penicillin (100IU/mL) 
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and streptomycin (100ug/mL; Corning). To evaluate egg laying, each worm was placed 

into individual wells of a 48 well plate with 200mL supplemented RPMI. Plates were then 

incubated overnight at 37°C in a closed tupperware (Sistema) lined with damp paper towels. 

The following day, eggs laid were enumerated using a Zeiss Primovert light microscope at 

10X.

T. trichiura egg hatching assay—50ul embryonated T. muris eggs at a concentration 

of 1 egg/1ul in sterile water were mixed with 240ul sterile PYG media and 10ul overnight 

bacterial culture in triplicates in a 96-well plate. PYG-control wells contained an additional 

10ul sterile PYG media instead of bacterial culture. Plates were sealed with parafilm 

to prevent evaporation and incubated at 37°C in an anaerobic chamber for 6 days. 

Hatched eggs were quantified on the Zeiss Primovert microscope, by counting hatched 

and embryonated unhatched eggs in each well, as well as larvae. Unembryonated eggs, 

which lack visible larvae and have disordered contents, were excluded due to their inability 

to hatch. For conditions in which bacterial overgrowth prohibited clearly seeing eggs and 

larvae, supernatant from the wells were transferred to a different well and the remaining 

contents resuspended in 300ul PBS. If needed for better visibility. this was repeated a second 

time. Confocal images were acquired by transferring the contents of one well containing 

eggs and larvae to a glass-bottom dish (MatTek) and imaging on the Nikon Eclipse Ti2-E 

inverted microscope at 60X oil. Images were processed using NIS-Elements (Nikon).

Bacterial competition assay—Single colonies of P. vulgatus or B. thetaiotaomicron 
were inoculated into duplicates of 7ul PYG media along with single colonies of OA isolates. 

Cultures were grown for 24 hours at 37°C under anaerobic conditions after which serial 

dilutions of the bacterial culture in sterile PBS were plated on BRU agar for Clostridia 

and BBE agar for Bacteroides and incubated for 48 hours to count colonies and calculate 

CFUs/mL of culture.

QUANTIFICATION AND STATISTICAL ANALYSIS

For in vitro experiments, the number of repeats per group is annotated in corresponding 

figure legends. Significance for all experiments was assessed using GraphPad Prism 

software (GraphPad). Specific tests are annotated in corresponding figure legends. p values 

correlate with symbols: ns or no symbol = not significant, *p < 0.05, **p < 0.01, ***p < 

0.001, ****p < 0.0001.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Isolation of Clostridia from the gut microbiome of helminth-colonized human

• Peptostreptococcaceae family of Clostridia are associated with helminths in 

humans

• Peptostreptococcaceae induce Trichuris muris and Trichuris trichiura egg 

hatching
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Figure 1. Isolation and identification of spore-forming Firmicutes from helminth-colonized 
individuals
(A) Representative images of OA isolates 48 h after streaking on brucella blood agar.

(B) Taxonomic identities and genomic features of OA isolates based on full genome 

sequences. “Closest species” refers to the species with the highest average nucleotide 

identity (ANI). Red: denotes new species with no matches ≥95% ANI. The phylogenetic 

tree to the left of the table depicts the relationships between OA isolates.

(C) Phylogeny of OA isolates and all Firmicutes assemblies from NCBI GenBank with an 

ANI ≥95% to at least one OA isolate.
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(D and E) UMAP plots of all gene clusters from Clostridium_AQ innocuum (D) and 

Clostridium perfringens (E) according to orthogroup presence or absence. OA isolates 

corresponding to each species are highlighted in red.

(F) UMAP plot of KEGG orthologs involved in metabolism for OA14 (in red) and all related 

C. perfringens with an ANI ≥95%.

(G) Number of orthogroups in the core genome (red) and pangenome (teal) of C. perfringens 
as a function of number of genomes analyzed. Each dot represents the core or pangenome 

size N at a given number of genomes k, which was computed with up to 100 different 

combinations of genomes. Heap’s law (black lines) was fit to the median core genome (N = 
607,029 k−0.31) and pan-genome (N = 429,650 k0.06) sizes.
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Figure 2. OA genomes are enriched in Malaysian microbiomes
(A) Mapping percentage of Malaysian and HMP metagenomes to genomes of the 14 OA 

isolates.

(B) Mapping percentage of Malaysian and HMP metagenomes to genomes of the 14 OA 

isolates and their 47 closest relatives (see Table S4).

(C) Mapping percentage of Malaysian and HMP metagenomes to individual OA isolate 

genomes. OA5, OA11, and OA13 were not detected by krakenuniq due to low 

representation.

(A–C) Each dot represents one metagenome from one individual. Whiskers represent 

minimum (Min) and maximum (Max). Mapping percentage denotes the percentage of 

k-mers from each metagenome that specifically map to one of the genomes in the group 

being measured. Mann-Whitney test in (A) and (B), ****p < 0.0001. Kruskal-Wallis with 

Dunn’s multiple comparisons test in (C). **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Figure 3. Identification of OA isolates associated with helminth colonization
(A–H) Mapping percentages of pre-albendazole (ABZ), post-ABZ, and urban control Kuala 

Lumpur (KL) metagenomes to indicated OA isolate genomes. Each dot represents one 

metagenome from one individual. Whiskers represent Min and Max.

(I–M) Pairwise analysis of the mapping percentage of metagenomes derived from matched 

pre- and post-ABZ longitudinal sampling to indicated OA isolate genomes.
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Each line represents paired metagenomes from one individual. Kruskal-Wallis with Dunn’s 

multiple comparisons test was used in (A)–(H). Paired t test was used in (I)–(M). *p < 0.05, 

**p < 0.01, ***p < 0.001, ****p < 0.0001.
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Figure 4. Helminth-associated Clostridia promote the Trichuris life cycle
(A) Representative light microscopy image of a T. muris larva and hatched and unhatched 

eggs.

(B) Time course of T. muris egg hatching in the presence of indicated bacteria. Data are 

combined from 11 independent experiments, with each condition tested in at least 3 separate 

experiments, and plotted as mean ± SEM.

(C–E) Percentage of hatched T. muris eggs after 1 (C), 2 (D), and 3 h (E) of incubation with 

indicated bacteria corresponding to the time series graph in (B) to allow visualization of all 
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bacterial strains at each time point. Experiments were performed in at least 3 independent 

repeats for each strain, and each dot represents one well of eggs. Bars indicate mean ± SEM.

(F) Representative confocal images of a T. trichiura larva and hatched and unhatched eggs. 

Scale bar represents 25μm.

(G) Percentage of hatched T. trichiura eggs after 6 days of incubation with indicated 

bacteria. Experiments were performed in at least 3 independent repeats for each strain, 

and each dot represents one well of eggs. Bars indicate mean ± SEM.

(H) Adult T. muris worms harvested from mice monocolonized with E. coli or OA8 (P. 
sordellii). Each dot represents one mouse, and bars indicate mean ± SEM.

(I) Number of eggs laid with normal morphology per worms harvested from mice 

monocolonized with E. coli or OA8 (P. sordellii). Each dot represents eggs laid by one 

individual worm, and bars indicate mean ± SEM.

PYG, Peptone Yeast Glucose media; Pa, Pseudomonas aeruginosa; Pv, Phocaeicola 
vulgatus; Bt, Bacteroides thetaiotaomicron. Welch’s t test was used to compare between area 

under curve of each condition for (B). Kruskal-Wallis with Dunn’s multiple comparisons 

test was used to compare between each OA isolate and PYG in (C)–(E) and (G). *p < 0.05, 

**p < 0.01, ***p < 0.001, ****p < 0.0001. Mann-Whitney test in (H) and (I). ****p < 

0.0001.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

OA isolates OA1-OA14 This study N/A

Phocaeicola (previously Bacteroides) vulgatus Ramanan et al.62 N/A

Bacteroides thetaiotaomicron VPI-5482 ATCC Cat# 29148

Pseudomonas aeruginosa strain PAO1 Srivastava et al.63 N/A

Escherichia coli strain BW25113 Baba et al.64 N/A

Biological samples

Fecal samples from Orang Asli villagers from Kuala 
Pangsun village

This paper N/A

Chemicals, peptides, and recombinant proteins

Chloroform Fisher Scientific Cat# C298-500

Peptone Yeast Broth with Glucose - PYG Anaerobe Systems Cat# AS-822

Brucella Blood Agar - BRU Anaerobe Systems Cat# AS-141

BD BBL Prepared Plated Media: Bacteroides Bile 
Esculin Agar - BBE

Fisher Scientific Cat# L21836

Tryptic Soy Broth - TSB NYU Reagent Preparation N/A

Tryptic Soy Agar - TSA NYU Reagent Preparation N/A

Luria Bertani (LB) Broth NYU Reagent Preparation N/A

Luria Bertani (LB) Agar NYU Reagent Preparation N/A

Genomic DNA Buffer Set QIAGEN Cat# 19060

Proteinase K QIAGEN Cat# 19131

Ready-Lyse Lysozyme Solution Epicentre/Lucigen Cat# R1810M

RNase A, DNase and protease free Thermo Scientific Cat# EN0531

AMPure Beads Pacific Biosciences Cat# 100-265-900

Elution Buffer Pacific Biosciences Cat# 101-633-500

Albendazole Sigma-Aldrich Cat# A4673

RPMI 1640 Medium with GlutaMAX Gibco Cat# 61870036

Penicillin Streptomycin Solution, 100X Corning Cat# 30-002-CI

Critical commercial assays

TOPO TA Cloning Kit, with pCR2.1-TOPO, One Shot 
TOP10 Chemically Competent E. coli, and PureLink 
Quick Plasmid Miniprep Kit

ThermoFisher Scientific Cat# K450002

QIAGEN Genomic-tip 100/G QIAGEN Cat# 10243

Qubit™ dsDNA HS and BR Assay Kits Invitrogen Cat# Q32851

Barcoded Overhang Adapter Kit 8A Pacific Biosciences Cat# 101-628-400

SMRTbell Express Template Prep Kit 2.0 Pacific Biosciences Cat# 101-938-900

Sequel DNA Polymerase Binding Kit 3.0 Pacific Biosciences Cat# 100-500-400

SMRT Cell 1M v3 LR Tray Pacific Biosciences Cat# 101-531-001
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REAGENT or RESOURCE SOURCE IDENTIFIER

Sequel Sequencing Kit 3.0 Pacific Biosciences Cat# 101-597-900

Deposited data

OA isolate genomes This paper NCBI BioProject: PRJNA800461

Experimental models: Organisms/strains

Germfree C57BL/6J mice NYU gnotobiotic facility N/A

Trichuris muris E strain Ramanan et al.14 N/A

Trichuris trichiura eggs The Trichuris trichiura 
egg Production Unit at 
the Clinical Immunology 
Laboratory at George 
Washington University

N/A

Oligonucleotides

16S-Fwd: CCGATATCTCTAGAAG
AGTTTGATCCTGGCTCAG

Brugiroux et al.65 N/A

16S-Rev: CCGATATCGGATCCACGGTTAC
CTTGTTACGACTT

Brugiroux et al.65 N/A

Software and algorithms

EZBioCloud Yoon et al.66 https://www.ezbiocloud.net/

SMRT Link Pacific Biosciences https://www.pacb.com/support/software-downloads/

Flye v.2.8.1 Kolmogorov et al.67 https://github.com/fenderglass/Flye

fastANI v.1.32 Jain et al.68 https://github.com/ParBLiSS/FastANI

GTDB-Tk v.1.5.0 Chaumeil et al.29 https://github.com/Ecogenomics/GTDBTk

fasttree v.1.11.2 Price et al.69 http://microbesonline.org/fasttree

iTOL v5 Letunic and Bork,70 https://itol.embl.de

dfast v.1.2.13 Tanizawa et al.71 https://dfast.nig.ac.jp/

OrthoFinder v.2.5.4 Emms and Kelly,72 https://github.com/davidemms/OrthoFinder

KofamScan v.1.3.0 Aramaki et al.,73 https://www.genome.jp/tools/kofamkoala/

UMAP v.0.2.7.0 McInnes et al.34 https://arxiv.org/abs/1802.03426 and https://
github.com/tkonopka/umap

KEGG Kanehisa and Goto,74 https://www.genome.jp/kegg/

R programming language v.4.1.1 R Core Team,75 https://www.r-project.org/

ggplot2 v.3.3.5 Wickham,76 https://ggplot2.tidyverse.org

KneadData v.0.7.4 Huttenhower lab http://huttenhower.sph.harvard.edu/kneaddata

Bowtie2 Langmead and Salzberg,77 http://bowtie-bio.sourceforge.net/bowtie2/
index.shtml

FastQC Andrews,78 https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/

KrakenUniq Breitwieser et al.38 https://github.com/fbreitwieser/krakenuniq

NIS-Elements Nikom https://www.microscope.healthcare.nikon.com/
products/software

GraphPad Prism GraphPad Software http://www.graphpad.com/scientific-software/prism/
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REAGENT or RESOURCE SOURCE IDENTIFIER

Other

Malaysian metagenomes Tee et al.37 NCBI BioProject: PRJNA797994

HMP metagenomes Human Microbiome
Project Consortium,39,40

https://www.hmpdacc.org/hmp/
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