

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-2-Bromo-1-[2-(2-nitrostyryl)-1phenylsulfonyl-1H-indol-3-yl]ethanone

J. Kanchanadevi,^a G. Anbalagan,^b V. Saravanan,^c A. K. Mohanakrishnan,^c B. Gunasekaran^{d*} and V. Manivannan^e*

^aDepartment of Physics, Velammal Institute of Technology, Panchetty, Chennai 601 204, India, ^bDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, ^cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, ^dDepartment of Physics & Nano Technology, SRM University, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai 603 203 Tamil Nadu, India, and ^eDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India

Correspondence e-mail: phdguna@gmail.com, crystallography2010@gmail.com

Received 5 January 2014; accepted 8 January 2014

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.007 Å; *R* factor = 0.044; *wR* factor = 0.116; data-to-parameter ratio = 14.5.

In the title compound $C_{24}H_{17}BrN_2O_5S$, the phenyl ring makes dihedral angles of 85.4 (2) and 8.8 (2) $^{\circ}$ with the indole ring system and the nitrobenzene ring, respectively, while the indole ring system and nitrobenzene ring make a dihedral angle of 80.1 (2)°. In the crystal, weak $C-H \cdots O$ interactions link the molecules, forming a two-dimensional network parallel to the bc plane.

Related literature

For the biological activity of indole derivatives, see: Andreani et al. (2001); Singh et al. (2000); Pomarnacka & Kozlarska-Kedra (2003); Srivastava & Pandeya (2011). For a related structure, see: Umadevi et al. (2013); Kanchanadevi et al. (2013).

organic compounds

 $V = 1110.08 (15) \text{ Å}^3$

 $0.35 \times 0.25 \times 0.25$ mm

17011 measured reflections 4323 independent reflections

3368 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 1.99 \text{ mm}^{-1}$

Z = 2

T = 295 K

 $R_{\rm int} = 0.027$

0.022(9)

Experimental

Crystal data

$C_{24}H_{17}BrN_2O_5S$
$M_r = 525.37$
Monoclinic, Pn
a = 10.1823 (7) Å
b = 8.0932 (6) Å
c = 13.8111 (12) Å
$\beta = 102.749 \ (2)^{\circ}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.543, T_{\rm max} = 0.609$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$
$wR(F^2) = 0.116$
S = 1.01
4323 reflections
298 parameters
2 restraints
H-atom parameters constrained

 $\Delta \rho_{\rm max} = 0.85 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 2093 Friedel pairs Absolute structure parameter:

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H2\cdots O5^i$	0.93	2.38	3.147 (5)	139
Commentary and as (i)	. 1	1		

Symmetry code: (i) $x - \frac{1}{2}, -y + 1, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5374).

References

- Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167 - 174
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kanchanadevi, J., Anbalagan, G., Saravanan, V., Mohanakrishnan, A. K., Gunasekaran, B. & Manivannan, V. (2014). Acta Cryst. E70, o148.
- Pomarnacka, E. & Kozlarska-Kedra, I. (2003). Il Farmaco, 58, 423-429.
- Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173-176.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Srivastava, A. & Pandeya, S. N. (2011). JCPR, 1, 1-17.
- Umadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2013). Acta Cryst. E69, o1784.

supplementary materials

Acta Cryst. (2014). E70, o149 [doi:10.1107/S1600536814000488]

(E)-2-Bromo-1-[2-(2-nitrostyryl)-1-phenylsulfonyl-1H-indol-3-yl]ethanone

J. Kanchanadevi, G. Anbalagan, V. Saravanan, A. K. Mohanakrishnan, B. Gunasekaran and V. Manivannan

1. Comment

Indole derivatives exhibits antibacterial, antifungal (Singh *et al.*, 2000) and antitumour activities (Andreani *et al.*, 2001). These derivatives also exhibits antimicrobial, antibiotic, analgesic, anticancer and anti-HIV (Pomarnacka & Kozlarska-Kedra, 2003; Srivastava & Pandeya, 2011) activities.

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structure (Umadevi *et al.*, 2013). The phenyl ring makes a dihedral angles of 85.4 (2)° and 8.8 (2)° with the indole ring system and the nitro benzene ring, respectively. The sum of bond angles around the atom N1 [355.7°] indicates sp^2 hybridization. The molecular structure is stabilized by weak intramolecular C—H…O interactions and the crystal packing is controlled by weak intermolecular C—H…O interaction.

2. Experimental

A solution of 2-nitrophenylvinyl-3-acetylindole (1.0 g, 2.29 mmol) and PTT (Phenyl trimethyl ammonium tribromide) (0.92 g, 2.46 mmol) in dry THF (10 ml) was stirred at 10 ° C for 1 h. After completion of the reaction (monitored by TLC), it was poured into crushed ice (100 g). The solid obtained was filtered and washed with MeOH (5 ml) to afford (*E*)-2-bromo-1-(2-(2-nitrostyryl)-1-(phenylsulfonyl)-1*H*- indol-3-yl)ethanone as a yellow solid (0.92 g, 78%) with melting point 184–186 ° C.

3. Refinement

H atoms were positioned geometrically and refined using riding model with C—H = 0.93Å and $U_{iso}(H) = 1.2Ueq(C)$ for aromatic C—H, C—H = 0.97 Å and $U_{iso}(H) = 1.2Ueq(C)$ for CH₂.

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Figure 2

The packing of (I), viewed down the *b* axis. Hydrogen bonds are shown as dashed lines.

(E)-2-Bromo-1-[2-(2-nitrostyryl)-1-phenylsulfonyl-1H-indol-3-yl]ethanone

Crystal data	
$C_{24}H_{17}BrN_{2}O_{5}S$ $M_{r} = 525.37$ Monoclinic, <i>Pn</i> Hall symbol: P -2yac a = 10.1823 (7) Å b = 8.0932 (6) Å c = 13.8111 (12) Å $\beta = 102.749$ (2)° V = 1110.08 (15) Å ³ Z = 2	F(000) = 532 $D_x = 1.572 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4350 reflections $\theta = 2.3-26.3^{\circ}$ $\mu = 1.99 \text{ mm}^{-1}$ T = 295 K Block, yellow $0.35 \times 0.25 \times 0.25 \text{ mm}$
Data collectionBruker APEXII CCD diffractometerRadiation source: fine-focus sealed tubeGraphite monochromatorDetector resolution: 0 pixels mm ⁻¹ ω and φ scansAbsorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.543, T_{max} = 0.609$	17011 measured reflections 4323 independent reflections 3368 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 26.3^\circ, \ \theta_{min} = 2.3^\circ$ $h = -12 \rightarrow 12$ $k = -9 \rightarrow 9$ $l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.116$	$w = 1/[\hat{\sigma^2}(F_o^2) + (0.0621P)^2 + 0.3412P]$
<i>S</i> = 1.01	where $P = (F_o^2 + 2F_c^2)/3$
4323 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
298 parameters	$\Delta ho_{ m max} = 0.85 \ { m e} \ { m \AA}^{-3}$
2 restraints	$\Delta ho_{ m min} = -0.43 \ m e \ m \AA^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 2093 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.022 (9)
map	

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.0805 (4)	0.3950 (5)	0.3857 (3)	0.0358 (8)
C2	0.0594 (5)	0.5284 (5)	0.3192 (3)	0.0516 (11)
H2	-0.0157	0.5329	0.2669	0.062*
C3	0.1535 (5)	0.6512 (5)	0.3345 (4)	0.0556 (11)
Н3	0.1419	0.7411	0.2915	0.067*
C4	0.2643 (5)	0.6461 (5)	0.4112 (3)	0.0516 (11)
H4	0.3264	0.7319	0.4184	0.062*
C5	0.2867 (5)	0.5171 (5)	0.4783 (3)	0.0437 (10)
Н5	0.3617	0.5156	0.5309	0.052*
C6	0.1926 (4)	0.3890 (4)	0.4643 (3)	0.0327 (8)
C7	0.1862 (4)	0.2356 (4)	0.5157 (3)	0.0307 (7)
C8	0.0699 (4)	0.1549 (4)	0.4711 (3)	0.0332 (8)
C9	0.0184 (4)	0.0034 (4)	0.5039 (3)	0.0353 (8)
Н9	-0.0185	-0.0765	0.4574	0.042*
C10	0.0230 (4)	-0.0236 (4)	0.5997 (3)	0.0340 (8)
H10	0.0499	0.0638	0.6432	0.041*
C11	-0.0110 (3)	-0.1803 (5)	0.6424 (3)	0.0330 (8)
C12	0.0184 (4)	-0.3288 (4)	0.6024 (3)	0.0366 (9)
H12	0.0557	-0.3276	0.5467	0.044*
C13	-0.0058 (4)	-0.4776 (5)	0.6424 (3)	0.0445 (10)
H13	0.0152	-0.5753	0.6138	0.053*
C14	-0.0612 (5)	-0.4832 (5)	0.7250 (4)	0.0483 (11)
H14	-0.0772	-0.5844	0.7522	0.058*
C15	-0.0924 (4)	-0.3399 (5)	0.7662 (3)	0.0462 (10)
H15	-0.1307	-0.3427	0.8214	0.055*
C16	-0.0671 (4)	-0.1910 (5)	0.7261 (3)	0.0391 (9)
C17	-0.2379 (4)	0.3680 (6)	0.4081 (3)	0.0478 (11)
C18	-0.2824 (5)	0.3030 (7)	0.4874 (4)	0.0632 (13)
H18	-0.2719	0.1908	0.5016	0.076*
C19	-0.3424 (6)	0.4035 (10)	0.5456 (5)	0.0866 (19)
H19	-0.3735	0.3600	0.5987	0.104*
C20	-0.3552 (5)	0.5662 (10)	0.5243 (6)	0.088 (2)
H20	-0.3955	0.6344	0.5636	0.106*
C21	-0.3106 (6)	0.6341 (8)	0.4465 (6)	0.086 (2)

H21	-0.3205	0.7468	0.4339	0.103*
C22	-0.2511 (5)	0.5356 (6)	0.3871 (5)	0.0660 (14)
H22	-0.2204	0.5803	0.3341	0.079*
C23	0.2995 (4)	0.1765 (5)	0.5939 (3)	0.0380 (8)
C24	0.3438 (5)	-0.0005 (5)	0.5889 (4)	0.0540 (12)
H24A	0.3226	-0.0366	0.5203	0.065*
H24B	0.2936	-0.0696	0.6254	0.065*
N1	0.0045 (3)	0.2503 (4)	0.3896 (2)	0.0356 (7)
N2	-0.1036 (5)	-0.0428 (5)	0.7741 (3)	0.0598 (11)
01	-0.1734 (3)	0.3120 (5)	0.2399 (2)	0.0654 (9)
O2	-0.2013 (3)	0.0745 (4)	0.3449 (2)	0.0602 (9)
O3	-0.1280 (5)	0.0831 (5)	0.7280 (4)	0.1015 (17)
O4	-0.1194 (10)	-0.0537 (6)	0.8566 (4)	0.171 (4)
O5	0.3599 (4)	0.2701 (4)	0.6549 (3)	0.0840 (13)
S1	-0.16138 (10)	0.24019 (13)	0.33528 (8)	0.0465 (3)
Br1	0.53169 (7)	-0.02967 (7)	0.64210 (6)	0.0930 (3)

Atomic displacement parameters $(Å^2)$

	<i>U</i> ¹¹	<i>U</i> ²²	U ³³	U^{12}	<i>U</i> ¹³	U ²³
C1	0.041 (2)	0.0338 (19)	0.0347 (19)	0.0033 (16)	0.0131 (16)	0.0055 (16)
C2	0.068 (3)	0.046 (2)	0.041 (2)	0.009 (2)	0.012 (2)	0.0114 (19)
C3	0.078 (3)	0.035 (2)	0.063 (3)	0.005 (2)	0.035 (3)	0.015 (2)
C4	0.072 (3)	0.031 (2)	0.064 (3)	-0.0046 (19)	0.040 (3)	-0.0004 (19)
C5	0.048 (2)	0.039 (2)	0.050 (2)	0.0000 (17)	0.0229 (19)	-0.0033 (18)
C6	0.0388 (19)	0.0250 (18)	0.037 (2)	0.0017 (15)	0.0154 (16)	-0.0031 (16)
C7	0.0379 (19)	0.0241 (18)	0.0314 (18)	0.0009 (15)	0.0103 (15)	-0.0018 (14)
C8	0.0386 (19)	0.0281 (19)	0.0337 (18)	0.0002 (15)	0.0094 (15)	-0.0067 (15)
C9	0.038 (2)	0.028 (2)	0.039 (2)	-0.0018 (15)	0.0053 (16)	-0.0013 (15)
C10	0.0364 (19)	0.0233 (17)	0.043 (2)	0.0005 (15)	0.0108 (17)	-0.0048 (15)
C11	0.0287 (17)	0.033 (2)	0.038 (2)	-0.0034 (14)	0.0090 (16)	0.0015 (16)
C12	0.0358 (19)	0.033 (2)	0.044 (2)	0.0006 (16)	0.0136 (17)	-0.0053 (16)
C13	0.050 (3)	0.029 (2)	0.057 (3)	0.0020 (16)	0.017 (2)	-0.0053 (19)
C14	0.057 (3)	0.031 (2)	0.059 (3)	-0.0047 (18)	0.016 (2)	0.0098 (19)
C15	0.052 (2)	0.043 (2)	0.049 (2)	0.000 (2)	0.0239 (19)	0.008 (2)
C16	0.045 (2)	0.0307 (19)	0.044 (2)	0.0013 (17)	0.0143 (18)	-0.0052 (17)
C17	0.032 (2)	0.050 (3)	0.057 (3)	-0.0010 (17)	0.0001 (19)	-0.008 (2)
C18	0.052 (3)	0.069 (3)	0.069 (3)	0.001 (2)	0.015 (2)	-0.012 (3)
C19	0.059 (3)	0.102 (5)	0.105 (5)	-0.008 (3)	0.032 (3)	-0.036 (4)
C20	0.042 (3)	0.101 (6)	0.123 (6)	0.002 (3)	0.021 (3)	-0.049 (4)
C21	0.056 (3)	0.064 (4)	0.128 (6)	0.010 (3)	0.001 (4)	-0.033 (4)
C22	0.045 (3)	0.055 (3)	0.092 (4)	0.008 (2)	0.004 (3)	-0.009 (3)
C23	0.045 (2)	0.030 (2)	0.035 (2)	-0.0002 (17)	0.0018 (17)	-0.0032 (16)
C24	0.057 (3)	0.039 (2)	0.056 (3)	0.0065 (19)	-0.009 (2)	0.001 (2)
N1	0.0380 (16)	0.0322 (16)	0.0351 (16)	0.0039 (13)	0.0050 (13)	0.0071 (13)
N2	0.090 (3)	0.039 (2)	0.060 (3)	0.0112 (19)	0.038 (2)	-0.0005 (19)
01	0.072 (2)	0.073 (2)	0.0417 (17)	0.0108 (18)	-0.0076 (15)	0.0061 (15)
O2	0.0532 (18)	0.0504 (19)	0.068 (2)	-0.0068 (14)	-0.0050 (16)	-0.0124 (15)
O3	0.160 (5)	0.047 (2)	0.127 (4)	0.025 (2)	0.097 (4)	0.008 (2)
04	0.381 (12)	0.081 (3)	0.095 (4)	0.049 (5)	0.149 (6)	0.003 (3)

supplementary materials

05	0.090 (3)	0.051 (2)	0.084 (3)	0.0122 (18)	-0.037 (2)	-0.0277 (19)
S1	0.0421 (5)	0.0469 (6)	0.0439 (5)	0.0024 (5)	-0.0046 (4)	-0.0057 (5)
Br1	0.0538 (3)	0.0647 (3)	0.1580 (7)	0.0143 (3)	0.0183 (3)	-0.0032 (4)

Geometric parameters (A,)	Geometric	parameters	(Å,	9
----------------------------	-----------	------------	-----	---

C1—C6	1.392 (5)	C14—H14	0.9300
C1—C2	1.403 (6)	C15—C16	1.374 (6)
C1—N1	1.412 (5)	C15—H15	0.9300
C2—C3	1.364 (7)	C16—N2	1.457 (5)
C2—H2	0.9300	C17—C18	1.379 (7)
C3—C4	1.368 (7)	C17—C22	1.387 (7)
С3—Н3	0.9300	C17—S1	1.742 (4)
C4—C5	1.381 (6)	C18—C19	1.378 (8)
C4—H4	0.9300	C18—H18	0.9300
C5—C6	1.396 (6)	C19—C20	1.349 (11)
С5—Н5	0.9300	C19—H19	0.9300
C6—C7	1.439 (5)	C20—C21	1.370 (10)
C7—C8	1.373 (5)	C20—H20	0.9300
C7—C23	1.475 (5)	C21—C22	1.378 (8)
C8—N1	1.406 (5)	C21—H21	0.9300
C8—C9	1.445 (5)	C22—H22	0.9300
C9—C10	1.332 (5)	C23—O5	1.197 (5)
С9—Н9	0.9300	C23—C24	1.508 (5)
C10—C11	1.472 (5)	C24—Br1	1.907 (5)
C10—H10	0.9300	C24—H24A	0.9700
C11—C12	1.383 (5)	C24—H24B	0.9700
C11—C16	1.400 (5)	N1—S1	1.692 (3)
C12—C13	1.370 (5)	N2—O4	1.188 (6)
C12—H12	0.9300	N2—O3	1.198 (5)
C13—C14	1.380 (6)	O1—S1	1.420 (3)
С13—Н13	0.9300	O2—S1	1.416 (3)
C14—C15	1.361 (6)		
C6—C1—C2	121.2 (4)	C16—C15—H15	120.1
C6—C1—N1	107.7 (3)	C15—C16—C11	122.3 (3)
C2-C1-N1	131.1 (4)	C15—C16—N2	116.7 (4)
C3—C2—C1	117.3 (4)	C11—C16—N2	121.1 (3)
С3—С2—Н2	121.3	C18—C17—C22	120.4 (5)
C1—C2—H2	121.3	C18—C17—S1	119.9 (4)
C2—C3—C4	121.9 (4)	C22—C17—S1	119.6 (4)
С2—С3—Н3	119.0	C19—C18—C17	120.3 (6)
С4—С3—Н3	119.0	C19—C18—H18	119.9
C3—C4—C5	121.9 (4)	C17—C18—H18	119.9
C3—C4—H4	119.0	C20—C19—C18	118.8 (7)
C5—C4—H4	119.0	C20—C19—H19	120.6
C4—C5—C6	117.5 (4)	C18—C19—H19	120.6
C4—C5—H5	121.3	C19—C20—C21	122.0 (6)
С6—С5—Н5	121.3	C19—C20—H20	119.0
C1—C6—C5	120.1 (4)	C21—C20—H20	119.0

C1—C6—C7	107.2 (3)	C20—C21—C22	120.0 (6)
C5—C6—C7	132.6 (4)	C20—C21—H21	120.0
C8—C7—C6	108.5 (3)	C22—C21—H21	120.0
C8—C7—C23	129.2 (3)	C21—C22—C17	118.4 (6)
C6—C7—C23	121.8 (3)	C21—C22—H22	120.8
C7—C8—N1	107.9 (3)	С17—С22—Н22	120.8
C7—C8—C9	126.8 (3)	O5—C23—C7	120.4 (4)
N1—C8—C9	125.2 (3)	O5—C23—C24	121.4 (4)
C10—C9—C8	121.0 (3)	C7—C23—C24	117.9 (3)
С10—С9—Н9	119.5	C23—C24—Br1	112.6 (3)
С8—С9—Н9	119.5	C23—C24—H24A	109.1
C9—C10—C11	125.5 (3)	Br1—C24—H24A	109.1
C9-C10-H10	117.3	C23—C24—H24B	109.1
C11—C10—H10	117.3	Br1—C24—H24B	109.1
C12—C11—C16	116.1 (3)	H24A—C24—H24B	107.8
C12 - C11 - C10	119.8 (3)	C8-N1-C1	108.6(3)
C16-C11-C10	1240(3)	C8-N1-S1	1254(2)
C13 - C12 - C11	121.0(3) 121.9(4)	C1 - N1 - S1	123.7(2) 121.7(2)
C13 - C12 - H12	119.0	$04 - N^2 - 0^3$	121.7(2) 1211(4)
C_{11} C_{12} H_{12}	119.0	04 - N2 - C16	121.1(4) 1185(4)
C12 - C12 - C12	120.3 (4)	03 - N2 - C16	110.3(4)
$C_{12} = C_{13} = H_{13}$	119.8	02 - 51 - 01	120.1(4) 120.4(2)
$C_{12} = C_{13} = H_{13}$	110.8	02 - 51 - 01	120.4(2)
$C_{14} = C_{13} = 1113$	119.6	02 - 51 - N1	100.40(17) 105.34(10)
$C_{15} = C_{14} = C_{15}$	119.0 (4)	$O_1 = S_1 = N_1$	103.34(19) 100.5(2)
$C_{13} = C_{14} = H_{14}$	120.2	02 - 51 - C17	109.5(2)
$C_{13} - C_{14} - 1114$	120.2	$N_1 = S_1 = C_1 7$	109.3(2) 104.24(17)
C14 - C15 - C10	119.0 (4)	NI-3I-CI/	104.24 (17)
С14—С15—Н15	120.1		
C6—C1—C2—C3	0.4 (6)	C17—C18—C19—C20	-0.8 (8)
N1—C1—C2—C3	-179.1 (4)	C18—C19—C20—C21	0.1 (9)
C1—C2—C3—C4	0.0 (7)	C19—C20—C21—C22	0.3 (9)
C2—C3—C4—C5	-0.7 (7)	C20-C21-C22-C17	0.0 (8)
C3—C4—C5—C6	1.0 (6)	C18—C17—C22—C21	-0.7 (7)
C2-C1-C6-C5	0.0 (6)	S1—C17—C22—C21	-179.3 (4)
N1—C1—C6—C5	179.6 (3)	C8—C7—C23—O5	-146.1 (4)
C2-C1-C6-C7	-178.3 (4)	C6—C7—C23—O5	42.6 (6)
N1-C1-C6-C7	1.3 (4)	C8—C7—C23—C24	39.2 (6)
C4—C5—C6—C1	-0.7 (5)	C6—C7—C23—C24	-132.1 (4)
C4—C5—C6—C7	177.1 (4)	O5-C23-C24-Br1	-25.8 (6)
C1—C6—C7—C8	-2.4 (4)	C7—C23—C24—Br1	148.9 (3)
C5—C6—C7—C8	179.6 (4)	C7—C8—N1—C1	-1.6 (4)
C1—C6—C7—C23	170.6 (3)	C9—C8—N1—C1	175.4 (3)
C5—C6—C7—C23	-7.4 (6)	C7—C8—N1—S1	-158.3 (3)
C6—C7—C8—N1	2.4 (4)	C9—C8—N1—S1	18.7 (5)
C23—C7—C8—N1	-169.8 (4)	C6-C1-N1-C8	0.2 (4)
C6—C7—C8—C9	-174.6 (3)	C2-C1-N1-C8	179.7 (4)
C23—C7—C8—C9	13.2 (6)	C6-C1-N1-S1	157.9 (2)
C7—C8—C9—C10	41.5 (6)	C2-C1-N1-S1	-22.6 (6)

N1—C8—C9—C10	-135.1 (4)	C15—C16—N2—O4	19.0 (8)
C8—C9—C10—C11	-172.1 (4)	C11—C16—N2—O4	-162.0(7)
C9—C10—C11—C12	34.8 (6)	C15—C16—N2—O3	-154.8 (5)
C9—C10—C11—C16	-148.3 (4)	C11—C16—N2—O3	24.3 (7)
C16—C11—C12—C13	-0.1 (5)	C8—N1—S1—O2	-32.0 (3)
C10-C11-C12-C13	177.0 (4)	C1—N1—S1—O2	174.2 (3)
C11—C12—C13—C14	0.1 (6)	C8—N1—S1—O1	-160.9 (3)
C12—C13—C14—C15	0.3 (7)	C1—N1—S1—O1	45.2 (3)
C13—C14—C15—C16	-0.7 (7)	C8—N1—S1—C17	83.8 (3)
C14—C15—C16—C11	0.8 (6)	C1—N1—S1—C17	-70.1 (3)
C14—C15—C16—N2	179.8 (4)	C18—C17—S1—O2	22.6 (4)
C12-C11-C16-C15	-0.3 (6)	C22—C17—S1—O2	-158.8 (3)
C10-C11-C16-C15	-177.3 (4)	C18—C17—S1—O1	156.7 (4)
C12-C11-C16-N2	-179.4 (4)	C22—C17—S1—O1	-24.7 (4)
C10-C11-C16-N2	3.7 (6)	C18—C17—S1—N1	-91.0 (4)
C22-C17-C18-C19	1.1 (7)	C22-C17-S1-N1	87.6 (4)
S1-C17-C18-C19	179.6 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
C2—H2···O5 ⁱ	0.93	2.38	3.147 (5)	139	
C2—H2…O1	0.93	2.38	2.957 (6)	120	
С9—Н9…О2	0.93	2.47	2.827 (5)	103	
C10—H10…O3	0.93	2.37	2.730 (5)	103	

Symmetry code: (i) *x*-1/2, -*y*+1, *z*-1/2.