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Abstract

Background: Recent developments in molecular pathology and genetic/epigenetic analysis 
of cancer tissue have resulted in a marked increase in objective and measurable data. In 
comparison, the traditional morphological analysis approach to pathology diagnosis, which 
can connect these molecular data and clinical diagnosis, is still mostly subjective. Even though 
the advent and popularization of digital pathology has provided a boost to computer‑aided 
diagnosis, some important pathological concepts still remain largely non‑quantitative and 
their associated data measurements depend on the pathologist’s sense and experience. Such 
features include pleomorphism and heterogeneity. Methods and Results: In this paper, we 
propose a method for the objective measurement of pleomorphism and heterogeneity, using 
the cell‑level co‑occurrence matrix. Our method is based on the widely used Gray‑level co‑
occurrence matrix (GLCM), where relations between neighboring pixel intensity levels are 
captured into a co‑occurrence matrix, followed by the application of analysis functions such 
as Haralick features. In the pathological tissue image, through image processing techniques, 
each nucleus can be measured and each nucleus has its own measureable features like nucleus 
size, roundness, contour length, intra‑nucleus texture data (GLCM is one of the methods). In 
GLCM each nucleus in the tissue image corresponds to one pixel. In this approach the most 
important point is how to define the neighborhood of each nucleus. We define three types of 
neighborhoods of a nucleus, then create the co‑occurrence matrix and apply Haralick feature 
functions. In each image pleomorphism and heterogeneity are then determined quantitatively. 
For our method, one pixel corresponds to one nucleus feature, and we therefore named 
our method Cell Feature Level Co‑occurrence Matrix (CFLCM). We tested this method for 
several nucleus features. Conclusion: CFLCM is showed as a useful quantitative method for 
pleomorphism and heterogeneity on histopathological image analysis.
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INTRODUCTION

Digitization of histological slides has gained wide usage 
after the commercialization of whole slide imaging (WSI) 
scanners. On the computer side, many free software tools 
for analyzing these images have become available on the 
Internet. Digital pathology is still in a developing stage, 
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and many problems need to be solved, for example, 
standardization of image data format, color balance, 
resolution level, data compaction, etc., There are many uses 
of digital histology images: Archiving, research, pathology 
education,[1‑3] telepathology,[4,5] and the development of 
computer‑aided diagnosis (CAD) systems.[6‑11] Except 
for simple archiving, most computer‑processing of 
histopathological images follow a similar process.[12‑17] The 
first step is the standardization of the color balance[18] and 
resolution. Then, a region of interest (ROI) is selected. 
Next, an analysis of the image is performed that segments 
and measures target objects such as nuclei and glands.
[10,19‑21] The accuracy of the segmentation step has a great 
impact on the accuracy of all subsequent processes, and 
segmentation itself will be dependent on image quality 
and standardization. The next step after segmentation 
is feature measurement. In this step, raw pixel data are 
changed into quantitative and objective features which 
can then be used by statistical analysis and/or machine 
learning techniques. During the measurement process, 
over one‑hundred features may be extracted from each 
segmented object. Some features have a biological or 
intuitive meaning such as nucleus size, roundness, contour 
length, and staining luminance. Some other features, 
such as fractal dimension or texture features, are difficult 
to interpret biologically and medically; however, these 
features have been shown to carry important information 
for analysis and diagnosis sometimes. In particular, for 
CAD, the emphasis is often put on the accuracy of final 
diagnosis, while the interpretability of the features is less 
important. Conversely, some features commonly used by 
pathologists may not be used by the computer because 
they are too subjective and ambiguous in their definition.

In breast cancer grading, the Nottingham Histologic 
Score system (the Elston‑Ellis modification of the 
Scarff‑Bloom‑Richardson grading system) is widely used. 
In that grading system, three factors are scored: Gland 
formation level, nucleus pleomorphism, and mitotic 
cell counting. Each factor is scored from one to three 
for a maximum total score of nine. Gland formation 
and nucleus pleomorphism are widely used concepts 
in pathology, not only in breast cancer but also in any 
other cancer diagnosis. Unfortunately, these features are 
subjective and consequently the scoring varies among 
pathologists. Historically, mathematical approaches for 
tissue section analysis including graph analysis have been 
conducted since the late 1970s,[22,23] showing that the 
challenges of analyzing histologic patterns are not new. 
In this paper, we aim to create quantitative measurement 
methods for pleomorphism as well as for its close cousin, 
heterogeneity. The emphasis is on developing a robust 
and simple technique that can be applied with little 
computational cost.

Pleomorphism denotes the variability in the size, shape, 

and texture of cells and/or nuclei in a micro‑environmental 
area. On the other hand, morphological heterogeneity 
is the difference between micro‑environmental areas. 
Pleomorphism and heterogeneity are not direct 
measurement concepts such as nucleus size, roundness, 
and shape, but rather relationship concepts between 
segmented objects such as texture analysis. For example, 
in intra‑nucleus chromatin texture analysis, the gray‑level 
co‑occurrence matrix (GLCM) is a commonly used 
statistical algorithm.[12,15] In our approach, we use a 
co‑occurrence matrix method, applied to each cell 
profile data, so our algorithm is named cell feature 
level co‑occurrence matrix (CFLCM). For clinical 
data analysis, CFLCM provides features that may be 
combined with other features, such as CellProfiler 
output data. CFLCM parameters (co‑occurrence 
matrix size, neighborhood search area, etc.) may be 
adapted to different image conditions or tissue types. 
The CFLCM method explained in this technical note is 
easy to implement and provides important features with 
significant information about the tissue conditions.

MATERIALS AND METHODS

Samples
We analyzed a total of 23 specimens: 20 invasive breast 
cancer and 3 breast ductal carcinoma in situ (DCIS) 
obtained from formalin‑fixed, paraffin‑embedded (FFPE) 
blocks. All samples were diagnosed and surgically obtained 
at Shinshu University Hospital. This study was performed 
according to the Helsinki Declaration and was approved 
by the Ethics Committee of Shinshu University Hospital.

Tissue preparation and whole slide scanning
All FFPE samples were sectioned with a thickness of 
4 μm. After hematoxylin and eosin (H and E) staining 
according to the standard method, all slides were scanned 
using a WSI scanner (Nanozoomer 2.0‑HT slide scanner; 
Hamamatsu Corp., Hamamatsu, Shizuoka, Japan) 
at ×20 and were stored as tag image file format files on 
a computer system.

Analytical image selection
From the WSI images, several ROI were selected 
manually for analysis. Each ROI size is 2048 by 2048 
pixels, corresponding approximately to 1 mm2. We 
also create micro‑ROIs by splitting evenly each ROI 
into 9 micro‑ROIs, thus extending the analysis to 
31 × 9 = 279 ROIs.

Since the main purpose of this paper is to confirm the 
effectiveness of the CHLCM algorithm, we positioned 
the ROIs manually at the sites of typical tissue structural 
areas. One should note that this approach is not suited to 
deliver quantitative clinical measures of heterogeneity as 
the size and position of these ROIs strongly influences the 
statistics of measured features. Algorithms will need to be 
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developed to appropriately select ROIs for given organs, 
cancer types, and purpose of heterogeneity measure. Such 
algorithms are beyond the scope of this paper.

Segmentation and cell (nucleus) features 
measurement
For each ROI image, a nucleus extraction (segmentation) 
process is performed. For this process, we used two 
free software programs, “Ilastick,”[24] “Fiji,”[25] as well 
as our original analysis tool.[26] These software packages 
each have their own advantages and disadvantages 
depending on staining and tissue condition; we selected 
the most reasonable segmentation for each ROI image 
[Figure 1a and b]. The next step is the creation of a 
mask image in which all nonnucleus areas are set to 
zero [Figure 1c] and are multiplied with the original 
image [Figure 1d]. The resulting masked image is then 
input into “CellProfiler,”[27] a free software package for 
quantitative analysis of pathology images, to measure 
cell features. Note that for stromal cells, areas of 
lymphocyte invasion are excluded. The original H and E 
stained images are changed to gray‑level and masked 
images [Supplementary Figure 1a and b]. CellProfiler 
outputs the image with the nuclei selected for feature 
measurement, as well as a part of the table of measured 
features [Supplementary Figure 1c]. The features consist 
of 16 nucleus shape‑related features, 12 nucleus texture 
radius distribution features, 52 GLCM texture features 
and nucleus position coordinate data.

GLCM is a popular texture analysis technique in 
image analysis. The original image is first converted 
into a gray level bitmap. Then, for each pixel and for 
each neighboring pixel (direction), their respective 
intensity level is measured, and the corresponding 
co‑occurrence entry into a two‑dimensional level matrix 
is incremented [Figure 2a]. The matrix size depends on 
the number of gray levels considered (for the standard 
256 levels, the resulting matrix has a size of 256 × 256). 
Usually, 4 directions (θ =0, 45, 90, and 135) are 
considered and a total of 4 co‑occurrence matrices are 
generated [Figure 2b]. Finally, from all co‑occurrence 
matrices, a set of metrics are calculated that are referred 
to as Haralick features [Supplementary Figure 2].

Cell feature level co‑occurrence matrix
GLCM matrices are obtained from intensity‑level 
co‑occurrences between neighboring pixels. We 
extend this concept to segmented nuclei and propose 
to measure the co‑occurrence of features between 
neighboring nuclei. We employ three different methods 
to select the neighboring nuclei: Nearest, circle, and 
lattice [Figure 3]. The “Nearest” method selects as 
neighbor the nearest nucleus measured by the Euclidian 
distance between their centers of gravity [Figure 3a]. 
When the distance to the nearest nucleus is larger than 
five times the average nucleus diameter, we define that 
nucleus as having no neighborhood. With this method, 
one nucleus is selected as the neighborhood nucleus and 
this process is performed for all nuclei on the ROI image 
to create the CFLCM.

The “Circle” method selects as neighbors, all nuclei 
located within a radius of five times the average nucleus 
long axis [Figure 3b]. The “Lattice” method [Figure 3c] 
selects as neighbors all nuclei within the same lattice 
tile. The square lattice is created at intervals of twice 
the average nuclear long axis. Since both “Lattice” and 
“Circle” methods obtain several nuclei as neighbors, 
the averages of their features are used for the CFLCM 
creation. From each of the three co‑occurrence matrices, 
we calculate the Haralick features as described in 
Supplementary Figure 2.

The results shown here were obtained with a CFLCM 
co‑occurrence matrix size of 256, and 79 features 
were measured by the following CellProfiler Modules: 
MeasureObjectsSizeShape, MesureTexture, and 
MeasureObjectRadialDistribution. From all those 
features, we selected the following 4: nucleus size, 
Roundness, GLCM Contrast, and GLCM entropy, 
because they allow an intuitive understanding the 
CFLCM results. Regarding for calculation of the Haralick 
features, we used MATLAB, R2016a.

RESULTS

Testing on artificial patterns and easy case tissues
Before applying to actual case images, we tested the 
methods with artificially generated patterns emulating 

Figure 1: Nuclei extraction process: for measuring nuclei features, intermediate images on the computer system are shown. (a) Original 
H and E image (b) extraction and segmentation of nuclei (c) binary mask image showing inside and outside of nuclei area (d) final masked 
image for input to CellProfiler nuclei measurements

a b c d
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the distributions of nucleus sizes. Figure 4 shows 
two artificially generated images which have the same 
averages and standard deviations (StdDev) of nucleus 
area sizes. Figure 4a shows so‑called “front formation” 
patterns that have clear boundaries. Such a pattern is 
typical for boundaries between two components, such as 
neoplastic lesions and normal lesions, and it is often used 
as evidence for the diagnosis. In contrast, Figure 4b is a 
representative pattern for the center of malignant tissues. 
Using statistical parameters such as average and StdDev, 
it is difficult to discriminate between these two patterns. 
However, CFLCM nearest (contrast) values for nucleus 
size are 33 and 2065, respectively, for the two patterns, 
demonstrating the great discriminatory power of this 
technique. This shows the importance of applying the 
new method and not just relies on first‑order statistical 
measurements.

Figure 5 is a typical sample of invasive breast cancer 
tissues. Figure 5a is low to intermediate grade and 
Figure 5b is high‑grade pleomorphism. CFLCM nearest 
(contrast) values for nucleus size are 76.4 and 149.3, 
respectively. However, CFLCM nearest (contrast) values 
for roundness are almost the same: 3313.8 and 3252.9, 
respectively. Figure 5a and b have marked differences of 
nucleus size but not of roundness. In general, for human 
eyes, nucleus size pleomorphism and heterogeneity can 
be detected intuitively, but other parameters such as 

roundness or intra‑nucleus texture‑based differences may 
be difficult to assess.

Measured data for actual case tissues
At the nuclei level, “CellProfiler” provides 52 features. 
Applying 3 methods of selecting a neighborhood 
nucleus (nearest, circle, and lattice) to create 3 CFLCM 
matrices and extracting 14 Haralick functions from each 
of them, a total of 52 × 14 × 3 =2,184 pleomorphism 
and heterogeneity features were generated. We choose 
to focus on five nuclei‑level features: Two morphologic 
features (nucleus size and nucleus roundness) and 3 
GLCM texture features (contrast, homogeneity, and 
entropy). We also select 4 Haralick functions to extract 
features from the 3 CFLCM matrices: Second angular 
moment, contrast, homogeneity, and entropy [f1, f2, f5, 
and f9, respectively, in Supplementary Figure 2]. This 
way we consider a set of 5 × 3 × 4 = 60 features.

Representative case images for DCIS and Invasive are shown 
in Figures 6 and 7, respectively. In each figure, (a) shows the 
selected ROI positions on the WSI image and (b) shows 
the corresponding selected ROI images. Each ROI size is 
2048 × 2048 pixels (corresponding to an area of about 
1 mm2). To check micro‑environmental pleomorphism and 
heterogeneity, we split the ROI images into 9 micro‑ROI 
images (size 682 × 682 pixels) [Figure 8].

Nucleus features average and standard deviation
As an initial statistical evaluation, we analyze the 
correlation between average and StdDev for several 
nucleus‑level features over a ROI. On Figure 9, we plot 
the nucleus size for the full size ROIs (top row) and the 
micro‑ROIs (bottom row). In all cases, the nucleus size 
StdDev is strongly correlated to the nucleus size average. 
The plots for all morphologic and texture features 
for both full ROIs and micro‑ROIs can be found on 
Supplementary Figures 3 and 4. For intra‑nucleus texture 
features (GLCM contrast, entropy and homogeneity), 
StdDev shows weak correlation to its average. However, 
for roundness (0 is perfect circle, 1 is line shape), StdDev 
shows a strong negative correlation.

Evaluation of neighborhood selection and feature 
extraction methods
Figure 10 shows nucleus size pleomorphism/heterogeneity 
features for the three neighborhood selection methods 
(nearest, circle, and lattice) based co‑occurrence matrix 

Figure 2: Gray-level co-occurrence matrix: Explanation of gray-level 
co-occurrence matrix process. (a) From intensity level of gray 
scale (left) to co-occurrence matrix creation (right) (b) various 
directions for gray-level co-occurrence matrix measurement

a

b

Figure 3: Neighborhood selection methods: Three methods of neighborhood selection, (a) nearest (b) circle and (c) lattice

a b c
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Figure 4: Artificial pattern diagrams: The patterns, which have the 
same average and standard deviations, exhibit significant differences 
in cell feature level co-occurrence matrix measurements. (a) Circles 
of different sizes are distributed according to which 9-sub-square 
they belong to (b) circles of different sizes are distributed randomly

a b

Figure 5: Typical images: Low to intermediate and high grade 
samples on pleomorphism of breast cancer. (a) Low to Intermediate 
grade breast cancer (b) high grade invasive breast cancer

a b

Figure 6: Ductal carcinoma in situ case: Analysis target position map and region of interest images on ductal carcinoma in situ case (a) 
yellow squares show the selected positions of region of interests (b) the selected region of interests at higher magnification. The numbers 
on each region of interest correspond to those on image (a)

a

b

and applied Haralick functions contrast [Supplementary 
Figure 2, f2]. Entropy [Supplementary Figure 2, f9] 
versus StdDev is shown in Supplementary Figure 5. 
Although there are small differences in absolute values, 

we notice that the CFLCM nearest and CFLCM circle 
methods produce very similar values. In Table 1, we report 
the correlation coefficient values for average, StdDev, 
CFLCM nearest (contrast), CFLCM circle (contrast) 
and CFLCM lattice (contrast) versus nucleus size, 
roundness, intra‑nucleus texture GLCM (contrast) and 
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Figure 7: Invasive case: Analysis target position map and region of interest images on Invasive case. (a) Yellow squares show the selected 
positions of  region of  interests  (b)  the  selected  region of  interests  at higher magnification. The numbers on each  region of  interest 
correspond to those on image (a)

a b

Figure 8: Micro-region of interests: For the purpose of measuring 
heterogeneity and pleomorphism at a micro-environmental level, 
we split region of interests evenly into 9 micro-region of interests

a b

intra‑nucleus texture GLCM (entropy) on all measured 
ROIs. Again, we notice that CFLCM nearest and circle 
show a high correlation for each parameter. Hence, the 
remaining evaluation will focus on the CFLCM nearest 
method and using the contrast feature.

Evaluation of nearest (contrast) features for 
nucleus shape and intra‑nucleus texture data
Figure 11 shows a plot of CFLCM nearest (contrast) 
feature versus StdDev of nucleus size for invasive breast 
cancer cases and DCIS cases (2048 pixels‑based ROIs). 
The plot shows that the CFLCM nearest (contrast) 
feature is able to separate the invasive cases from the 
DCIS cases almost perfectly, while the nucleus size 
StdDev is clearly not able to do so. To quantify this result, 
we perform linear discriminant analysis (LDA) on both 
features and obtain coefficients of 0.384 for nucleus size 
StdDev and of 1.487 for the CFLCM nearest contrast 
feature.

The result of LDA showed that the linear discrimination 
coefficient of StdDev and CFLCM nearest (contrast) 
values are 0.384 (P = 0.1122) and 1.487 (P < 0.001), 
respectively. These results mean that StdDev could not 
discriminate these histological differences sufficiently; on 
the other hand, our CFLCM method discriminates these 
histological differences clearly.

DISCUSSION

Digital histopathology’s merits are preservability, 
shareability, but most of all it is changing diagnosis from 
subjective to quantitative and objective. However, there 
are differences between computer measured features 
and those of a pathologist. Computer‑measured features 
are direct, objective reflection of measured data (e.g. a 
nucleus area is 250 pixels), while the pathologist’s 
features are product of her observations and past 
experience, making them more relative and subjective in 
nature. Furthermore, the definition of some widely used 
pathological features is often ambiguous. For example, 
the agreement among pathologists for the pleomorphism 
feature of the Nottingham criteria for breast cancer has 
been shown to be relatively low.[28]

Cancer tissues have some heterogeneity. Higher 
heterogeneity cases can lead to poor prognosis and 
lead to drug resistance.[29,30] Recent publications show 
that heterogeneity is no longer only understood to be a 
morphological finding, but they extend the concept to 
include genetic heterogeneity based on next generation 
sequencer data,[31] and phenotypic heterogeneity 
determined by immunohistochemistry staining.[32] 
Gerlinger et al. provided evidence of genetic intra‑tumor 
heterogeneity of renal carcinomas based on multi‑region 
genetic analysis.[33] In results of comprehensive molecular 
analysis of human breast tumors, authors demonstrated 
the existence of four main breast cancer classes and 
hypothesized that heterogeneity occurs within the major 
biological subtypes of breast cancer.[34] Morphological 
heterogeneity is an important piece of the puzzle, even if 
often described by pathologists with unprecise words such 
as “ugly” or “tidy,” because the traditional morphological 
analysis approach to pathology diagnosis can connect 
molecular big data analysis with clinical diagnosis. In this 
study, we describe an objective measurement method 
for morphological heterogeneity and hope it will help 
shine some quantitative light on this very subjective 
feature. When creating diagnosis assistance systems, 
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reducing false positive and false negative rates are 
primary concerns. However, providing assistance to the 
pathological thinking process is also a key factor. Using 
the novel approach of CFLCM, we quantify a concept 
derived from pathologists’ accumulated experience, 
making it objective and measurable.

We consider several levels of heterogeneity: Inter‑case, 
intra‑case, and micro‑environmental. A higher CFLCM 
nearest (contrast) value means higher heterogeneity. 
However, inter‑case heterogeneity should be compared 
with a range of ROIs because each case has its own 
baseline measurement value. Intra‑case heterogeneity 
is obtained by comparing ROIs of the same case, for 
example, in the DCIS case, ROIs number 1, 2, and 
9 show larger heterogeneity values. Heterogeneity is 
a comparative concept while the detection of outlier 
ROIs is a simple classification task. Micro‑environmental 
heterogeneity (internal heterogeneity of one fixed area 
ROI) is shown in Figure 8, DCIS #1 and Invasive 
#1 ROI [Figures 6 and 7, respectively] each with 9 

Figure 11: Nucleus size CFLCM nearest (contrast) versus standard 
deviation: All measured invasive and ductal carcinoma in situ cases 
data are plotted as a scatter diagram. Standard deviation shows a 
wide spread for both invasive and ductal carcinoma in situ cases. 
CFLCM, on the other hand, exhibits a very good separation between 
invasive and ductal carcinoma in situ cases

Figure 9: Nucleus size average versus standard deviation: Measured Average and standard deviation data plot for ductal carcinoma in situ 
and Invasive cases

Figure 10: Nucleus size standard deviation versus three methods: Nucleus size standard deviation versus nearest, circle, and lattice method 
based cell feature level co-occurrence matrix values are plotted
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micro‑ROIs. DCIS #5 micro‑ROI, and invasive case 
#1 micro‑ROI show large heterogeneity and both 
areas contain necrotic tissue. A wide variation of 
micro‑environmental heterogeneity values within a ROI 
is a robust indication of high heterogeneity.

We have presented a method for the objective measurement 
of pleomorphism and/or heterogeneity. Our method is 
simple and effective; furthermore, the implementation and 
running costs are very small. However, many important 
factors remain to be studied. Selecting a ROI size, 
position and/or what kind of nucleus feature (nucleus 
size, roundness, or intra‑nucleus texture, etc.) are used 
for analysis are crucial issues. For the human eye, nucleus 
size based pleomorphism/heterogeneity can be evaluated 
intuitively, but other parameters such as intra‑nucleus 
texture are extremely difficult to evaluate. Our method 
shows that several nuclear features can be used to compute 
pleomorphism/heterogeneity features. Recent developments 
in digital pathology include many quantitative analysis 
techniques. However, most software and tools are using 
first order statistics of nuclei morphology, making these 
approaches similar to cytological analysis. Pathological tissue 
samples contain a lot more information than first‑order 
measurements from nuclei. The relation between a nucleus 
and its neighboring nuclei contains important information 
and we provide in this paper a way to quantify it. Many 
challenges remain to be solved; in particular, the accuracy 
of the underlying nuclei segmentation is a fundamental 
problem. The selection of the nuclei features for our 
CFLCM approach is also an issue that deserves more study. 
Finally, the power of our CFLCM features needs to be 
further established by a larger clinical study. However, we 
believe this work to be an important first step in establishing 
the usefulness of quantitative heterogeneity features.
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Supplementary Figure 2: Haralick functions for co-occurrence matrix

Supplementary Figure 1: CellProfiler intermediate images and results. (a) segmented nuclei image (b) marked green nuclei are targets 
of measurement, marked pink nuclei are ignored (c) CellProfiler measurements of target nuclei
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Supplementary Figure 3: average versus standard deviation scatterplots for each full region of interest (2048 × 2048 pixels) (a) nucleus 
shape features (nucleus size and roundness) (b) Intra-nucleus features gray-level co-occurrence matrix (contrast, entropy and homogeneity)
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b



Supplementary Figure 4: average versus standard deviation scatterplots for each micro- region of interest (682 × 682 pixels) (a) nucleus 
shape features (nucleus size and roundness) (b) intra-nucleus features gray-level co-occurrence matrix (contrast, entropy and homogeneity)
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Supplementary Figure 5: Three neighborhood selection methods by contrast and entropy functions for ductal carcinoma in situ 2048 pixels 
region of interests


