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Abstract

There has been renewed interest in understanding the mathematical structure of ecological
population models that lead to overcompensation, the process by which a population recovers
to a higher level after suffering an increase in predation or harvesting. Here, we construct an
age-structured single-species population model that includes a Lotka-Volterra-type cannibalism
interaction. Depending on the age-dependent structure of the interaction, our model can ex-
hibit transient or steady-state overcompensation–as well as oscillations of the total population–
phenomena that have been observed in ecological systems. Analytic and numerical analysis
of our model reveals sufficient conditions for overcompensation and oscillations. We also show
how our structured population PDE model can be reduced to coupled ODE models represent-
ing piecewise constant parameter domains, providing additional mathematical insight into the
emergence of overcompensation.
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1. Introduction

Overcompensation, which describes the phenomenon in which the total population of a
species increases after experiencing removal or culling (Schröder et al., 2014), has become an
increasingly important concept in ecology. This phenomenon, also termed the “hydra ef-
fect,” states that a population increases in response to an increased death or removal rate
(Abrams, 2009; McIntire and Juliano, 2018; Schröder et al., 2014). There are multiple hypothe-
ses for the mechanism underlying overcompensation, including the removal of apical dominance
(Aarssen, 1995; Wise and Abrahamson, 2008; Lennartsson et al., 2018) in plant stem popula-
tions, development of resistance to herbivory (Wise and Abrahamson, 2005) in plant popula-
tions, and reduction of competition or cannibalism in animal populations (Grenfell et al., 1992;
Grosholz et al., 2021).

There are several mathematical models based on these proposed mechanisms. For example,
a three-compartment consumer-resource model which tracks the amount of food, the number
of predators, and the food consumption rate has been used to construct a model exhibiting
“overcompensation” arising in the form of time-periodic increases and decreases of the total
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predator population (Pachepsky et al., 2008). Extensions of such consumer-resource models
that incorporate intraspecific cannibalism in which adults prey on juveniles when food is scarce
have also been used to demonstrate overcompensation (De Roos et al., 2007). Such consumer-
resource models are constructed for animal populations and assume overcompensation arises
when resources are abundant.

A single-species discrete-time stage-specific model was proposed and shown to exhibit over-
compensation as well as periodic and even chaotic dynamics (Liz and Ruiz-Herrera, 2012,
2022). Recently, (Sorenson and Cortez, 2021) treated the continuous-time versions of these
models. Here, we generalize the stage-specific model by formulating a simple age-structured
PDE model and introducing a general cannibalistic interaction to more formally study overcom-
pensation. Our structured PDE model is developed from a high-dimensional kinetic/stochastic
theory of age-structured cannibalistic interactions, which can formally be projected onto an
age-structured logistic-growth-type (or generalized Lotka-Volterra-type) PDE model.

Distinct from previous consumer-resource models (De Roos et al., 2007; Pachepsky et al.,
2008) we show that a rich variety of overcompensating dynamics can arise from intraspecific
interactions alone, without being triggered by external factors such as an increase in resources.
Mathematically, our model is also different from previous logistic-type self-inhibition models
(Liu and Cohen, 1987; Kozlov et al., 2017) as it allows for a continuous range of age-specific
interactions. Specific distributions of such interactions will be shown to be necessary to achieve
overcompensation.

Moreover, our PDE model cannot be reduced to previous stage-structured ODE models
(Sorenson and Cortez, 2021) for two reasons. First, our model assumes a completely differ-
ent type of intraspecific interaction that results in an extra Lotka-Volterra-type death term
for juveniles preyed upon by older individuals. In (Sorenson and Cortez, 2021), intraspecific
interactions govern the transition rates across different stages but do not affect death rates.
Second, our model employs more realistic inter-“stage” transition rates through continuous ad-
vancement in age, while in (Sorenson and Cortez, 2021), the first-order inter-stage transitions
lose track of the life histories of the individuals in each stage. Consequently, our model yields
different sufficient conditions for overcompensation. Finally, our generalized Lotka-Volterra
model can be readily solved numerically, allowing us to evaluate both its dynamics and how
oscillations and overcompensation, transient or permanent, arise.

Besides analyzing our age-structured PDE model, we reduce it to a set of coupled ODEs
that more closely resemble multispecies or multistage ecological population models. For ex-
ample, in (Sorenson and Cortez, 2021), overcompensation is found to arise in a simple two-
compartment–young and old populations–ODE model. In our structured population model,
we show that a two-compartment ODE reduction does not admit overcompensation, but that
three or more compartments can. In fact, our age-structured interacting model, as well as its
ODE-system approximation, can exhibit rich dynamical behaviors, including overcompensa-
tion of the steady-state total population after a permanent increase in the death rate and the
emergence of transient or permanent population oscillations following the loss of stability of
a positive fixed point (Boyce et al., 1999). These dynamics allow us to quantitatively distin-
guish transient overcompensation, where the total population temporarily increases following a
temporary increase in death rate, from permanent, steady-state overcompensation, in which a
permanent increase in death leads to a permanent increase in the total population.

In the next section, we develop a single-species age-structured Lotka-Volterra model that
describes interactions such as cannibalism in animal populations. Numerical experiments are
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carried out in Section 3 to explore conditions under which overcompensation arises and to
validate previous experimental findings. We also explicitly show how our age-structured PDE
model can be “discretized” into systems of ODEs, allowing us to derive additional corresponding
conditions for overcompensation and oscillating populations. We give concluding remarks and
discuss some future directions in the Summary and Conclusions section.

2. Age-structured intraspecies predation model

Data and accompanying biomathematical models on certain animal populations, such as
those of the European green crab (Grosholz et al., 2021) and perch (Ohlberger et al., 2011),
suggest that cannibalism of juveniles by adults suppresses the overall population and that
the removal of such cannibalism can lead to compensatory increases of the total population.
Motivated by these real-world ecological systems, we formally construct a simple single-species
age-structured population PDE model for cannibalization that can lead to overcompensation.

We start by invoking a kinetic theory framework developed for proliferating cell populations
(Greenman and Chou, 2016; Chou and Greenman, 2016; Xia and Chou, 2021) to describe the
evolution of a probability density over ensembles of populations, each described by a vector of
ages xs = (x1, ..., xs). Here, s is the number of individuals and xi is the age of the i

th individual.
The probability that an animal population has s individuals with ages within [xs,xs + dxs)
at time t is ρs(xs; t)dx1 . . .dxs. Without loss of generality, we assume that the density ρs is
symmetric in the age variables, i.e., for any permutation of (x1, ..., xs) denoted by x′

s, we have
ρs(xs; t) = ρs(x

′
s; t).

The age- and time-dependent death rate, the rate of cannibalism by an age x′ individual on
an age x individual, and the birth rate are defined as

µ = µ(x, t), K = K(x′, x, t), βi = β
(

x,
∑

j 6=i

R(xi, xj , t), t
)

. (1)

Here, the function R(xi, xj , t) describes the added nourishment an age xi individual gains from
consuming an age xj individual. We have made the birth rate function βi more general by
allowing it to depend on the individuals’ total gain in nourishment

∑

j 6=iR(xi, xj , t). With
these definitions, the PDE satisfied by ρs becomes

∂ρs(xs; t)

∂t
+

s
∑

i=1

∂ρs(xs; t)

∂xi
=−

s
∑

i=1

[

βi

(

xi,
∑

j 6=i

R(xi, xj , t), t
)

+ µ(xi, t)
]

ρs(xs; t)

−
[

s
∑

i=1

∑

j 6=i

K(xj , xi, t)
]

ρs(xs; t)

+ (s+ 1)

∫ ∞

0

µ(y, t)ρs+1(xs, y; t)dy

+ (s+ 1)

∫ ∞

0

ρs+1(xs, y; t)

s
∑

i=1

K(xi, y, t) dy,

ρs(xs[xi = 0], t) =
1

s

s−1
∑

j=1

β
(

xj ,
∑

m6=j

R(xj , xm, t), t
)

ρs−1(xs,−i; t),

(2)
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where xs[xi = 0] := (x1, ..., xi−1, 0, xi+1, ..., xs), xs,−i := (x1, ..., xi−1, xi+1, ..., xs), and the argu-
ment (xs, y) indicates an additional (s+ 1)st individual with age y. The population density at
age x can thus be defined as a sum over all possible numbers of individuals and marginalizing
over all but one age:

n(x, t) :=

∞
∑

s=0

s

∫

ρs(xs[x1 = x]; t)dxs,−1. (3)

If the number of individuals in the population is large enough (s ≫ 1) and we can approximate
the sums by convolutions over continuous kernels and the population density,

s
∑

j=1,j 6=i

K(xj , x, t) ≈
s

∑

i=1

K(xi, x, t) ≈

∫ ∞

0

K(x′, x, t)n(x′, t)dx′,

s
∑

j=1,j 6=i

R(xi, xj , t) ≈

∫ ∞

0

R(x′, x, t)n(x′, t)dx′ := φ[n; x].

(4)

Upon applying the marginalization and summation of Eq. (3) to Eq. (2), we obtain a closed-form
PDE satisfied by n(x, t):

∂n(x, t)

∂t
+

∂n(x, t)

∂x
= −

[

µ(x, t) +

∫ ∞

0

K(x′, x, t)n(x′, t)dx′

]

n(x, t),

n(0, t) =

∫ ∞

0

β(x, φ[n; x], t)n(x, t)dx.

(5)

Eq. 5 is the most general form of a simple deterministic model that incorporates a continuously
distributed predator-prey Lotka-Volterra interaction within an age-structured population model
(Lotka, 2002; Volterra, 1928). Here, the quadratic interaction term couples predator and prey
populations through the predation kernel K(x′, x, t). In general, β(x, φ[n; x], t) monotonically
increases with φ and saturates to β(x, t) ≡ limφ→∞ β(x, φ, t). When food is abundant, we
approximate β(x, φ[n; x], t) ≈ β(x, t).

If K(x′, x, t) = 0, Eq. (5) reduces to the classical age-structured McKendrick model, which
does not exhibit permanent overcompensation. IfK(x′, x, t) := k(x, t)δ(x′−x), Eq. (5) coincides
with previously studied age-structured growth models (Liu and Cohen, 1987; Kozlov et al.,
2017), reducing to

∂n(x, t)

∂t
+

∂n(x, t)

∂x
= −

[

µ(x, t) + k(x, t)n(x, t)
]

n(x, t),

n(0, t) =

∫ ∞

0

β(x, φ[n; x], t)n(x, t)dx.
(6)

As we will be interested primarily in steady-state overcompensation, or population transients
associated with instantaneous jumps in the death rate, we will restrict our analysis to time-
independent K(x′, x) and instantaneous changes to otherwise time-independent β(x) and µ(x).
Dynamically, changing birth and death rates can be implemented by changing β and µ instan-
taneously to new values that subsequently remain constant (time-independent). Thus, we will
henceforth assume time-independent β, µ (and K) after their abrupt change. If a steady-state
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population density n∗(x) is reached, it will then satisfy

dn∗(x)

dx
= −

[

µ(x) +

∫ ∞

0

K(x′, x)n∗(x′)dx′

]

n∗(x),

n∗(0) =

∫ ∞

0

β(x)n∗(x)dx.

(7)

Under this setup, we will show that for our model to display steady-state overcompensation
associated with increased death rate, an interaction kernel K(x′, x) that varies with both x′

and x is necessary.

3. Results and Discussion

Overcompensation of the total population can be reflected as a transient increase in the
overall population following a transient increase in µ, as a permanent change in the steady-
state population and/or as a periodically fluctuating population following permanent increases
in the death rate. Although the general conditions on K(x′, x) required for the model to
exhibit overcompensation and/or oscillations cannot be analytically derived, we present several
cases that preclude or allow overcompensation. We also present a piecewise constant function
approximation to convert our PDE model to a system of ODEs, further providing mathematical
insight into the dynamical behavior of our model.

3.1. Interactions that preclude overcompensation

Here, we consider permanent changes in the birth and death rates β, µ and present simple
interactions K(x′, x) for which permanent, steady-state overcompensation can be proven not
to arise:

(i) K(x′, x) = k(x)δ(x′ − x), k(x) > 0. Correspondingly, Eq. (7) reduces to dn∗/dx =
−µ(x)n∗ − k(x)(n∗)2, n∗(x = 0) =

∫∞

0
β(x)n∗(x)dx.

(ii) K(x′, x) = K(x′) with constant β, µ. This interaction is independent of prey age x and
the resulting model corresponds to an age-structured McKendrick model with a modified
death rate µ → µ+

∫∞

0
K(x′)n(x′)dx as proposed in (Kozlov et al., 2017).

(iii) K(x′, x) = K(x) with constant β, µ. This case corresponds to predators of any age x′

preferentially cannibalizing prey of age x according to K(x). With this interaction kernel,
Eq. (5) reduces to a linear, self-consistent McKendrick equation, as in (ii), except with
a modified death rate µ → µ +K(x)N∗. A uniform interaction kernel (constant K) is a
subcase (X → ∞).

Here, δ(x) is the Dirac delta distribution and θ(x > 0) = 1, θ(x ≤ 0) = 0 is the Heaviside
function. All of these cases admit simple, unique, nonzero steady states. The correspond-
ing reduced models of cases (i), (ii), and (iii) all admit simple self-consistent solutions. For
constant birth and death rates β and µ, we prove in Appendix A that interactions (i), (ii),
and (iii) all preclude steady-state overcompensation; that is, the total steady-state population
N∗ ≡

∫∞

0
n∗(x)dx, where n∗ is the steady-state solution of Eq. (7), does not increase when µ

increases. Case (i) indicates that a more distributed kernel is required for overcompensation.
Case (ii) indicates that variation in predator age x′ alone is insufficient to generate steady-state
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overcompensation. Case (iii) represents an interaction kernel that varies only in prey age x
and is also insufficient to generate steady-state overcompensation. These results imply that
steady-state overcompensation requires K(x′, x) that varies to some degree in both the prey
age x and predator age x′.

3.2. Existence and uniqueness of the positive steady state

Henceforth, we consider a fairly general compact form for K(x′, x) that incorporates depen-
dencies on both x′ and x:

K(x′, x) = 0, ∀x ≥ X, or x′ ≤ x. (8)

In Appendix B, we prove that given time-independent β(x), µ(x) our model (Eqs. 5 and 7)
admits one unique steady state n∗ under some conditions. Thus, for a transient perturbation of
the birth and death rates (which eventually return to their constant pre-perturbation values)
permanent overcompensation of the population cannot arise. The system has no other accessible
steady state and the total population returns to its unique steady-state value, provided it does
not vanish during its transient evolution. However, abrupt, permanent increases in the death
rate may lead to permanent overcompensation as the new steady state associated with higher
µ may be associated with a higher total population N∗ =

∫∞

0
n∗(x, t)dx.

3.3. Overcompensating higher death rates

Since analytically finding all conditions under which Eq. (5) or Eq. (7) exhibits overcom-
pensation is difficult, we shall carry out numerical experiments to show how overcompensa-
tion arises for some simple forms of K(x′, x) after instantaneous changes in β and µ from
one constant value to another. In general, we find that a cannibalism interaction K that
decreases with x and increases with x′ is more likely to exhibit larger overcompensation.
The analysis of steady-state overcompensation boils down to investigating how the solution
n∗ obeying Eq. 7, and in particular, how the total population N∗ =

∫∞

0
n∗(x)dx changes

with β and µ. We examine two simple forms of K: K1(x
′, x) = kθ(x′ − X)θ(X − x) and

K2(x
′, x) = kx′K1(x

′, x) = k2x′θ(x′ − X)θ(X − x), both of which satisfy Eq. (8). Since k is a
rate, we can measure β and µ in units of k and time t and ages x in units of 1/k. In such units,
we set k = 1 without loss of generality and the dimensionless interactions take the forms

K1(x
′, x) ≡ θ(x′ −X)θ(X − x), K2(x

′, x) ≡ x′K1(x
′, x) = x′θ(x′ −X)θ(X − x). (9)

For concreteness, we choose X = 2 and plot heatmaps of the dimensionless predation kernels
K1 and K2 in Figs. 1(a) and (e). Subsequent results derived from using these interactions are
displayed across each row.

First, we investigate how the steady-state total population N∗ =
∫∞

0
n∗(x, t)dx varies with

constant β and µ. Figs. 1(b) and (f) plot N∗ and the solution to Eq. (7) using K1 and K2,
respectively. We see that for both types of interactions, regimes in which ∂µN

∗ > 0 arise,
signaling permanent overcompensation. In Figs. 1(b) and (f), the unlabeled overcompensation
regime is in the upper left when birth rates are large and death rates small. The dashed
curves Figs. 1(b) and (f) mark the “phase boundary” of overcompensation at which ∂µN

∗ = 0.
For larger µ and smaller β, ∂µN

∗ < 0, and there is no overcompensation. Note that when
β < µ, the only stable state is n∗(x), N∗ = 0. Figs. 1(c) and (g) show the corresponding
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Figure 1: (a) Heatmap of the dimensionless predation interaction K1(x
′, x) = θ(x′ − 2)θ(2 − x). (b)

Heatmap of the total steady-state population N∗ as a function of constant β and µ. A nontrivial stable
fixed point arises only for β > µ. The region of no overcompensation, where ∂µN

∗ < 0, is indicated
while the parameters that admit steady-state overcompensation, where ∂µN

∗ > 0 (not indicated),
occur in the upper-left corner. The dashed curve delineates the phase boundary on which ∂µN

∗ = 0.
(c) N∗ plotted as a function of µ for fixed values of β = 2.5, 2, 1.5. (d) Plots of N(t) for β = 2
and death rate sequences µ1(t) and µ2(t) (Eq. (10)). For µ1(t), damped oscillations yield transient
overcompensation, while µ2(t) results in a permanent, steady-state overcompensation, in addition to
damped oscillations. (e-h) The corresponding results for β = 2 and the predation/cannibalization
interaction K2(x

′, x) = x′K1(x
′, x).

curves N∗(µ) for fixed values of β, quantitatively illustrating the different magnitudes of steady-
state overcompensation through different values of the slope ∂µN

∗. These results, along with
the interactions shown to preclude long-lasting overcompensation, indicate that permanent
overcompensation in our model requires cannibalization of the young by the old and a K(x′, x)
that increases in x′ and decreases in x.

To interrogate the dynamics of the population following perturbations to the death rate,
we now start the system at its steady state corresponding to specific values β0, µ0 and consider
how the population N(t) evolves after applying these two different perturbations:

µ1(t) = µ0 + (log 2)δ(t), µ2(t) = µ0 + θ(t)∆µ. (10)

To be specific, we take β0 = 2, µ0 = 1/2, and ∆µ = 1/2. The death rate function µ1(t)
includes a delta function at t = 0, which corresponds to an instantaneous removal of half the
population from the steady state associated with β0, µ0 and the corresponding interaction K.
A finite volume discretization (Eymard et al., 2000) with ∆x = 0.02, xmax = 10,∆t = 0.002
was used to numerically solve Eq. (5) to find n(x, t), which is then used to construct N(t) =
∫∞

0
n(x, t)dx. Figs. 1(d) and (h) show damped oscillations in N(t) associated with K1 and

K2 = x′K1, respectively. Although µ1(t) immediately returns to the value µ1(t > 0) = µ0, and
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N(t → ∞) → N∗, at shorter times, N(t) oscillates and can exceed N∗ at intermediate times.
Thus, transient overcompensation can arise even though the population returns to the same
value set by β0, µ0. If µ2(t) is used, the death rate jumps from µ0 to µ0 +∆µ at t = 0, leading
ultimately to a higher steady-state population. For µ2, in addition to a higher steady-state
population, initial oscillations can lead to even higher transient populations.

Motivated by these results showing that N∗ can increase upon increasing µ for fixed values
of β, we provide in Appendix E additional examples of mechanisms whereby a steady-state
overcompensation can arise. First, we consider overcompensation in a model in which R(x′, x) =
K(x, x′)/4 and the birth rate function that models predation-enhanced fecundity takes on the
form β(x, φ[n; x]) = β0+φ[n; x]/4. In this example, β(x, φ[n; x]) = β0+(1

4
)
∫∞

0
K(x, x′)n(x′, t)dx′

is shown to preserve overcompensation associated with increases in µ, as detailed in Appendix
E.1.

We also show in Appendix E.2 that age-dependent harvesting can lead to overcompensation.
Harvesting or culling of the population that is modeled via an additional removal term

∂n(x, t)

∂t
+

∂n(x, t)

∂x
= −

[

µ(x, t) +

∫ ∞

0

K(x′, x)n(x′, t)dy

]

n(x, t)− h(n; x, t),

n(0, t) =

∫ ∞

0

β(x)n(x, t)dx,

(11)

where h(n; x, t) represents the rate of harvesting that may depend nonlinearly on the struc-
tured population. Increases in a realistic harvesting function h(n; x, t) are shown to lead to
permanent increases in the total population. Finally, we also prove in Appendix E.3 that for an
interaction that satisfies Eq. (8), increasing a constant β will always lead to an increase in N∗;
however, for asymmetric predation kernels that can be negative (a young-eat-old interaction),
overcompensation in response to increased birth rates, where ∂βN

∗ < 0 for fixed values of µ,
can arise.

3.4. Undamped oscillations

The instantaneous changes in the death rate given by Eqs. (10) and the interactions K1 and
K2 give rise to damped oscillations that eventually settle back to their corresponding unique
values N∗. However, oscillations may be undamped and lead to periodic overcompensation when
the fixed point loses stability and bifurcates to a stable limit cycle. Such oscillations have been
observed, for example, in European green crabs populations (Grosholz et al., 2021). Although
the source of such oscillations may be difficult to disentangle from the effects of seasonality, they
have been modeled in different contexts using a single-compartment discrete-time population
model (Boyce et al., 1999). Overcompensation has also been described in consumer-resource
models, as cycles of rising and falling populations (Pachepsky et al., 2008), as in the classical
predator-prey model.

Here, we use a simple, realistic old-eat-young cannibalization rate

K3(x
′, x) = (x′ − x)θ(x′ − 2)θ(2− x) (12)

and assume constant birth rate β and death rate µ. Upon numerically solving Eq. (5) using
a finite volume discretization with ∆x = 0.01,∆t = 0.002 and initial condition n(x, 0) =
e−2x/2, we explore whether or not the total population N(t) oscillates. Fig. 2(a) shows the
heatmap of the interaction kernel K3(x

′, x) = (x′ − x)θ(x′ − 2)θ(2 − x), while Fig. 2(b) shows
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Figure 2: (a) Heatmap of the interaction kernel K3(x
′, x) = (x′ − x)θ(x′ − 2)θ(2 − x) (Eq. (12)).

(b) The population density computed using Eq. (12), β = 2.5, and µ = 0.6, and approximated as

n(j, t) ≡ (∆x)−1
∫ (j+1)∆x
j∆x n(y, t)dy with ∆x = 0.02 displays persistent periodic oscillations. (c) The

total population N(t) =
∫∞

0 n(x, t)dx also exhibits oscillations that persist(damp) for small(large)
values of µ. (d) The long-time oscillation amplitude maxT−20≤t≤T N(t) − minT−20≤t≤T N(t) near
T = 500, T = 1000, and T = 2000, respectively, plotted as a function of µ (β = 2.5). As T

is increased, the transition to oscillating states as µ is decreased becomes sharper These numerical
results suggest that the transition at µ ∼ 0.7 has jump discontinuity in the first-order derivative. (e)
Time-averaged populations N(t) ≡ 1

t

∫ t
0 N(s)ds for β = 2.5, µ = 0.6, 0.7, 0.8, 0.9 that more clearly

reveal the mean values of N(t → ∞). (f) Oscillation amplitude in β-µ space. As β increases from 2
to 3 and µ decreases from 1.5 to 0.5, undamped oscillations arise. Here, the oscillation amplitudes are
measured by max

480<t≤500
N(t)− min

480<t≤500
N(t). In the regime plotted, we find that undamped oscillations

arise for β & 1.87 + 0.93µ.

a heatmap of an oscillating structured population density n(x, t) approximated by its local

mean value n(j, t) = (∆x)−1
∫ (j+1)∆x

j∆x
n(y, t)dy. These oscillations lead to an oscillating total

population N(t), as shown in Fig. 2(c). Oscillations damp out when µ is large, but persist
for smaller values of µ. The long-time amplitudes of oscillation shown in Fig. 2(d) indicate a
sharp decrease as µ is increased. To better resolve the long-time average values of N(t), we
define its function average N(t) ≡ 1

t

∫ t

0
N(s)ds and plot them in Fig. 2(e). Besides transient

or permanent oscillations that lead to temporary overcompensation, increasing µ in the regime
studied also led to increased average values of N(t), and in particular, when oscillations are
damped out at larger µ, the steady values N∗ also increase with µ. Thus, as µ increases,
periodic overcompensation transitions to steady-state overcompensation. The phase diagram
separating regimes of transient and permanent oscillations is shown in Fig. 2(f). As β increases
and µ decreases, the dynamics transition from a monotonically converging one (to steady-state
value N∗) to a periodically oscillating one, with a finite oscillation magnitude that arises when
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β exceeds a critical value β∗ ≈ 1.87 + 0.93µ.

3.5. Reduction of structured population PDE to ODE systems

We have provided some numerical examples which explicitly show various types of over-
compensation in response to variations in constant µ, β. However, our model can also be
approximated via coarse-graining and discretization and formulated in terms of a system of
coupled nonlinear ODEs. Systems of ODEs are typically used to describe multispecies mod-
els in which previous studies have found overcompensation. Multistage models in which, e.g.,
adult or later-stage insect feed on eggs or early-stage individuals (Thomas and Manica, 2003;
Ohba et al., 2006) can also be directly modeled by our discrete stage discretized ODEs.

Since the analysis of the general nonlinear PDE model Eq. (5) or the steady-state integral-
differential equation Eq. (7) is difficult and uniqueness only under Eq. (8) and a few specific
proofs of cases that preclude overcompensation could be found (see Appendix A), related analy-
ses of the ODE system can be more easily performed (De Roos et al., 2008; Sorenson and Cortez,
2021) if parameters and variables are considered to be piecewise constants. In addition to pro-
viding mathematical insight into the approximate, lower dimensional ODE system, the simplest
numerical implementation of a finite volume method for the PDE model Eq. (5) is conceptually
similar to piecewise constant discretization in the age variable.

Here, we formally discretize our PDE model and explore whether the resulting ODE models
exhibit the analogous behaviors of the full PDE model discussed above. We discretize the space
of ages [0,∞) into L + 1 bins: [xi, xi+1), i = 0, ..., L where xi = i∆x if i ≤ L, and xL+1 = ∞.
Let the population on the ith bin [xi, xi+1) be denoted ni(t) =

∫ xi+1

xi
n(y, t)dy, (xL+1 → ∞). By

integrating Eq. (5) over increments, each ni obeys

dni

dt
=n(xi, t)− n(xi+1, t)−

∫ xi+1

xi

µ(x, t)n(x, t)dx

−

∫ xi+1

xi

dx

∫ ∞

x

dx′ n(x′, t)K(x′, x)n(x, t),

n(0, t) =
L
∑

i=0

∫ xi+1

xi

β(x)n(x, t)dx.

(13)

We now take the coefficients β, µ, and K to be piecewise constant in each compartment,i.e.,

β
(

x, φ[n; x], t
)

= βi

(

L
∑

j=1

R
(

(i− 1
2
)∆x, (j − 1

2
)∆x, t

)

ni(t)∆x, t
)

, x ∈ [xi, xi+1),

µ(x, t) = µi(t), x ∈ [xi, xi+1),

K(x′, x) = Kj,i(t), x′ ∈ [xj , xj+1), x ∈ [xi, xi+1),

(14)

where β(x, t) = βi(t), x ∈ [xi, xi+1) if β is independent of cannibalism. If we approximate
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n(xi, t)∆x ≈ ni−1(t), L ≥ i > 0 for sufficiently smooth n(x, t), Eq. (13) simplifies to

dn0

dt
= −µ0(t)n0(t)− n0(t)

L
∑

j=0

Kj,0nj(t) +
L
∑

j=1

βj(t)nj(t)−
n0(t)

∆x
,

dni

dt
= −µi(t)ni(t)− ni(t)

L
∑

j=i

Kj,inj(t)−
ni(t)− ni−1(t)

∆x
, 0 < i < L,

dnL

dt
= −µL(t)nL(t)− nL(t)KL,LnL(t) +

nL−1(t)

∆x
.

(15)

Ki,i represents the within-compartment competition introduced due to the discretization. In
the following, we will assume that Ki,i = 0 and that β0 = 0. Note that the ODE system
Eq. (15) is also the discretized finite volume method we used to numerically solve the original
PDE Eq. (5). We are particularly interested in whether the simplified ODE model Eq. (15)
with time-independent coefficients gives rise to the rich dynamics observed in the original PDE
model, especially as L is varied. Our main results are: (i) the ODE system Eq. (15) has
at most one positive steady state, (ii) the two-compartment ODE model (setting L = 1 in
Eq. (15)) has a unique positive steady state and the steady-state populations n0 and n1 never
increase with the death rate. This result deviates from that of the two-stage ODE model in
(Sorenson and Cortez, 2021) where overcompensation could occur, at least for one compart-
ment, (iii) the three-compartment ODE model (setting L = 2) exhibits a unique, positive,
stable steady state and overcompensation of the total population can arise, and (iv) higher-L
ODE systems can exhibit permanent as well as oscillatory behavior as the positive steady state
destabilizes. The proofs for these results are detailed in Appendix D.

4. Summary and Conclusions

In this paper, we proposed a deterministic population model that combines a continuum
of Lotka-Volterra-type interactions with age structure to describe intraspecies predation or
cannibalization. Distinct from previous models that typically assume complicated interactions
within multistage/multispecies populations or rely on complex consumer-resource interactions,
we demonstrate mathematically that our single-species, bilinear interaction model, structured
simply according to age, can give rise to a variety of dynamical behavior.

With realistic forms of predation, our model can exhibit permanent, steady-state over-
compensation of the total population in response to increases in death rate. General forms
of predation kernels K(x′, x) that preclude steady-state overcompensation were enumerated
showing that gradients in both x′ and x are necessary for static overcompensation (when β
and µ are constants). Specifically, our analysis suggests that K(x′, x) that increases in x′ and
decreases in x are more likely to exhibit steady-state overcompensation. Using predation ker-
nels K1(x

′, x) and K2(x
′, x), Eq. (5) was solved numerically using a finite volume method to

show the emergence of steady-state overcompensation. Our model is also amenable to recently
developed adaptive spectral methods that are quite efficient at handling unbounded domains
(Xia et al., 2021a,b; Chou et al., 2023).

Our analyses also allowed us to quantitatively distinguish transient overcompensation from
steady-state overcompensation. Dynamic, or transient overcompensation was defined in terms
of oscillations in the total population that also arose under predation kernels K1 and K2 and
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abrupt changes in the values of µ and β (see Fig. 1). These cases exhibited damped oscilla-
tions in the total population that transiently exceeded their expected steady-state values. At
long times, the total populations converged to steady values uniquely associated with their
permanent values of µ. For µ that has permanently increased, steady-state overcompensation
is not universal but arises only under certain values of β and µ. However, for values of β
and µ under which steady-state overcompensation does not arise (for K = K1, K2), transient
overcompensation may nonetheless arise following jumps in µ(t).

Using certain forms of K (see Fig. 1), dynamic or transient overcompensation was observed
in terms of oscillations in the total population that eventually damps to steady values that
could be lower or higher (steady-state overcompensation) following increases in µ(x). However,
similar to predator-prey models that can exhibit periodic oscillations, we also found that an
interaction such as K3(x

′, x) = (x′ −x)θ(x′ − 2)θ(2−x) leads to undamped oscillations in total
population for certain values of β and µ. We found numerically that permanent oscillations
emerge in a way suggestive of a Hopf bifurcation as µ is decreased. It would be interesting to
develop analytic results for how stability is gained or lost as µ is tuned.

Besides formal proofs that certain simple predation interactions rule out permanent over-
compensation, and numerical exploration of specific cases that exhibit dynamical (damped and
undamped oscillations) and steady-state overcompensation, a rigorous analysis of our nonlinear
structured population PDE model remains elusive. However, simplification via coarse-graining
and discretizing the age variable allowed the PDE to be cast as a system of approximating ODEs
for piecewise constant parameter functions β(x), µ(x), and K(x′, x). The corresponding system
of ODEs was amenable to additional mathematical analysis. Specifically, we showed that, un-
der certain conditions, both the original Lotka-Volterra-type PDE model and the reduced ODE
model admitted at most one positive steady state, implying that permanent overcompensation
associated with increases in the death rate is unlikely due to transitions from one steady state
to another. Steady-state overcompensation and permanent oscillations are also recapitulated
in ODE systems of at least three and four dimensions, respectively. These results may provide
insight into mathematical strategies for analyzing our PDE model under age-dependent birth
and death rates.

A number of additional extensions and analyses of our model are apparent. For example,
since chaotic behavior can arise in the two-species predator-prey dynamics (Wikan and Kristensen,
2021), another intriguing question is how chaotic solutions might arise in our single-species con-
tinuously structure model Eq. (5), which would carry many important ecological implications.
Continuously structured PDE models can also be combined wihtin multicomponent models
where even richer behavior might arise. For example, multicompartment aging models with
symmetric age-age interactions have been shown to give rise to waves in opinion dynamics
Chuang et al. (2018). Finally, in analogy with spatial predator-prey models (Cosner et al.,
1999; Cantrell and Cosner, 2001), including age-dependent spatial diffusion within our contin-
uum structured PDE model may lead to intriguing behavior such as transport-mediated local
and global overcompensation.
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Mathematical Appendices

A. Interactions that preclude permanent overcompensation

A.1. Self-inhibition K(x′, x) = k(x)δ(x′ − x)

We first show that if cannibalization occurs within individuals of the same structured vari-
able (age in this case), i.e., K(x′, x) = k(x)δ(x′ −x), k(x) > 0, no overcompensation can occur,
even for age-dependent birth and death rates β(x) and µ(x). The steady-state Eq. (7) becomes
a Riccati equation with a specific boundary condition,

dn∗(x)

dx
= −µ(x)n∗(x)− k(x)(n∗(x))2, n∗(0) =

∫ ∞

0

β(x)n∗(x)dx. (16)

After defining q∗(x) := k(x)n∗(x), Eq. (16) simplifies to

dq∗(x)

dx
= −µ̂(x)q∗(x)− [q∗(x)]2, µ̂(x) := µ(x)−

k′(x)

k(x)
, q∗(0) =

∫ ∞

0

k(0)

k(x)
β(x)q∗(x)dx.

(17)
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Substituting q∗(x) = u′(x)/u(x) into Eq. (17), we obtain the linear ODE d2u(x)
dx2 + µ̂(x)du(x)

dx
= 0

which admits the general solution

u(x) ∝
(

1 + C

∫ x

0

e−
∫ z

0
µ̂(y)dydz

)

, (18)

where C is an integration constant and it is assumed that µ̂ such that
∫ z

0
µ̂(y)dy has a finite

lower bound and that e−
∫ z

0
µ̂(y)dy is integrable. The steady-state population density n∗(x) is

then reconstructed as

n∗(x) =
1

k(x)

e−
∫ x

0 µ̂(x′)dx′

1
C
+
∫ x

0
e−

∫ z

0 µ̂(y)dydz
, C = k(0)n∗(0). (19)

Substituting Eq. (19) into Eq. (16), we find the constraint on C = k(0)n∗(0)

1 =

∫ ∞

0

k(0)

k(x)

β(x)e−
∫ x

0 µ̂(x′)dx′

1 + C
∫ x

0
e−

∫ z

0 µ̂(y)dydz
dx. (20)

Suppose we have two different death rates µ1(x) ≥ µ2(x) (and thus µ̂1(x) ≥ µ̂2(x)) with
their corresponding steady-state solutions n∗

1(x), n
∗
2(x) defined by their integration constants

C(µ1), C(µ2). We first show that C(µ1) > C(µ2). Define

Fµ(C) =

∫ ∞

0

k(0)

k(x)

β(x)e−
∫ x

0 µ̂(x′)dx′

1 + C
∫ x

0
e−

∫ z

0 µ̂(y)dydz
dx, (21)

which is a decreasing function of C when C > 0. Next, note that

e−
∫ x

0 µ̂1(x′)dx′

1 + C
∫ x

0
e−

∫ z

0 µ̂1(y)dydz
≤

e−
∫ x

0 µ̂2(x′)dx′

1 + C
∫ x

0
e−

∫ z

0 µ̂2(y)dydz
(22)

if µ1(x) ≥ µ2(x). Thus, Fµ1(C(µ1)) = 1 and µ1(x) ≥ µ2(x) imply Fµ2(C(µ1)) > 1. Together
with the constraint Fµ2(C(µ2)) = 1 and monotonicity of Fµ2 , Fµ2(C(µ1)) > 1 implies C(µ2) >
C(µ1); in other words, n∗

2(0) > n∗
1(0). Furthermore, we have for all x ≥ 0

n∗
1(x) =

1

k(x)

e−
∫ x

0 µ̂1(x′)dx′

1
C(µ1)

+
∫ x

0
e−

∫ z

0 µ̂1(y)dydz

≤
1

k(x)

e−
∫ x

0
µ̂2(x′)dx′

1
C(µ2)

+
∫ x

0
e−

∫ z

0
µ̂2(y)dydz

= n∗
2(x).

(23)

Thus, the total populations N∗
1 and N∗

2 satisfy N∗
1 =

∫∞

0
n∗
1(x)dx ≤

∫∞

0
n∗
2(x)dx = N∗

2 . We
conclude that no overcompensation will be observed under an interaction of the formK(x′−x) =
k(x)δ(x′ − x).

A.2. x-independent cannibalism rate K = K(x′)

We also show that an x-independent predation (predators do not prefer prey of any age),
K(x′, x) = K(x′), also precludes permanent overcompensation. In this proof however, we must
assume age-independent birth and death β(x) = β, µ(x) = µ. For K(x′, x) = K(x′), the
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solution to Eq. (7) satisfies

n∗(x) = n∗(0)e−(µ+K∗)x, K∗ ≡

∫ ∞

0

K(x′)n∗(x′)dx′, n∗(0) = βN∗ = β

∫ ∞

0

n∗(x)dx. (24)

When µ ≥ β, no positive K∗ in Eq. (24) can satisfy N∗ =
∫∞

0
n∗(x)dx and no positive solution

exists. Numerical integration of the full time-dependent model in Eq. (5) shows that the only
steady state is n∗ ≡ 0. When µ < β, the solution to Eq. (24) is satisfied by K∗ = β − µ which
leads to n∗(x) = βN∗e−βx. Upon using n∗(x) = βN∗e−βx in the expression K∗ = β − µ =
∫∞

0
K(x′)n∗(x′)dx′ = βN∗

∫∞

0
K(x′)e−βx′

dx′, we find

N∗ =
1− µ

β
∫∞

0
K(x′)e−βx′dx′

, (25)

which strictly decreases with µ. Thus, a predation kernel that is independent of prey age x
cannot exhibit steady-state overcompensation.

A.3. x′-independent cannibalism rate K(x′, x) = K(x)

For a predation/cannibalization rate of the form K(x′, x) = K(x), the steady-state Eq. (7)
becomes

dn∗(x)

dx
= −

[

µ+K(x)

∫ ∞

0

n∗(x′)dx′

]

n∗(x), n∗(0) = βN∗. (26)

We now prove that if µ, β are constants, then no permanent overcompensation will occur. Equa-
tion (26) is solved by n∗(x) = n∗(0)e−µx−N∗K̃(x), where K̃(x) ≡

∫ x

0
K(y)dy. Upon integrating

the solution and using the boundary condition n∗(0) = βN∗, eliminating n∗(0), and using the
definition N∗ =

∫∞

0
n(x)dx, we find an implicit solution for N∗:

1 = β

∫ ∞

0

e−µx−N∗K̃(x)dx ≡ F (µ,N∗). (27)

Eq. (27) is the specific form of Eq. (42) to be derived under a general condition later. To see
how N∗ varies with µ, we introduce perturbation (δµ, δN∗) to the solution (µ,N∗) to Eq. (27)
and find

1 = F (µ,N∗) +

(

∂F

∂µ

)

δµ+

(

∂F

∂N∗

)

δN∗ + o(δµ, δN∗). (28)

On the lowest order,
(

∂F/∂µ
)

δµ+
(

∂F/∂N∗
)

δN∗ = 0, which yields

δN∗

δµ
= −

(∂F/∂µ)

(∂F/∂N∗)
= −

∫∞

0
xe−µx−N∗K̃(x)dx

∫∞

0
K̃(y)e−µy−N∗K̃(y)dy

. (29)

For µ,N∗ > 0, the RHS above is negative. Thus, ∂N∗/∂µ < 0 and steady-state overcompensa-
tion cannot arise. This result implies that an interaction kernel K(x′, x) that varies only in x is
insufficient for steady-state overcompensation and that variation in x′ is necessary. This result,
along with that in section A.2, suggests that predation kernels K(x′, x) that vary in both x′

and x are required for steady-state overcompensation, at least for age-independent β and µ.
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B. Uniqueness of the positive steady state of Eq. (5)

If the distributed interactionK(x′, x) satisfies Eq. (8), we shall prove uniqueness of a positive
steady state under the assumption that the set {x : ∃x′ > x > 0, K(x′, x) > 0} ∩ {x : β(x) >
0, x > 0} has positive measure. First, we assume two steady states, m∗(x) and n∗(x), and
demonstrate that if m∗(X) = n∗(X) at some age X , then m∗(x) and n∗(x) are precisely the
same steady state everywhere. Second, without loss of generality, if n∗(X) > m∗(X), we will
demonstrate that n∗(x) > m∗(x) ∀x ≥ 0. This dominance relation conflicts with the well-known
Euler-Lotka equation, thereby demonstrating the uniqueness of the steady-state solution.

To show
m∗(X) = n∗(X) ⇒ m∗(x) = n∗(x), ∀x ≥ X, (30)

first note that since K(x′, x > X) = 0, the interaction terms in Eq. (7) for both m(x) and n(x)
vanish for x > X and thus are linear first-order equations with identical decay rates µ(x) and
coincident “initial conditions” m∗(X) = n∗(X). Thus, the solutions for x > X are identical.

What remains is to show that m∗(X) = n∗(X) ⇒ m∗(x) = n∗(x), ∀x ≥ 0. To simplify
notation, we set ξ = X − x, ξ′ = X − x′ and define f(ξ) ≡ n(X − x), f ∗(ξ) ≡ n∗(X − x),
transforming the steady-state problem Eq. (7) into a general integral-differential equation with
given initial data (using Eq. (30))











df(ξ)

dξ
=

[

µ(ξ) +

∫ ξ

−∞

K(ξ′, ξ)f(ξ′)dξ′
]

f(ξ), X ≥ ξ > 0,

f(ξ) = f ∗(ξ), ∀ ξ ≤ 0,

(31)

where we have reparameterized µ(x) such that µ(ξ) = µ(x = X − ξ) and K(x′, x) such that
K(ξ′, ξ) = K(x′ = X − ξ′, x = X − ξ). The goal is to march the steady-state uniqueness
from ξ < 0 (x > X) up to ξ = X (x = 0). Let us assume that uniqueness of f(ξ) has been
demonstrated up to ξ0, i.e., that f(ξ) = f ∗(ξ) ≡ n∗(X − ξ) has been uniquely determined in
(−∞, ξ0]. Breaking up the integral term, we write











df(ξ)

dξ
=

[

µ(ξ) +

∫ ξ0

−∞

K(ξ′, ξ)f(ξ′)dξ′ +

∫ ξ

ξ0

K(ξ′, ξ)f(ξ′)dξ′
]

f(ξ), ∀ ξ > ξ0

f(ξ) = f ∗(ξ), ∀ξ ≤ ξ0.

(32)

We can march ξ0 forward from 0 and consider a small region (ξ0, ξ0 + ε) successively. At
each stage, since f(ξ) = f ∗(ξ0 ≤ ξ < ξ0 + ε) has been uniquely determined, we can combine

µ(ξ) +
∫ ξ0
−∞

K(ξ′, ξ)f(ξ′)dξ′ → µ(ξ). If we start at ξ0 = 0, it suffices to show that the solution
to

df(ξ)

dξ
=

[

µ(ξ) +

∫ ξ

0

K(ξ′, ξ)f(ξ′)dξ′
]

f(ξ), ∀ξ > 0 f(0) = f ∗(0) (33)

is unique in a small domain of (0, ε).
Suppose that µ(ξ) is (locally) bounded by µ̂, K(ξ′, ξ) is bounded by K̂, and g is the local

solution to the associated differential equation

dg(ξ)

dξ
=

[

µ̂+ K̂

∫ ξ

0

g(ξ′)dξ′
]

g(ξ), ∀ξ > 0, g(0) = f ∗(0). (34)
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The integral G(ξ) ≡
∫ ξ

0
g(ξ′)dξ′ then obeys the standard-form second-order ODE

d2G(ξ)

dξ2
=

[

µ̂+ K̂G(ξ)
] dG(ξ)

dξ
, ∀ξ > 0, G(0) = 0,

dG(ξ)

dξ

∣

∣

∣

∣

ξ=0

= g(0) ≡ f ∗(0). (35)

The solution to Eq. (35) in the region (0, ε) is unique and for any solution f of Eq. (33),
0 < f ≤ g.

Now suppose that f1 and f2 are two solutions in the neighborhood of 0 that solve Eq. (33).
We have

fi(ξ) = f ∗(ξ) +

∫ ξ

0

(

µ(ξ′) +

∫ ξ′

0

K(ξ′′, ξ′)fi(ξ
′′)dξ′′

)

fi(ξ
′)dξ′, i = 1, 2. (36)

Note that
∣

∣

∣

∣

∣

f1(ξ
′)

∫ ξ′

0

K(ξ′′, ξ′)f1(ξ
′′)dξ′′ − f2(ξ

′)

∫ ξ′

0

K(ξ′′, ξ′)f2(ξ
′′)dξ′′

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

f1(ξ
′)

∫ ξ′

0

K(ξ′′, ξ′)
[

f1(ξ
′′)− f2(ξ

′′)
]

dξ′′ +
[

f1(ξ
′)− f2(ξ

′)
]

∫ ξ′

0

K(ξ′′, ξ′)f2(ξ
′′)dξ′′

∣

∣

∣

∣

∣

≤ 2K̂ξ′ sup
ξ∈(0,ε)

g(ξ) sup
ξ∈(0,ε)

|f1(ξ)− f2(ξ)|.

(37)

Then, using Eq. (36), we conclude that

sup
xi∈[ξ0,ξ0+ε]

|f1(ξ)− f2(ξ)| ≤

{

εµ̂+ ε2K̂ sup
ξ∈(0,ε)

g(ξ)

}

sup
ξ∈[ξ0,ξ0+ε]

|f1(ξ)− f2(ξ)| . (38)

ε can be chosen sufficiently small such that
{

εµ̂ + ε2K̂ supξ∈(0,ε) g(ξ)
}

< 1, so we conclude
supξ∈[ξ0,ξ0+ε] |f1(ξ)− f2(ξ)| = 0, proving the solution to Eq. (33) is unique in a neighborhood
of 0. Under the assumption that the solution to Eq. (33) exists, we can replace the point
ξ = 0 with ξ ∈ (0, K) and conclude that the solution is unique in a small neighborhood of
ξ. Therefore, the solution is globally unique in (0, K), and the proof of the first statement is
completed.

Next, we show that the case n∗(X) > m∗(X) cannot not hold by first claiming that

n∗(X) > m∗(X) ⇒ n∗(x) > m∗(x), ∀x ≥ 0. (39)

We easily observe that the statement is true for x ≥ X . Suppose for some x0, n
∗(x0) ≤ m∗(x0).

Then let x∗ = supx≥0{x : n∗(x) ≤ m∗(x)}. By continuity of m∗ and n∗, we note that x∗ < X .
Within the interval (x∗, X), n∗(x) > m∗(x). Let ξ∗ = X − x∗, and consider the functions

m∗ and n∗ written as functions of ξ. The difference of Eq. 31 satisfied by m∗ and n∗ becomes

d

dξ
(n∗(ξ)−m∗(ξ)) ≥ µ(ξ) (n∗(ξ)−m∗(ξ)) , ∀ξ ∈ (0, ξ∗). (40)

By integrating both sides of Eq. (40) from 0 to ξ∗, we conclude that n∗(ξ∗)−m∗(ξ∗) > 0, which
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demonstrates the dominance relation n∗(x) > m∗(x), ∀x ≥ 0.
We can now exploit the equilibrium form of the Euler-Lotka equation (Keyfitz and Keyfitz,

1997; Sharpe and Lotka, 1911). Let µ̃(x) = µ(x) +
∫∞

x
K(x′, x)n∗(x′)dx′ be the effective death

rate and s(x) = exp
(

−
∫ x

0
µ̃(x′)dx′

)

be the survival probability of any individual up to age x.
The overall steady-state rate of new births defined by

n(0, t) ≡ B(t) =

∫ ∞

0

β(x)n(x, t)dx (41)

can be formally written in terms of s(x) and the form of the method of characteristics solution
n(x < t, t) = n(0, t− x)s(x) = B(t− x)s(x). Using this form of n(x < t, t) in the integrand in
Eq. (41), we find in the t → ∞ limit B(t) =

∫∞

0
β(x)B(t−x)s(x)dx. Since in the t → ∞ steady

state limit all quantities are independent of time, B(t) = B and

1 =

∫ ∞

0

β(x)s(x)dx ≡

∫ ∞

0

β(x)e−
∫ x

0
µ̃(x′)dx′

dx, (42)

which means that at steady state, the population n∗(x) and effective death rate µ̃(x′) settles to
value such that the effective reproductive number R0 ≡

∫∞

0
β(x)s(x)dx = 1.

Equation (42) must be satisfied at steady state but allows us to compare different µ̃s as-
sociated with different steady state solutions. For different steady states m∗ and n∗ such that
m∗ > n∗ at all ages, the effective death rates satisfy µ̃(m) ≥ µ̃(n). Since β remains the same, the
survival probability satisfies s(m) ≤ s(n), where the inequality should hold on a positive measure
interval. Because {x : ∃x′ > x > 0, K(x′, x) > 0} ∩ {x : β(x) > 0, x > 0} has positive measure,
we will conclude

1 =

∫ ∞

0

β(x)e−
∫ x

0 µ̃(m)(x′)dx′

dx <

∫ ∞

0

β(x)e−
∫ x

0 µ̃(n)(x′)dx′

dx = 1. (43)

This contradiction shows that if K is continuous and compactly supported and if {x : ∃x′ >
x > 0, K(x′, x) > 0} ∩ {x : β(x) > 0, x > 0} has positive measure, then Eq. (5) admits at most
one positive steady state.

C. Existence of a positive steady state of Eq. (5)

If a predation kernel satisfies Eq. (8), we can also obtain the criterion for the existence of a
positive steady state, which is equivalent to finding a positive solution n∗(x) to Eqs. (7) under
certain additional assumptions.

In Appendix B, we showed that any solution n∗(x) to Eqs. (7) must satisfy Eq. 33 with the
transformed coordinate ξ = X−x and f(ξ) = n∗(X−x). For the existence arguments, we first
investigate the condition under which Eq. (33) has a positive solution. Formally, we pick the
initial condition nX := f(0) > 0 as the parameter of interest, and consider the domain of nX

such that the solution to Eq. 33 exists up to ξ = X . Define f−1(ξ) ≡ 0 and fn+1(ξ) as solution
to the ODE

1

fn+1(ξ)

dfn+1

dξ
(ξ) = µ(ξ) +

∫ ξ

0

K(ξ′, ξ)fn(ξ
′)dξ′, ∀ξ ∈ (0, X);

fn+1(0) = nX ,

(44)
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where n ≥ −1. In particular, f0(ξ) = nXe
∫ ξ

0 µ(ξ′)dξ′ > 0 = f−1(ξ) for all ξ ∈ (0, X). For each
n, an iterative argument shows that fn is bounded, continuous, and nonnegative on [0, X ]. In
addition, f0(ξ) > f−1(ξ), ∀ξ ∈ (0, X) implies that {fn(ξ)} is a monotonically increasing sequence
in both ξ and n. Therefore, f(ξ) := limn→∞ fn(ξ) ∈ (0,∞] exists and satisfies Eq. (33) up to
the moment of blowup ξ∗ ≡ sup {ξ ∈ (0, X) : f(ξ) < ∞}, thanks to the monotone convergence
theorem.

We also observe that f(ξ) depends monotonically on the initial value nX . For sufficiently
regular µ and K, we also assume that f(ξ) depends continuously on nX . Define the upper
limit for nX by n∗

X ≡ sup {nX : ξ∗(nX) > X} with the convention that sup ∅ = 0, and we find
an open domain (0, n∗

X) of nX such that f(ξ) < ∞ for all ξ ∈ [0, X ] with the initial value
nX . In particular, the continuity assumption implies limnX→n∗

X−

f(X) = ∞. The marginal case

n∗
X = ∞ is covered by this equation because f(X) ≥ f(0) = nX → ∞.
Now, we recover n∗(x) from f(ξ) and denote n∗ by n∗

nX
to emphasize the dependence on

nX . For the sake of simplicity, we assume the upper limit n∗
X = +∞ in the following discussion.

This can be achieved by imposing proper restrictions on µ and K, such that the existence of
the solution to Eq. 35 on the interval (0, X) is guaranteed.

We proved that there is a unique solution n∗
nX

(x) to the first equation in Eqs. (7) when
n∗
nX

(X) = nX provided that µ and K are bounded on [0, X ], there exist positive constants
µ0, K0 > 0 such that µ ≥ µ0, K ≥ K0, and K vanishes for x > X . We shall show that the
solution to Eqs. (7) exists if: (i) in the cannibalism-free environment (K = 0), the expected
number of offspring that an individual will give birth to is larger than 1

∫ ∞

0

β(x)e−
∫ x

0 µ(x′)dx′

dx > 1, (45)

and (ii) given any dG(ξ)
dξ

|ξ=0 := nX ,

the second order ODE Eq. (35) can be solved up to ξ = X , and that dG(ξ)
dξ

, ξ ∈ (0, X)

depends continuously on the initial dG(ξ)
dξ

|ξ=0.

The existence of the solution to Eqs. (7) is then converted to finding a proper nX such that
n∗
nX

(0) is suitable for the second equation in Eqs. (7), i.e., the boundary condition representing

the newborn cells. So we need to show that dG(ξ)
dξ

|ξ=X = n∗
nX

(0) satisfies the boundary condition

in Eqs. (7). Note that as long as nX > 0, n∗
nX

(x) > 0, ∀x ≥ 0. Let µ̃ denote the effective death
rate µ̃(x) = µ(x) +

∫∞

x
K(x′, x)n∗

nX
(x)dx, then the second equation in Eqs. (7) is equivalent to

n∗
nX

(0)

{

1−

∫ ∞

0

β(x)e−
∫ x

0 µ̃nX
(x′)dx′

dx

}

= 0. (46)

We define the Euler-Lotka functional as

EL
[

n∗
nX

]

=

∫ ∞

0

β(x)e−
∫ x

0
µ̃nX

(x′)dx′

dx, (47)

Then, the second equation in Eq. (7) is equivalent to the famous Euler-Lotka equation EL
[

n∗
nX

]

=
1 for positive solutions n∗

nX
. We’ve shown that nX < n′

X ⇒ µ̃nX
(x) ≤ µ̃n′

X
(x), ∀x ≥ 0. There-

fore, the function nX 7→ EL
[

n∗
nX

]

is monotonically decreasing. Because n∗
nX

(x), x ≤ X depends
continuously on n∗

nX
, the functional Eq. (47) also depends continuously on n∗

nX
. Consequently,

we conclude that the existence of the positive steady state is equivalent to
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lim
nX→∞

∫ ∞

0

β(x)e−
∫ x

0
µ̃nX

(x′)dx′

dx < 1; lim
nX→0+

∫ ∞

0

β(x)e−
∫ x

0
µ̃nX

(x′)dx′

dx > 1. (48)

When nX = 0, n∗
nX

(x) ≡ 0. Furthermore, for x < X , n∗(x) ≥ n∗(X), which implies
limnX→∞ n∗

nX
(x) = ∞, x < X . Since we have assumed that both µ and K have positive lower

bounds on their support and that the solution n∗
nX

is continuously dependent on the initial
condition nX , we could conclude that

lim
nX→0+

µ̃nX
(x) = µ(x) +

∫ ∞

x

K(x′, x)n∗
0(x

′)dx′ = µ(x);

lim
nX→∞

µ̃nX
(x) = µ(x) +

∫ ∞

x

K(x′, x)n∗
∞(x′)dx =

{

µ(x) x ≥ X

∞ otherwise
.

(49)

The first equation in Eq. (48) is satisfied as

lim
nX→∞

∫ ∞

0

β(x)e−
∫ x

0
µ̃nX

(x′)dx′

dx = 0 (50)

because limnX→∞ µ̃nX
(x) = ∞, x ∈ (0, X). Furthermore, the second equation in Eq. (48) is

satisfied by the assumption Eq. (45). Therefore, there must exist an nX such that EL
[

n∗
nX

]

= 1,
and thus the corresponding nnX

(x) satisfies the two equations in Eqs. (7).

D. Analysis of the discretized ODE system Eq. (15)

D.1. Uniqueness of the positive equilibrium of the ODE Eq. (15)

We shall first show that there is at most one positive steady-state solution {n∗
i } of the

discretized ODE Eq. (15). The positive steady-state solution to Eq. (15), if it exists, satisfies
the backward difference equation:

n∗
i−1 =

[

1 + ∆xµi +∆x
∑

j≥i

Kj,in
∗
j

]

n∗
i 1 < i ≤ L− 1 (51)

n∗
L−1 = ∆x(µL +KL,Ln

∗
L)n

∗
L (52)

L
∑

i=1

βin
∗
i = µ0n

∗
0 + n∗

0(
L
∑

j=0

Kj,in
∗
j) +

n∗
0

∆x
. (53)

We proceed by showing that if {m∗
i } and {n∗

i } are two positive steady states, then m∗
L = n∗

L.
If m∗

L = n∗
L, then by induction, m∗

i ≡ n∗
i . If n∗

L > m∗
L, then n∗

L−1 > m∗
L−1 by Eq. 52. Since

Ki,j ≥ 0, we observe that KL−1,Ln
∗
L ≥ KL−1,Lm

∗
L. This inequality further demonstrates that

n∗
L−2 > m∗

L−2 combined with Eq. 51. Thus, by induction, n∗
L > m∗

L leads to n∗
i > m∗

i for all
i ∈ {0, 1, ..., L}.

Next, let ni(t) be solutions to Eq. 15 with the initial value equal to the steady state n∗
i .

Let B(t) :=
∑

i βini(t) be the newborn population at time t. Then, for any compartment i,
the population ni(t) at time t is composed of two parts: the survivors from the initial t = 0
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population and those who were born in (0, t). In order to characterize survival, we define
{sj,i(t)}

L
j=0 to be the solution of

dsi,0(t)

dt
= −µ0si,0(t)− si,0(t)

L
∑

j=0

Kj,0nj(t)−
si,0(t)

∆x
,

dsi,j(t)

dt
= −µisi,j(t)− si,j(t)

L
∑

j′=j

Kj′,jnj′(t) +
si,j−1(t)− si,j(t)

∆x
, 0 < j < L,

dsi,L(t)

dt
= −µLsi,L(t)− si,L(t)KL,LnL(t) +

si,L−1(t)

∆x
,

(54)

with the initial condition si,j(0) = 1, i = j and sik(0) = 0, ∀k 6= i.
Note that an initial condition ni(0) = n∗

i implies that ni(t) = n∗
i . Since death rates and

interaction terms do not explicitly depend on time, the survival fraction is time-translation
invariant, i.e., the survival from compartment i at time t = 0 to the compartment j at time
t = T − τ is the same as survival from compartment i at time t = τ to the compartment j at
time t = T . Therefore, the solution to Eq. 15 can be written as

ni(t) =

L
∑

j=0

nj(0)sj,i(t) +

∫ t

0

B(τ)s0,i(t− τ)dτ, (55)

where B(t) :=
∑L

i=0 βini(t) is the total birth rate at time t. Since every individual eventually
dies, we have limt→∞ si,j(t) = 0 for all i, j. Therefore, using the solution in Eq. (55) in B(t),
the birth rate can be decomposed into contributions from the initial population and from the
population born within time (0, t):

B(t) =

L
∑

i,j=0

βjni(0)si,j(t) +

∫ t

0

B(t− τ)

L
∑

i=0

βis0,i(τ)dτ. (56)

At steady state, we introduce the lower and upper bounds of B(t):

∫ t

0

B(t− τ)

L
∑

i=0

βis0,i(τ)dτ ≤ B(t) ≤

∫ t

0

B(t− τ)

L
∑

i=0

βis0,i(τ)dτ +

L
∑

i,j=0

n∗
i max

i
{βi}si,j(t), (57)

where the left-hand side represents the birth rate at time t generated by individuals born with
(0, t) and the right-hand side are birth rate of newborns at time t that are offspring of individuals
born within (0, t), plus the maximum possible number of offspring that the initial population
could give birth to at time t. When ni(0) = n∗

i , B(t) := B is a constant and the limit t → ∞
forces the lower and upper bounds to converge yielding

B = B

∫ ∞

0

L
∑

i=0

βis0,i(τ)dτ, (58)

which is the discrete analogue of theR0 = 1 condition of Eq. (42) where the factor
∫∞

0

∑L
i=0 βis0,i(τ)dτ

on the right-hand side is the expected offspring that one individual has during its lifetime.
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Similar to the proof of uniqueness in Appendix B, it is intuitively clear that s0,i(a) as well as
∫∞

0

∑L
i=0 βis0,i(τ)dτ monotonically decreases with with increasing effective death rate µ̃i. We

demonstrate this by explicitly computing

1 =

∫ ∞

0

L
∑

i=0

βis0,i(τ)dτ =

L−1
∑

i=1

i−1
∏

j=0

1

(1 + ∆xµ̃j)

∫ ∞

0

(µ̃i +
1
∆x

)βite
−(µ̃i+1/∆x)tdt

+

L−1
∏

j=0

1

(1 + ∆xµ̃j)

∫ ∞

0

µLβLte
−µ̃Ltdt,

=
L−1
∑

i=1

i−1
∏

j=0

βi∆x

(1 + ∆xµ̃j)(∆xµ̃i + 1)
+

L−1
∏

j=0

βL

µL(1 + µ̃j)
,

(59)

where µ̃i := µi+
∑

j>iKj,in
∗
j . The first term on the right-hand side of Eq. (59) is the summation

of the expected number of offspring that an individual gives birth to while in the ith, i < L stage
multiplied by the probability that it will survive until the ith stage. The second term on the
right-hand side is the expected number of offspring that an individual gives birth while in the
Lth stage multiplied by the probability that it survives to the Lth stage. If n∗

i > m∗
i , i = 0, . . . , L

and there exists at least one Kj,i > 0, then µ̃n
i > µ̃m

i and Eq. (59) cannot be satisfied by two
distinct steady-state solutions {m∗

i } 6= {n∗
i }.

D.2. Permanent overcompensation is precluded in two-compartment ODE models

In the following discussion, we will exclude the artificial self-inhibition term Ki,i as a result
of binning the age structure into a finite number of compartments. We start by considering the
simplest two-compartment model by imposing some additional assumptions on the coefficients.
Setting L = 1 (two compartments) in Eq. (15), we find

dn0

dt
= −µ0n0 −K1,0n1n0 + β1n1 −

n0

∆x
,

dn1

dt
= −µ1n1 +

n0

∆x
. (60)

Eq. (60) admits a unique steady state at

(n∗
0, n

∗
1) =

(β1 − µ1 − µ0µ1∆x

K1,0
,
β1 − µ1 − µ0µ1∆x

K1,0µ1∆x

)

, (61)

which, as is the total population n∗
0 + n∗

1, monotonically decreasing with either µ0 or µ1, in-
dicating that steady-state overcompensation cannot arise. The Jacobian matrix at the fixed
point is

J =







−µ0 −K1,0n1 −
1

∆x
−K1,0n0 + β1

1

∆x
−µ1






. (62)

which has two negative eigenvalues if the equilibrium (n∗
0, n

∗
1) > 0. Therefore, the steady state

is stable and we do not expect periodic oscillations about this fixed point.
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D.3. Undamped oscillations are precluded in a three-compartment model

Setting L = 2 in Eq. (15), we obtain

dn0

dt
= −

n0

∆x
− µ0n0 −K1,0n1n0 −K2,0n2n0 + β1n1 + β2n2,

dn1

dt
= −

n1

∆x
+

n0

∆x
− µ1n1 −K2,1n2n1,

dn2

dt
=

n1

∆x
− µ2n2.

(63)

First, we demonstrate that this three-compartment model can exhibit overcompensation by
considering a simple specific set of parameters: β2 = β ′

2 + µ2, β
′
2 ≥ 0, µ1 = 0, K1,0 = K2,1 = 0.

Equations (63) then simplify to

dn0

dt
= −

n0

∆x
−K2,0n2n0 + (β ′

2 + µ2)n2 + β1n1,

dn1

dt
=

n0 − n1

∆x
,

dn2

dt
=

n1

∆x
− µ2n2

(64)

which admits the positive steady state

(n∗
0, n

∗
1, n

∗
2) = (

β1µ2∆x+ β ′
2

K2,0
,
β1µ2∆x+ β ′

2

K2,0
,
β1µ2∆x+ β ′

2

∆xµ2K2,0
) (65)

and the total steady-state population

N(µ2) := n∗
0 + n∗

1 + n∗
2 = 2

β1µ2∆x+ β ′
2

K2,0
+

β1µ2∆x+ β ′
2

∆xµ2K2,0
. (66)

Therefore, ∂µ2N(µ2) =
2β1∆x
K2,0

−
β′

2

K2,0µ2
2∆x

indicates that the total population at equilibrium N(µ2)

will increase with the death rate of the oldest population µ2 if µ2 >
√

β′

2

2β1∆x2 . So in order to

observe overcompensation, at least three compartments are needed.
Next, we show that the positive steady state of the three-compartment model Eqs. (63),

if it exists, is stable. This statement holds for general parameter values in Eqs. (63). The
steady-state populations n∗

i obey the relationships

n∗
1 = ∆xµ2n

∗
2, n∗

0 =
(

∆x+ µ1∆x2 +∆x2K2,1n
∗
2

)

µ2n
∗
2,

∆xβ1µ2 + β2 = µ2

(

µ0 +∆xK1,0µ2n
∗
2 +K2,0n

∗
2 +

1

∆x

)

(

∆x+∆x2µ1 +∆x2K2,1n
∗
2

)

.
(67)

Therefore, this system contains one real positive fixed point whenever a positive root for n∗
2

satisfies the last equation in (67). This occurs for parameters values for which

β1µ2∆x+ β2 > µ2

(

µ0∆x+ 1
)(

µ1∆x+ 1
)

. (68)
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The Jacobian matrix at this fixed point is

J =















−µ0 −K1,0n
∗
1 −

1

∆x
−K2,0n

∗
2 −K1,0n

∗
0 + β1 −K2,0n

∗
0 + β2

1

∆x
−

1

∆x
− µ2 −K2,1n

∗
2 −K2,1n

∗
1

0
1

∆x
−µ2















(69)

whose eigenpolynomial is

f(λ) ≡ det(λI− J)

=
(

λ+ µ0 +K1,0n
∗
1 +

1

∆x
+K2,0n

∗
2

)(

λ+
1

∆x
+ µ1 +K2,1n

∗
2

)

(λ+ µ2) +
1

∆x2
(K2,0n

∗
0 − β2)

+
1

∆x
K2,1n

∗
1

(

λ+ µ0 +K1,0n
∗
1 +

1

∆x
+K2,0n

∗
2

)

+
1

∆x
(λ+ µ2)(K1,0n

∗
0 − β1),

(70)
where I is the identity matrix. In order to simplify this expression, we define the effective death
rates to be µ̃0 = µ0+n∗

1K1,0+n∗
2K2,0 and µ̃1 = µ1+n∗

2K2,1. Then, the eigenpolynomial can be
simplified into

f(λ) =λ3 + C2λ
2 + C1λ+ C0,

C2 = µ2 + µ̃0 + µ̃1 +
2

∆x

C1 = K1,0n
∗
1

(

µ̃1 +
1

∆x

)

+K2,1n
∗
2µ2 + µ2C2 +

β2

∆x2µ2

C0 =
µ2

∆x

(

K1,0n
∗
1∆xµ̃1 +K1,0n

∗
1 +K2,0n

∗
2∆xµ̃1 +K2,0n

∗
2 +K2,1n

∗
2∆xµ̃0 +K2,1n

∗
2

)

(71)

Here, we have employed Eq. (67) to replace n∗
0, n

∗
1, and β1 by simple terms involving n∗

2. Note
that our parameters are all non-negative. We may reasonably parameterize our model such
that at least one Ki,j > 0, at least one µi > 0, at least one βi > 0, and all n∗

i > 0. Under such
assumptions, C0, C1, C2 > 0. Then, f(λ) is monotonically increasing on (0,+∞). Therefore,
f(λ) has no positive real root.

What remains is to show that f(λ) cannot have a pair of complex roots with positive real
parts, which we prove by contradiction. Suppose such a pair of complex roots λ± exists with
Re(λ±) > 0. Recall that f(λ) is a polynomial of degree 3, and, from our discussion above,
has a negative real root λ1. f(λ) can be factorized as f(λ) = (λ − λ1)(λ

2 + bλ + c) with
b = −(λ+ + λ−) < 0, λ1 < 0, and −λ1 + b = C2. Thus, λ1 < −C2 and because f(λ) is
monotonically increasing in (−∞,−C2), f(−C2) ≥ f(λ1) = 0.

We next demonstrate the polynomial −f(−λ−C2) = λ3+D2λ
2+D1λ

1+D0 is monotonically
increasing for λ > 0 and that D0 > 0. Through straightforward algebra, we note that D2 =
2C1 > 0, D1 = C2

2 +C1 > 0, D0 = C1C2−C0 > 0. To see D0 > 0, we just claim that every term
in C0 can be written as one term in the product C1C2. For example, the first term K1,0n

∗
1µ̃1µ2

in C0 can be written as the product of the K1,0n
∗
1µ̃1 term from C1 and the µ2 term from C2.

Also note that every term in C1 and C2 is positive. Thus, we have D0 > 0. We conclude
that f(−C2) < 0. This contradicts f(−C2) ≥ f(λ1) = 0 and precludes complex roots λ± with
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positive real parts.
Combining previous uniqueness statement and stability analysis, the system Eq. (63) admits

at most one positive steady state which must be stable. Therefore, a three-compartment model
precludes oscillatory solutions in the total population since the positive steady state is stable.

D.4. Higher-order reduced ODE models

For higher-order ODE models with L+1, L ≥ 2 compartments, we can consider the special
case



























dn0

dt
= −

n0

∆x
−KL,0n0nL + β1n1 + (β ′

L + µL)nL,

dni

dt
=

ni−1 − ni

∆x
, i = 1, 2..., L− 1,

dnL

dt
=

nL−1

∆x
− µLnL.

(72)

which has the equilibrium

n∗
i =

β1µL∆x+ β ′
L

KL,0
, i = 0, ..., L− 1; n∗

L =
β1µL∆x+ β ′

L

KL,0µL∆x
. (73)

The total population at equilibrium as a function of µL is N∗(µL) :=
∑L

i=0 n
∗
i = L

β1µL∆x+β′

L

KL,0
+

β1µL∆x+β′

L

KL,0µL∆x
. Therefore, dN(µL)

dµL
= Lβ1∆x

KL,0
−

β′

L

KL,0µ
2
L
∆x

, indicating that the total population at

equilibrium is increasing with µL as long as µL >
√

Lβ′

L

β1∆x2 . Thus, for higher-order compartment

ODE models, overcompensation of the total equilibrium population to increases in death rate
of certain subpopulations is always possible.

The equilibrium of multi-compartment ODE models, if it exists, could be unstable. We now
switch back to the model discussed in the main text in Section 3.4. The numerical solution of
the structured population obtained by the finite volume method, which is a 500-compartment
ODE Eq. (15) with L = 499 displays undamped oscillatory behavior. We numerically analyzed
the stability of the positive equilibrium of the PDE Eq. (5) with the cannibalism rate K(x′, x)
defined by Eq. (12) and the same age-independent birth rate β and death rate µ as used
in subsection 3.4. As a surrogate of the PDE Eq. (5), we numerically analyzed the derived
ODE system Eq. (15) in subsection 3.4 with dx = 0.02, L = 499. In Eqs. (51) and (52),
n∗
i−1 is completely determined by

{

n∗
j : j ≥ i

}

. Therefore, the steady-state solution n∗
i , i =

0, .., L−1 can be parameterized by the value of n∗
L, i.e., n

∗
i = n∗

i (n
∗
L). Considering the newborn

individuals, we employed the bisection method to find a proper positive n∗
L such that Eq. (53)

is satisfied.
We then consider the Jacobian matrix J(n∗) of the dynamical system at the steady state and

numerically find its eigenvalues. We denote the principle eigenvalue of J(n∗) with the largest
real part by λ0. The eigenvector corresponding to λ0 decays (grows) slowest for Reλ0 < 0
(Reλ0 > 0) and characterizes the long-term local dynamical behavior of the system. Near the
steady state, we found that, corresponding to the region of oscillation described in Fig. 2(f),
there is also a region of linearly unstable steady states with Reλ0 > 0 shown in Fig. 3(a).

To better understand the correspondence between oscillation and unstable steady states,
we examined real and imaginary parts of λ0 as a function of β in detail, as shown in Fig. 3(b).
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When β = 2.5 is fixed, the real part of the principal eigenvalue Reλ0 increases as µ is decreased,
vanishing at about µ ≈ 0.7. At this point λ0 (and λ∗

0) become purely imaginary, indicative of
a Hopf-type bifurcation. As µ is further decreased, λ0 and λ∗

0 acquire positive real parts. This
regime corresponds to the numerical result plotted in Fig. 2(c.d) where undamped oscillations
are found to arise when β = 2.5, µ ≤ 0.7.

Figure 3: (a) Heatmap of the real part of the principle eigenvalue λ0 associated with the Jacobian
matrix of the discretized ODE system Eq. (15) at its fixed point. The top left region takes positive
real values. (b) Dependence of the largest eigenvalue λ0 on µ for β = 2.5. When µ is small, Reλ0 > 0,
which indicates an unstable positive equilibrium. In (a) and (b), β, µ are age-independent, and the
cannibalism rate is derived from K3 in Eq. (12). (c) The first five eigenvalues for µ = 0.6, 0.7, 0.8 (open
circle, triangle, square, respectively). When µ = 0.6, λ0 has a positive real part; when µ = 0.7, 0.8, λ0

has a negative real part, implying stability of the steady state.

Generalizing to more compartments, if the Jacobian matrix JL of the positive equilibrium
(n∗

0, . . . , n
∗
L) of the (L+1)-compartment reduced ODE model Eq. (15) has an unstable equilib-

rium, we can assume that

vL ∈ R
L+1, JLvL = λIvL = (v1, ..., vL) 6= 0, Reλ > 0. (74)

For L′ > L, we can consider the following ODE model

dn0

dt
= −µ0(t)n0(t)− n0(t)

L
∑

j=i

(Kj,0(t)nj(t)) +

L
∑

j=1

βj(t)nj(t)−
n0(t)

∆x
,

dni

dt
= −µi(t)ni(t)− ni(t)

L
∑

j=i

(Kj,i(t)nj(t))−
ni(t)− ni−1(t)

∆x
, L ≥ i > 0,

dni

dt
=

ni−1(t)− ni(t)

∆x
, i > L

(75)

which has a positive equilibrium (n∗
0, ..., n

∗
L, n

∗
L+1, ..., n

∗
L′), n∗

i = n∗
L, i > L. Denoting the Jaco-

bian matrix of the equilibrium of the ODE Eq. (75) to be JL′ , it is obvious that λ is also an
eigenvalue of JL′ with the corresponding eigenvector

vL′ = (v1, ..., vL,
1

1+∆xλ
vL, . . . , (

1
1+∆xλ

)L
′−LvL). (76)

Therefore, all reduced ODE systems with L′ > L compartments have a positive equilibrium
whose Jacobian matrix has a positive eigenvalue. Therefore, the positive equilibrium can be
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unstable, which could then lead to undamped oscillating solutions.

E. Additional examples of overcompensation

E.1. Cannibalism-related birth rate

In the main discussion, we assumed that cannibalism only modifies the death rate. Here, we
provide a numerical example in which preying on juveniles can increase birth rates. This limit
may arise when food is not abundant and cannibalism provides nourishment for reproduction.
We consider using the following coefficients in Eq. (5)

K(x′, x) = K1(x
′, x) ≡ θ(x′ − 2)θ(2− x), β(x, φ[n; x]) = β0 +

1

4

∫ ∞

0

K(x, x′)n(x′, t)dx′, (77)

where β0, µ are constants. We plot the total steady-state population at as a function of β0

and µ in Fig. E.1(b). When β0 is fixed, the total population is found to first increase with the
death rate µ until µ → β+

0 when the population starts to diminish. This implies that for the
cannibalism-rate-dependent birth rate β defined in Eq. (77), overcompensation can arise.

Figure 4: (a) The steady-state total population N∗(β(x, φ[n;x])) that displays overcompensation with a
constant death rate for the cannibalism-dependent birth rate Eq. (77), where cannibalism has a positive
effect on the birth rate. (b) The difference in the steady-state population N∗(β(x, φ[n;x]))−N∗(β0),
where N∗(β(x, t)) is the steady-state total population with a constant birth rate β := β0. Because
β(x, φ[n;x]) > β0 for n∗, the difference is always positive. Furthermore, for some fixed β0, the
difference N∗(β(x, φ[n;x])) − N∗(β0) also “overcompensates” by first increase then decrease with
µ := µ0. (c) The steady-state total population for h1, h2 in Eq. (78) for the harvesting model Eq. (11).
Overcompensation is observed with increasing harvesting rates. Furthermore, since h1 > h2 if h is the
same, for a fixed h, the total population under the harvesting rate h1 is greater than that under h2.

E.2. Harvesting-induced overcompensation

Populations can also respond to age-dependent harvesting, as is practiced in animal culling
and fisheries. Our age-structured Lotka-Volterra model can be modified to include a harvesting
term h(n; x, t) that could be a nonlinear function of n (Diedrichs, 2019), as described by Eq. (11).

We explore age-dependent harvesting h(n; x, t) that preferentially removes older populations
and show numerically that overcompensation can arise for the two forms of harvesting

h1 = min{n(x, t), h}θ(x− 2), h2 =
hn(x, t)

n(x, t) + n1/2

θ(x− 2), (78)
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where h is the intrinsic maximum harvesting rate and n1/2 is a constant half-saturation density.
Both effective harvesting rates h1 and h2 vanish with the population densities n(x, t), saturate
to h when n(x, t) ≫ n1/2, and increase with the parameter h. We set all other dimensionless
coefficients in Eq. (11) to K(x′, x) = K4(x

′, x) = (x′ − x)θ(x′ − x), β = 1, µ = 0.5, n1/2 = 1.
In Fig. (E.1)(a), we plot the plot steady-state population N∗ for scenarios h1 and h2 as a
function of h. The total population N∗ is seen to increase with h for both harvesting strategies,
indicating overcompensation in response to increased harvesting rate.

E.3. Overcompensation following changes in birth rate

The usual “hydra effect” overcompensation is described by a steady state total population
that increases with the death rate. In all of our examples, the total steady-state population
increased with birth rate β. One can show that if K(x′, x) ≥ 0 and K(x′, x) = 0 for x > X
or x′ ≤ x, the steady-state solutions to Eq. (7) that correspond to birth rates β1(x) > β2(x),
n∗
β1
(x) and n∗

β2
(x), are such that the total steady-state total populations

N∗
β1

:=

∫ ∞

0

n∗
β1
(x)dx > N∗

β2
:=

∫ ∞

0

n∗
β2
(x)dx. (79)

In fact, steady-state solution n∗(x), x ≥ 0 to Eq. (7) can be expressed in terms of n∗(X)

{

n∗(x) = e−
∫ x

X
µ(x′)dx′

n∗(X), x ≥ X,

n∗(x) = e
∫ X

x
µ(x′)dx′

e
∫X

x

∫
∞

x′
K(y,x′)n∗(y)dydx′

n∗(X).
(80)

We conclude from Eq. (80) that if n∗
β1
(X) > n∗

β2
(X) then n∗

β1
(x) > n∗

β2
(x), x ≥ 0 and therefore

Eq. (79) still holds.
On the other hand, if n∗

β1
(X) ≤ n∗

β2
(X), we conclude from Eq. (80) that n∗

β1
(x) ≤ n∗

β2
(x), x ≥

0. However, from Eq. (42), we have

∫ ∞

0

βi(x)e
−

∫ x

0 µ̃i(a)dadx = 1, i = 1, 2 (81)

where

µ̃1(x) = µ(x) +

∫ ∞

x

K(x′, x)n∗
β1
(x′)dx′ ≤ µ̃2(x) = µ(x) +

∫ ∞

x

K(x′, x)n∗
β2
(x′)dx′. (82)

Therefore,

1 =

∫ ∞

0

β1(x)e
−

∫ x

0 µ̃1(a)dadx >

∫ ∞

0

β2(x)e
−

∫ x

0 µ̃2(a)dadx = 1 (83)

is a contradiction implying n∗
β1
(x) > n∗

β2
(x), x ≥ 0 and that the total steady-state population

n∗
β1
(x) > n∗

β2
(x), x ≥ 0 always increases with birth rate when K ≥ 0 and the predation is

unidirectional (old-eat-young).
In scenarios in which the younger population can prey on the older population, andK can be

negative, steady-state total populations can decrease with the birth rate, i.e., the steady-state
total population “overcompensates” as the birth rate decreases. As an example, we assume a
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dimensionless predation rate of the form

K̃(x′, x) ≡ 2θ(X − x′)− 1, (84)

set X, µ, and β to be dimensionless constants, and investigate how the population varies with
β. Here, the young population x′ < X suppresses the whole population as K̃(x′, x) = 1 >
0, x′ < X , while the old population x′ ≥ X has a positive effect on the whole population since
K̃(x′, x) = −1, x′ ≥ X . The explicit solution for the steady-state population is

n∗(x) =
β(β − µ)e−βx

(

1− 2e−βX
) , N∗ =

∫ ∞

0

n∗(x)dx =
(β − µ)

(

1− 2e−βX
) . (85)

Upon taking the derivative ∂βN
∗, we find

∂N∗

∂β
=

1− 2e−βX − 2(β − µ)Xe−βX

(

1− 2e−βX
)2 , (86)

and specifically,
(

∂N∗/∂β
)

< 0 if 2+2(β−µ)X > eβX . Therefore, if the interspecific interaction
K allows younger individuals to suppress the overall population, the steady-state population
can overcompensate by decreasing as the birth rate β is increased.
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