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Abstract
There is growing evidence that urbanization drives adaptive evolution in response to 
thermal gradients. One such example is documented in the water flea Daphnia magna. 
However, organisms residing in urban lentic ecosystems are increasingly exposed to 
chemical pollutants such as pesticides through run-off and aerial transportation. The 
extent to which urbanization drives the evolution of pesticide resistance in aquatic 
organisms and whether this is impacted by warming and thermal adaptation remains 
limitedly studied. We performed a common garden rearing experiment using multiple 
clonal lineages originating from five replicated urban and rural D. magna populations, 
in which we implemented an acute toxicity test exposing neonates (<24h) to either 
a solvent control or the organophosphate pesticide chlorpyrifos. Pesticide expo-
sures were performed at two temperatures (20°C vs. 24°C) to test for temperature-
associated differences in urbanization-driven evolved pesticide resistance. We 
identified a strong overall effect of pesticide exposure on Daphnia survival probability 
(−72.8 percentage points). However, urban Daphnia genotypes showed higher survival 
probabilities compared to rural ones in the presence of chlorpyrifos (+29.7 percentage 
points). Our experiment did not reveal strong temperature x pesticide or temperature 
x pesticide x urbanization background effects on survival probability. The here ob-
served evolution of resistance to an organophosphate pesticide is a first indication 
Daphnia likely also adapts to pesticide pollution in urban areas. Increased pesticide 
resistance could facilitate their population persistence in urban ponds, and feed back 
to ecosystem functions, such as top-down control of algae. In addition, adaptive evo-
lution of nontarget organisms to pest control strategies and occupational pesticide 
use may modulate how pesticide applications affect genetic and species diversity in 
urban areas.
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1  |  INTRODUC TION

Humans ubiquitously impact natural ecosystems in various ways 
(Hendry et al., 2017; Palumbi, 2001). Strong forms of human-driven 
land conversion and habitat and microclimate alterations are con-
certed in cities (Alberti et al., 2020; Grimm et al., 2008; Parris, 2016); 
urbanization modifies the physical, chemical, and biological charac-
teristics of natural habitats, structurally and functionally changes 
connectivity patterns among biological communities, induces dis-
turbances of which many are novel (e.g. chemical contaminants 
and noise), and finally alters biotic interactions as a consequence of 
changes in native species composition and the introduction of non-
native species. The impact of urbanization on species distributions 
and diversity, community assembly, and interspecific trait variation 
has been extensively monitored (Aronson et al., 2014, 2016; Dallimer 
et al., 2012; Merckx et al., 2018; Piano et al., 2017). In recent years, it 
has become clear that cities moreover drive contemporary evolution 
(Donihue & Lambert, 2015; Johnson & Munshi-South, 2017). A large 
number of observations of urban evolution focuses on neutral evo-
lution stemming from the impact of habitat fragmentation, among-
city connectivity hubs, and population size changes on gene flow 
and genetic drift (Miles et al., 2019; Munshi-South & Richardson, 
2020). In addition, evidence on adaptive evolution in response to 
urban temperature gradients (e.g. acorn ants: Diamond et al., 2017; 
Martin et al., 2019; water fleas: Brans et al., 2018; Brans, Jansen, 
et al., 2017), fragmentation (e.g. holy hawksbeard: Cheptou et al., 
2017), and specific chemical pollution (e.g. polychlorinated biphe-
nyl resistance in tomcod: Wirgin et al., 2011; and killifish: Oziolor & 
Matson, 2018; Whitehead et al., 2012) is growing incessantly.

One example of urban adaptation is documented in the water 
flea Daphnia magna (Brans & De Meester, 2018; Brans, Engelen, 
et al., 2018; Brans, Govaert, et al., 2017; Brans, Jansen, et al., 
2017). Daphnia magna, a large-bodied cladoceran, resides in lakes 
and ponds, and is an important interactor in the freshwater aquatic 
food web; Daphnia exerts top-down control on algae and can pre-
vent the occurrence of nuisance algal and bacterial blooms as a 
consequence of its size-related grazing efficiency (Chislock et al., 
2013; Gianuca et al., 2016). Compared to rural populations, urban 
populations of water fleas show an evolved higher heat tolerance 
(Brans, Jansen, et al., 2017), faster pace-of-life (Brans & De Meester, 
2018), altered stress physiology and a higher energy budget (Brans, 
Engelen, et al., 2018). Urban ponds in the study region (Flanders, 
Belgium) are significantly warmer compared to rural ponds (differ-
ences in summer mean and maximum temperature range between 
3°C–4°C; Brans, 2018), driving observed genetic increases in heat 
tolerance, haemoglobin concentrations, as well as body size re-
ductions (Brans, Jansen, et al., 2017). While evidence on thermal 
adaptation in urban water fleas is profound, to what extent they 
adapt to pollution in urban areas, and whether interactions be-
tween warming and pollution have effects on biotic evolutionary 
and ecological responses (Cuenca Cambronero et al., 2018; Moe 
et al., 2013; Noyes et al., 2009; Theys et al., 2020) is not known in 
this study system.

Residing in closed ecosystems such as ponds and pools, aquatic 
biota are exposed to a multitude of stressors, including chemical 
contaminants such as pesticides (Allinson et al., 2015; Meftaul et al., 
2020). In cities, pesticides enter freshwater ecosystems via run-off 
and aerial transportation (Allinson et al., 2015; Meftaul et al., 2020; 
Wittmer et al., 2010), after application in public places, such as parks 
and schools, or for occupational purposes (e.g. domestic indoor use, 
private gardens) (Meftaul et al., 2020; Pang et al., 2002). After prohi-
bition of organochlorines (e.g. DTT) in the 1970s, pyrethroids and or-
ganophosphate pesticides (e.g. chlorpyrifos, glyphosate, malathion, 
diazinon and carbaryl) were extensively and commonly used to 
suppress nuisance pests (insects, fungi) and unwanted weeds in mu-
nicipal, business and domestic environments (Heudorf et al., 2004; 
Julien et al., 2008; McKelvey et al., 2013; Vijftigschildt et al., 2005; 
Wittmer et al., 2010). Such pesticide exposures in combination with 
warming (as a consequence of urban heat islands) in cities could syn-
ergistically alter evolutionary and ecological responses in Daphnia. 
For example, warming and heat stress could increase the toxicity of 
a pesticide, directly or via the increased uptake of the toxicant as a 
consequence of altered metabolic processes and, vice versa, toxi-
cant exposure could limit acclimation or adaptation to warming and 
heat stress (Holmstrup et al., 2010; Hooper et al., 2013; Moe et al., 
2013; Noyes et al., 2009; van den Brink et al., 2018).

Daphnia is a well-established ecotoxicological model system in 
ecological risk assessment of pesticides by means of standardized 
acute and chronic toxicity testing (Brock & Van Wijngaarden, 2012; 
Huang et al., 2020; Palma et al., 2008). Organophosphate pesticides 
impact Daphnia survival, embryological development, fertility, en-
docrine function, life history changes, and stress physiological pa-
rameters such as enzymatic defence and energy budget (Ferrario 
et al., 2018; Jeon et al., 2013; Palma et al., 2009; Pérez et al., 2015; 
Silva et al., 2018; Song et al., 2017; Wang et al., 2009; Zalizniak & 
Nugegoda, 2006). Impacts tested in more realistic settings often 
focus on the assessment of relative sensitivities of multiple organ-
ism groups (Cuppen et al., 2002; Echeverri-Jaramillo et al., 2020; 
Gaizick et al., 2001; Pérez et al., 2015), the impact of individual 
interacting environmental variables on model organisms (e.g. food 
concentration, shelter availability; Augusiak & van den Brink, 2016), 
the toxicity of pesticide mixtures, drainage ditch water or rain water 
samples on nontarget species (Cáceres et al., 2007; Hasenbein et al., 
2017; Sakai, 2002; Wood & Stark, 2002) or ecosystem level interac-
tions in standardized indoor or outdoor mesocosms (Kersting & van 
Wijngaarden, 1992; Knillmann et al., 2012; López-Mancisidor et al., 
2008; van den Brink et al., 1995; Zafar et al., 2011). While such ex-
periments are crucial to improve ecological risk assessment of pes-
ticides and the mechanistic understanding of their specific modes 
of action and detrimental effects, they often overlook the possibil-
ity that populations can evolve resistance to applied toxicants (e.g. 
using ‘naïve’ pooled populations and communities of zooplankton, 
Rumschlag et al., 2020). Evolved pesticide resistance in natural pop-
ulations of Daphnia in response to agricultural pesticide application 
was shown both across spatial gradients (organophosphates: Bendis 
& Relyea, 2014; carbamates: Coors et al., 2009; Jansen et al., 2015) 
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as well as in response to historical contamination (resurrection ecol-
ogy, organophosphates: Simpson et al., 2017). Such adaptive evolu-
tionary responses can have ecosystem-wide buffering effects (e.g. 
shown in D. pulex: Bendis & Relyea, 2016a, 2016b) and could poten-
tially occur in cities, both in response to pesticide pollution, warm-
ing, and a combination of both.

Studies on evolved pesticide resistance in urban areas are so 
far focused on disease vectors and pests (Zhu et al., 2016) such as 
malaria and dengue transmitting mosquitos (Kamdem et al., 2017; 
Li et al., 2018; Macoris et al., 2003; Pereira Lima et al., 2003), bed 
bugs (Romero & Anderson, 2016), and cockroaches (Wu & Appel, 
2017). Nevertheless, nontarget organisms, especially those residing 
in closed aquatic systems, such as ponds and pools, could also evolve 
pesticide resistance. For example, exposure to contaminated water 
way run-off leads to pyrethroid resistance in freshwater crustaceans 
(amphipods; Major et al., 2018). So far, only one specific example is 
available on the evolution of resistance to pesticides in nontarget 
species in a multi-stressor urban context (warming x pesticide expo-
sure) (Tüzün et al., 2015); using a common garden approach, urban 
and rural damselfly nymphs (Coenagrion puella) were exposed to sub-
lethal concentrations of chlorpyrifos at two different temperatures 
(20°C vs. 24°C—mimicking observed urban heat islands in the study 
region, Flanders, air: Wouters et al., 2017, water: Brans, Engelen, 
et al., 2018). Upon exposure to chlorpyrifos, urban genotypes in-
crease their activity and keep food intake constant at both 20°C and 
24°C, in contrast to rural genotypes, which show a reduction in both 
behavioural parameters at both temperatures. The development of 
such pesticide resistance in nontarget organisms across multiple tro-
phic levels could modulate genetic and species diversity, as well as 
ecosystem functions and services in urban areas (Bendis & Relyea, 
2016b; Des Roches et al., 2020).

This study primarily aims to explore whether urban D.  magna 
evolved resistance to pesticides and to what extent responses are 
magnified by warming (Knillmann et al., 2013; Moe et al., 2013; 
Theys et al., 2020) and/or shaped by thermal adaptation (Op de 
Beeck et al., 2017; Dinh Van et al., 2013). We performed a common 
garden rearing experiment using replicated urban and rural popula-
tions of Daphnia magna. We assessed survival after an acute expo-
sure (48h) to the model organophosphate pesticide chlorpyrifos, at 
two different temperatures, 20°C and 24°C (mimicking the urban 
heat island effect observed in ponds in the study region, Brans, 
Engelen, et al., 2018). Chlorpyrifos is a broad-spectrum organophos-
phate insecticide that inhibits acetylcholinesterase (Giddings et al., 
2014) and has been applied in urban areas worldwide (Heudorf et al., 
2004; McKelvey et al., 2013; Vijftigschildt et al., 2005). It is consid-
ered to be a priority pollutant in the European Water Framework as 
per Directive 2000/60/CE. Chlorpyrifos has been shown to induce 
signals of adaptive phenotypic trait change in urban damselflies in 
the same study region (Flanders, Belgium) and was not yet prohib-
ited during the time period of sampling populations of D. magna and 
Coenagrion puella (2013–2015; Speedy sampling, see also Merckx 
et al., 2018). We hypothesize that (1) urban genotypes will have a 
higher survival when exposed to chlorpyrifos as a consequence of 

evolved resistance to organophosphates, (2) survival in response to 
chlorpyrifos might be temperature-dependent due to a higher tox-
icity of chlorpyrifos at higher temperatures, and (3) temperature-
dependent resistance responses differ between urban and rural 
genotype sets as a consequence of thermal adaptation in urban 
populations.

2  |  MATERIAL AND METHODS

2.1  |  Study populations, experimental design and 
pre-experimental conditions

Daphnia magna populations originated from five urban and five rural 
populations (Table S1) located in Flanders (Belgium) and are a subset 
of the 13 populations used in Brans, Jansen, et al. (2017) for which 
clonal lineages have been established in the laboratory (2012–2013, 
Speedy sampling campaign (Brans, Govaert, et al., 2017; Brans, 
Jansen, et al., 2017; Merckx et al., 2018). Flanders is a densely popu-
lation region (ca. 371, amounting to 693 inhabitants/km2, IBZ, 2021). 
Urbanization levels were assessed based on the percentage built-up 
area (BA) in the regional surroundings of the pond (3200 m radius 
as in Brans & De Meester, 2018; Brans, Govaert, et al., 2017; Brans, 
Jansen, et al., 2017; Brans et al., 2018), based on the Large-scale 
Reference Database (LRD, 2013). Urban populations are character-
ized by >10% BA and nonurban (‘rural’) populations <5% (Table S1; 
range urban: 14.12%–40.44% BA; range rural: 0.63%–4.38%; see 
also Figure 1 in Brans & De Meester, 2018). Percentage BA does 
not include roads and parking lots, which results in ponds character-
ized by more than 10%–15% of BA or higher (in this case all urban 
ponds >14% BA) being already substantially urbanized (Brans & De 
Meester, 2018). Percentage BA has shown to be a reliable proxy of 
urbanization as it, in the specific study region, positively correlates 
with impervious substrate cover like roads and artificial construc-
tions such as viaducts bridges, and is negatively associated with the 
amount (area) of semi-natural habitat (Piano et al., 2020). In addi-
tion, rural nonurban locations had to meet the criterion of minimum 
20% biologically valuable area (based on the Biological Value Map 
Flanders that includes land cover and vegetation mapping according 
to a biological valuation based on ecological criteria such as biodi-
versity, rarity, vulnerability and replaceability of the biotope; Brans, 
Govaert, et al., 2017; Saeger et al., 2017) in their regional surround-
ings (3200 m radius) to prevent sampling populations in nonurban 
agricultural areas.

Individuals from the five clonal lines from each population 
(n = 50) were inoculated in 200-mL glass jars filled with dechlori-
nated tap water, reared under standardized laboratory conditions 
(20°C, 16:8 L:D photoperiod) and fed ad libitum with the unicellu-
lar green algae Acutodesmus obliquus (1  ×  105 cells/mL, coinciding 
with the Incipient Limiting Level of 1 mg C/L). 80% of the medium 
was refreshed every other day. After the first generation, lineages 
were split into eight independent culturing units, using parthenoge-
netic offspring of mother individuals, in order to generate replicated 
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lines that could later be exposed to the pesticide treatment (con-
trol/chlorpyrifos) and temperature treatment (20°C/24°C) in a full 
factorial crossing. Each clone × temperature × pesticide treatment 
combination was replicated twice. To obviate interference from 
(grand)maternal effects, these eight clonal replicates were cultured 
for a minimum of two consecutive generations before pesticide 
exposures took place. Newborn juveniles were eliminated to pre-
vent overcrowding. Second to fourth clutch juveniles were used to 
start up new generations or to start up the experimental exposure 
phase (see further). This overall design resulted in 2 urbanization 
classes (rural/urban) × 5 populations × 5 clones × 2 pesticide treat-
ments (control/pesticide) × 2 temperatures (20°C/24°C) × 2 repli-
cates = 400 experimental units. Due to the continuous infestation 
of one clone (u2.5) with a parasitic infection and consequently weak 
offspring production, and eventually mortality, it was completely 
excluded from the experiment (resulting in a total number of 392 
experimental units).

2.2  |  Pesticide exposure and survival

We exposed five juveniles (<24h old but older than 5h) per ex-
perimental unit according to OECD guidelines (2004) to either a 
control (solvent) or chlorpyrifos (CAS: 2921-88-2, purity >99%, 
Sigma-Aldrich; nominal concentration of 0.67  µg/L), at both 20°C 
and 24°C, using 100-mL glass recipients filled with 50  mL of the 
exposure medium (control medium/pesticide medium—no feeding, 
OECD, 2004). The pesticide exposure medium was prepared daily 
from a stock solution (1 mg/mL, Sigma-Aldrich Chlorpyrifos powder 
>99% purity dissolved in absolute ethanol (100%), stored in an dark 
brown glass bottle and kept at 4°C in dark conditions). The stock 
solution was diluted first with Mili-Q (step 1, intermediate stock) and 
secondly with dechlorinated tap water (step 2, exposure medium) 
to achieve the nominal concentration of 0.67 µg/L in the exposure 
medium. For the solvent control medium the same amount of abso-
lute ethanol (100%) was used in the first dilution step (instead of the 
pesticide). The nominal 0.67  µg/L chlorpyrifos concentration was 
set after an initial range finding pilot exposure with nominal chlor-
pyrifos concentrations ranging between 0.3 and 0.85 µg/L, using a 
pooled batch of animals (urban and rural mixed). The chosen concen-
tration lies between the range for which EC50 values of D. magna 
have been found (0.6 µg/L in Moore et al., 1998; 0.25 µg/L in Naddy 
et al., 2009; 0.74 µg/L in Palma et al., 2008; 0.49 µg/L in Raymundo 
et al., 2019) and within the observed range of concentrations found 
in European surface waters in the wider region (waters: 95% confi-
dence interval =  [0.07, 0.69 μg/L]) (Schulz, 2004; Stehle & Schulz, 
2015). Immobilization was assessed after 24 and 48h (OECD, 2004), 
with the criterion of minimally antennae movement to be clearly ob-
served. Upon counting immobilized animals, we noticed six instead 
of five juveniles to be present in four (out of 392) experimental units. 
Given we follow OECD acute toxicity assay guidelines, which require 
pesticide exposures to be performed in absence of food, we con-
firmed the potential impact (e.g. differences in energy acquisition) 

of this manual error to be minimal (see further). In addition, newborn 
juveniles (<24h old) perform limited to no grazing activity (Cowgill 
et al., 1984).

2.3  |  Statistical analyses

We use a Bayesian binomial generalized linear mixed model to es-
timate the effect of pesticide treatment (control/pesticide), urbani-
zation background (rural/urban) and temperature (20°C/24°C), as 
well as their interactions, on D. magna survival probability after 48h. 
More specifically, we assume that the number of surviving individu-
als yi of the i ’th replicate follows a binomial distribution:

where Ni is the replicate's initial number of individuals (5, or exception-
ally 6), and pi is the individual survival probability, modelled through the 
following logit link function:

where �0 is the intercept, CPFi indicates whether the individuals of the 
i ’th replicate were exposed to chlorpyrifos (0.5) or not (−0.5), URBi in-
dicates whether the individuals of the i ’th originated from a rural (−0.5) 
or urban (0.5) population,Ti indicates whether the individuals of the i ’th 
replicate were exposed to 20°C (−0.5) or 24°C (0.5), the �∙-parameters 
represent the corresponding main and interaction effects, and bpop(i) 
and bclone(i) are the population- and clone-level random effects corre-
sponding to the i ’th replicate. As the input variables CPF, URB and T are 
centred around zero, the intercept �0 represents the average condition.

Heterogeneity among populations with respect to sensitivity to 
chlorpyrifos exposure is modelled through a normally distributed 
population-level random effect bpop:

where �pop is the population-level standard deviation. Remaining het-
erogeneity among clones that is not explained by the population-level 
random effects is modelled by means of a clone-level random effect 
bclone. As a preliminary exploration revealed some presumably outly-
ing clone-specific responses, we model the clone-level random effects 
with a Student's t-distribution:

where � is the number of degrees of freedom, and �clone is the clone-
level scale parameter (which we call standard deviation below for 
simplicity). For low values of �, the Student's t-distribution has sub-
stantially fatter tails compared to the normal distribution, offering 
robustness against unusual observations. As � → ∞, the Student's 

yi ∼ Binomial
(

Ni , pi
)

,

log

(

pi

1−pi

)

=�0+CPFi ∙�CPF+URBi ∙�URB+Ti ∙�T

+CPFi ∙URBi ∙�CPF:URB+CPFi ∙Ti ∙�CPF:T +URBi ∙Ti ∙�URB:T

+CPFi ∙URBi ∙Ti ∙�CPF:URB:T +CPFi ∙bpop(i) +CPFi ∙bclone(i),

bpop ∼ Normal
(

0, �pop
)

,

bclone ∼ StudentT
(

�, 0, �clone
)

,
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t-distribution approximates the normal distribution. By treating � as an 
unknown quantity (to be estimated as part of the model), the thickness 
of the distribution's tail is tuned according to the data and the prior 
(Gelman et al., 2014).

We choose weakly informative priors for all model parameters:

As the priors on � (the vector of all regression coefficients), �pop 
and �clone place most prior mass around zero, they mainly have a 
regularizing effect on the posteriors distribution (i.e. shrinking esti-
mates towards 0 unless the data indicates otherwise). The Gamma-
prior on � is chosen following the recommendations by Juárez and 
Steel (2010).

We implemented this Bayesian robust generalized linear mixed 
model using the probabilistic programming language Stan and per-
formed Markov chain Monte Carlo (MCMC) sampling through the 
rstan v.2.21.2 package (Stan Development Team, 2020) in R v.4.0.3 
(R Core Team, 2020). Stan performs Bayesian inference by means of 
dynamic Hamiltonian Monte Carlo (HMC), a gradient-based MCMC 
sampler (Carpenter et al., 2017). We ran four chains with 10,000 
iterations each, of which the first 5,000 were discarded as warmup. 
The resulting 20,000 posterior samples are summarized using pos-
terior medians and 95% equal-tailed credible intervals (bounded by 
the 2.5% and 97.5% samples from the distribution), unless otherwise 
specified. We used the tidybayes v.2.3.1 package (Kay, 2020) to vi-
sualize the posterior distributions.

We assessed model convergence both visually by means of tra-
ceplots and numerically by means of effective sample sizes, diver-
gent transitions and the Potential Scale Reduction Factor, for which 
all parameters had �R < 1.01 (Vehtari et al., 2019). We performed pos-
terior predictive checks to assess goodness-of-fit and performed a 
sensitivity analysis to assess the influence of the chosen priors (see 
Supporting Information, Figures S1–S13).

The full code for the analyses is available through https://github.
com/mfajg​enbla​t/brglm​m-chlor​pyrifos.

As mentioned, there were four experimental units which con-
tained six instead of five juveniles. Analyses of the data excluding 
these four observations did not qualitatively change the results (see 
further and Figure S14, Supplementary Information).

3  |  RESULTS

In this experiment, Daphnia magna individuals faced important re-
ductions in survival probability at 48h upon exposure to chlorpy-
rifos, with an estimated effect of −7.86 (95% CrI [−9.93, −6.37]) 
on the logit scale (Figure 1). On the probability scale, the marginal 
effect (at the mean values of the other variables) of chlorpyrifos 
exposure corresponds to a reduction of 72.80 percentage points 
(95% CrI [0.50, 0.88]) in survival probability: survival is 99.90% (95% 
CrI [99.42, 99.99]) without exposure and drops to 27.07% (95% CrI 
[11.66, 49.70]) with exposure (Figures 1, 2). By contrast, the main 
effects of urbanization and temperature on survival probability are 
estimated to be much weaker, respectively −0.35 (95% CrI [−3.16, 
2.42]) and −1.01 (95% CrI [−3.03, 0.70]) (Figure 1). On the probability 
scale, an urban population origin and a 24°C temperature confers a 
marginal reduction in survival probability of, respectively 1.41 (95% 

� ∼ StudentT (3, 0, 5) ,

�pop , �clone ∼ StudentT+
(3, 0, 5) ,

� ∼ Gamma (2, 0.1) .

F I G U R E  1  Estimated main and 
interaction effects on survival (logit 
scale). Bayesian posterior densities are 
represented by density plots, 80% and 
95% credible intervals by horizontal 
lines, and posterior medians by black 
dots. Negative values correspond to a 
decreased survival probability, while 
positive values correspond to an increased 
survival probability, relative to the average 
condition, population and clone. Variables 
for which the posterior probability that 
their effect is either positive or negative 
exceeds 0.95 (given model and data) are 
shown in orange

Intercept

Pesticide

Urbanization

Temperature

Pesticide ×
Urbanization

Pesticide ×
Temperature

Urbanization ×
Temperature

Pesticide ×
Urbanization ×

Temperature
−12 −10 −8 −6 −4 −2 0 2 4 6 8

Effect (logit scale)

https://github.com/mfajgenblat/brglmm-chlorpyrifos
https://github.com/mfajgenblat/brglmm-chlorpyrifos
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CrI [−20.29, 18.02]) and 4.43 (95% CrI [−5.20, 15.30]) percentage 
points, at the mean values of the other variables.

However, we identified a positive interaction effect between 
chlorpyrifos exposure and urbanization, with 95.16% posterior 
probability (Figure 1). This effect is estimated to be 1.91 (95% CrI 
[−0.38, 4.22]) on the logit scale. Equivalently, urban Daphnia individ-
uals exposed to chlorpyrifos have a 44.48% (95% CrI [16.71, 75.90]) 
marginal probability of survival, compared to 14.76% (95% CrI 
[3.78, 40.66]) for rural individuals, considering the mean values of 
the other variables (Figures 1, 2). The interactions effects between 
chlorpyrifos exposure and temperature and between urbanization 
and temperature are estimated to be smaller; 1.02 (95% CrI [−0.75, 
3.06]) and 0.84 (95% CrI [−1.75, 3.52]) on the logit scale, respectively 
(Figure 1).

The three-way interaction between chlorpyrifos exposure, ur-
banization and temperature is estimated to be negative with 81.73% 
posterior probability and has an estimated effect of −1.24 (95% CrI 
[−4.01, 1.40]) on the logit scale (Figure 1). The estimated survival 
probabilities for each of the eight considered treatment combina-
tions are graphically summarized in Figure 2.

Furthermore, we identified important heterogeneity with respect 
to chlorpyrifos sensitivity among populations and clones, which was 
expected as we included replicated urban and rural populations and 
clones. The estimated posterior medians for the population- and 
clone-level standard deviations equal 1.25 (95% CrI [0.59, 2.60]) and 
1.12 (95% CrI [0.73, 1.58]), respectively. The estimated random ef-
fects for all clones, corrected for urbanization level (through the fixed 
effects), are visualized in Figure S15 (Supplementary Information) 
and show some particularly striking deviations compared to other 
clones in one rural and one urban population. These findings indicate 
that within populations, among-clonal differentiation in tolerance 

responses to the pesticide can be found, sometimes to important 
extents, and thus reflect evolutionary potential. This is a common 
observation in Daphnia and in concordance with studies on thermal 
adaptation in response to urban heat islands and climate change 
(Brans, Jansen, et al., 2017; Geerts et al., 2015). The use of a robust 
Student's t-distribution random effects specification accommodates 
these outlying observations by preventing a strong influence on the 
location and scale parameter estimates. Indeed, the estimated num-
ber of degrees of freedom for the Student's t-distribution used for 
the clone-level random effects equals 14.76 (95% CrI [2.83, 53.64]), 
corresponding to a distribution with somewhat fatter tails than the 
normal distribution.

4  |  DISCUSSION

In general, Daphnia survival was impaired by the acute exposure 
(48h) to the organophosphate pesticide chlorpyrifos compared to 
the control (−72.8 percentage points). However, we found strong 
evidence for a pesticide x urbanization effect, reflecting that urban 
water fleas showed a higher survival probability (+29.7 percentage 
points) compared to their rural counterparts in the presence of chlor-
pyrifos. While survival in response to the chlorpyrifos treatment was 
strongly impacted by the evolutionary urbanization background of 
the populations, we found no support for urbanization-driven sur-
vival differences at different exposure temperatures (20°C vs. 24°C). 
We here discuss the observed effects in more detail.

Daphnia survival probability after acute exposure (OECD, 2004) 
was strongly impacted by chlorpyrifos at the used nominal test con-
centration of 0.67 µg/L (−72.8 percentage points, Figure 1). This is in 
concordance with previous observations of the range of chlorpyrifos 
concentrations for which EC50 values in Daphia have been reported 
(Huang et al., 2020; Palma et al., 2008). Importantly, we found that 
urban Daphnia genotypes had a higher survival probability when 
exposed to chlorpyrifos compared to rural genotypes (Figures 1 
and 2). As expected, survival in the control was high for both rural 
and urban genotype sets (95.8% and 94.2%, respectively), without 
support for any important difference. However, animals originating 
from rural ponds show an expected drop of 29.7 percentage points 
in survival probability in the presence of the organophosphate pes-
ticide compared to urban animals (from 44.48% marginal survival 
probability in urban to 14.76% in rural). These results confirm the 
first hypothesis and indicate evolved pesticide resistance in urban 
water fleas. The present observation supports studies that show 
species in urban areas can evolve resistance to pesticide applications 
(Zhu et al., 2016), mostly confirmed for target species (Li et al., 2018; 
Macoris et al., 2003; Romero & Anderson, 2016). For example, mos-
quitos of the Anopheles gambiae complex (malaria vectors) in urban 
areas developed resistance to insecticides (Kamdem et al., 2017), 
which was supported by genome scans showing selective sweeps 
on genes whose functions include epidermal growth, olfaction, cu-
ticle formation, and resistance and detoxification of insecticides 
(Kamdem et al., 2017). More importantly, our study exemplifies the 

F I G U R E  2  Additive visualization of Figure 1: estimated survival 
probability after 48h for each combination of urbanization level 
(rural, blue vs. urban, red), chlorpyrifos exposure treatment (control 
vs. pesticide), and temperature treatment (20°C vs. 24°C). 80% and 
95% credible intervals are shown by vertical lines and posterior 
medians by black dots
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evolutionary impacts of pesticide applications on nontarget species 
in cities, which was so far limitedly demonstrated. The present re-
sults correspond strikingly to the urbanization-driven evolution of 
organophosphate resistance in damselfly nymphs sampled in the 
same region (Flanders, Belgium—2013–2015) and exposed to the 
same pesticide (Tüzün et al., 2015). In a common garden experi-
ment with F0 nymphal stages, Tüzün et al. (2015) demonstrated 
that urban damselfly nymphs increase activity and maintain feed-
ing behaviour under chronic exposure to chlorpyrifos (2 µg/L), com-
pared to rural damselfly nymphs. While different in set-up (testing 
sublethal concentrations in a chronic exposure vs. acute toxicity 
testing, damselfly nymphs vs. water fleas, respectively), both stud-
ies build up the evidence for urbanization-driven evolution of or-
ganophosphate resistance in aquatic nontarget species in Flanders 
(Belgium). Importantly, concentrations applied in Tüzün et al. (2015) 
and our study highlight a drastic difference in species sensitivity to 
organophosphate pollution (specifically chlorpyrifos in both cases) 
across interacting species (damselfly nymphs are common predators 
of water fleas). A contamination of urban waters at concentrations 
nonlethal to damselfly nymphs would imply already drastic mortality 
in one of their important prey components, which could potentially 
have indirect effects on biotic responses to pesticides observed in 
urban damselflies. We therefore advocate the need to perform ex-
periments on multiple (interacting) species across food webs, both 
in ecotoxicological studies and in studies that aim to disentangle and 
understand eco-evolutionary feedbacks in response to anthropo-
genic disturbances, such as urbanization (De Meester et al., 2019).

Though speculative, we present a number of potential mecha-
nisms based on literature that could underlie the genetic differentia-
tion in pesticide resistance between urban and rural Daphnia magna 
genotypes and that need further investigation in future research. 
Urban water fleas from the same urban study gradient evolved a 
higher energy budget, reflected in higher concentrations of protein, 
fat and carbohydrates in their body tissue (Brans, Stoks, et al., 2018). 
Higher net levels of energy compounds can enable an increased en-
ergy allocation to detoxification mechanisms under stress (De Coen 
& Janssen, 2003; Sokolova, 2013). Short-term exposure of Daphnia 
to pesticides and metals indeed induces significant depletions in en-
ergy compounds (De Coen & Janssen, 2003; Sancho et al., 2009), 
and thus, evolved higher constitute levels of such compounds could 
be an adaptive buffer mechanism for toxicant adaptation (Brans, 
Stoks, et al., 2018). Given their high evolutionary potential and 
shown adaptations to a variety of anthropogenic stressors (Coors 
et al., 2009; Geerts et al., 2015; Jansen et al., 2015; Messiaen et al., 
2010), selection on genes involved in detoxification and cellular pro-
tection, as observed in mosquitos (Kamdem et al., 2017), could occur 
in urban water fleas, but needs verification via genomic approaches.

We found no strong evidence for temperature-mediated re-
sponses to the pesticide exposure such as warming-induced toxi-
cant sensitivity (Moe et al., 2013; Noyes et al., 2009). First, Daphnia 
survival probability when exposed to chlorpyrifos did not differ be-
tween 20°C and 24°C (pesticide × temperature, Figure 1) and is thus 
not in line with our second hypothesis. Warming-induced increased 

toxicant sensitivity has been reported for chlorpyrifos before, includ-
ing exposures to increases in mean temperature and temperature 
variation (freshwater isopods: Theys et al., 2020; Daphnia: Barbosa 
et al., 2017; Cuenca Cambronero et al., 2018). While we applied a 
4°C temperature increase, it is argued the combination of both mean 
temperatures combined with daily temperature variation will more 
strongly impact biotic responses to pesticides, as organisms expe-
rience more extreme temperatures and thus also are challenged at 
more extreme physiological limits (Verheyen et al., 2019). In addi-
tion, while urban water flea genotypes have a higher pesticide resis-
tance compared to rural genotypes, the data do not strongly support 
an urbanization × pesticide × temperature response (Figure 1), sim-
ilarly as reported for damselfly nymphs (Tüzün et al., 2015). Urban 
water fleas are exposed to higher mean temperatures in urban ponds 
(Brans, Engelen, et al., 2018) and show signals of urban thermal ad-
aptation (increased heat tolerance and haemoglobin concentrations, 
smaller body size) (Brans, Jansen, et al., 2017). We expected that 
chlorpyrifos resistance in urban Daphnia would be higher at 24°C 
compared to resistance in rural animals at that temperature, given 
thermal adaptation can offset pesticide toxicity under warming con-
ditions (Op de Beeck et al., 2017; Dinh Van et al., 2013). Possibly, 
such responses would be more strongly elicited under more stressful 
thermal conditions such as heat spikes or heatwaves (Tüzün & Stoks, 
2020). We did not apply a heat spike or heatwave in our experimen-
tal design as the exposure would need to last up to a minimum of five 
days (heatwave), which does not conform OECD (2004) guidelines 
of an acute toxicity test (48–72h). We propose future research to 
include a longer sublethal exposure to chlorpyrifos in combination 
with the occurrence of a heatwave, after which the organisms can be 
monitored for life history and physiological (energy budget, detox-
ification enzymes, etc.) responses (Tüzün & Stoks, 2020; Dinh Van 
et al., 2016). So far, this was beyond the aim of our study.

5  |  CONCLUSIONS, POTENTIAL 
IMPLIC ATIONS AND FUTURE DIREC TIONS

We showed evolved chlorpyrifos resistance in urban water flea 
populations, similar to observations in one other nontarget organ-
isms (damselflies, Tüzün et al., 2015). These results corroborate the 
evidence that aquatic nontarget organisms are likely adapting to 
pesticide pollution in urban areas, which enters ponds via surface 
run-off and aerial depositions. While we only tested resistance to 
chlorpyrifos, it is likely urban water fleas adapt to pesticides of the 
organophosphate and carbamate group (commonly applied in mu-
nicipal and business districts), given they have similar modes of ac-
tion and cross-tolerance to different pesticides and other pollutants 
has been demonstrated in water fleas, wood frogs and fish (Bendis 
& Relyea, 2016a; Hua et al., 2014; Oziolor et al., 2016). Such evolved 
resistance to multiple pesticides, across multiple organisms in the 
aquatic food web, could significantly modulate genetic and species 
diversity in urban ponds, as well as associated ecosystem func-
tions. For example, evolved chlorpyrifos resistance in Daphnia pulex 
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prevented the development of a noxious algal bloom and impacted 
amphibian survivorship (Bendis & Relyea, 2016b). Although impacts 
of field exposures to pesticides seem predictable from ecotoxico-
logical laboratory exposures (van der Hoeven & Gerritsen, 1997), 
future research on toxicant resistance in urban freshwater commu-
nities should specifically include targeted transplant experiments of 
focal species and communities (Brans et al., 2020). This enables to 
assess in situ to what extent evolution in multiple species in response 
to a multi-stressor (warming, pollution, disturbance) anthropogenic 
environment leads to costs of adaptation or can ultimately stabilize 
ecosystem properties (water clarity, biodiversity), which will feed 
back to society via socio-eco-evolutionary feedbacks (Des Roches 
et al., 2020). Finally, we propose to test the impact of new pesticides 
allowed in organic agriculture, such as pyrethrins and pyrethroids, on 
nontarget species, as these pesticides are increasingly popular (also 
in community gardening efforts in cities) and a transition from syn-
thetic conventional pesticides to pesticides of more natural origins 
is currently promoted under the current EU Common Agricultural 
Policy (2014–2020).
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