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Abstract: Plants, being sessile organisms, constantly withstand environmental fluctuations, including 
low-temperature, also referred as cold stress. Whereas cold poses serious challenges at both physio-
logical and developmental levels to plants growing in tropical or sub-tropical regions, plants from 
temperate climatic regions can withstand chilling or freezing temperatures. Several cold inducible 
genes have already been isolated and used in transgenic approach to generate cold tolerant plants. The 
conventional breeding methods and marker assisted selection have helped in developing plant with 
improved cold tolerance, however, the development of freezing tolerant plants through cold acclima-
tion remains an unaccomplished task. Therefore, it is essential to have a clear understanding of how 
low temperature sensing strategies and corresponding signal transduction act during cold acclimation 
process. Herein, we synthesize the available information on the molecular mechanisms underlying 
cold sensing and signaling with an aim that the summarized literature will help develop efficient 
strategies to obtain cold tolerant plants. 
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1. INTRODUCTION 

 In contrast to animals which preferentially opt for the 
‘avoid’ response, plants being sessile usually adopt the 
‘overcome’ strategy to counter any extreme environmental 
fluctuation. Temperature stress is one such factor which 
plants experience from their surrounding environment. Plant 
grow best at their optimum temperature range and any ex-
treme fluctuation from this optima affects their growth and 
final yield [1]. Due to its wide-spread occurrence, low tem-
perature or cold stress affects several facets of plant’s life 
and causes extreme economic losses in agriculture. Plant 
endurance to low temperatures can be grouped into two 
types i.e. chilling tolerance (above 0°C) and freezing toler-
ance (below 0°C) [2]. Among various abiotic stresses, chill-
ing stress influences the production and quality of economi-
cally important crops the most, especially in the tropical and 
subtropical climatic zones [3, 4]. In contrast, plants originat-
ing from temperate climatic regions are considered chilling 
tolerant because they can increase their freezing tolerance by 
cold acclimation process. Plants of tropical and sub-tropical 
origins lack this mechanism and are more prone to the ad-
verse effect of chilling stress [5-8]. Depending on their  
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response to low temperature stress, plants have been catego-
rized into chilling sensitive, chilling tolerant, and freezing 
tolerant. Chilling sensitive plants show metabolic complica-
tions on the exposure to the temperatures below their optima.  
 Important crops, such as rice, maize, soybean, cotton and 
tomato are chilling sensitive. On the contrary, chilling toler-
ant plants are able to survive the lower range of temperatures 
but not freezing temperature. The freezing tolerant plants can 
survive even in the freezing conditions [9]. 

2. PHYSIOLOGICAL CONSEQUENCES OF COLD 
STRESS ON PLANTS AND COLD TOLERANCE 
MECHANISM 

 Exposure of plants to chilling results in a number of tran-
sient biochemical perturbations, including thermodynamic 
slowdown of the kinetics of metabolic reactions. Further, it 
modulates the thermodynamic equilibrium of the cell which 
might cause the non-polar side chains of proteins to reorient 
towards the aqueous medium. Such reorientation impacts on 
the solubility and stability of globular proteins [10]. Low 
temperatures also cause rigidification of membrane, resulting 
in the disturbance of all membrane-related processes, and 
induction of cold-associated genes [11]. Chilling also leads 
to higher reactive oxygen species (ROS) accumulation as the 
ROS scavenging system does not function properly; due to 
reduced enzymes activity. In turn, ROS over accumulation 
has harmful effects on membranes and leads to ion leakage. 
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Altogether, low temperature directly affects DNA secondary 
structure, lowers enzymatic activities involved in fundamen-
tal processes such as transcription and translation, induces 
membrane rigidification, destabilizes protein complexes, 
stabilizes RNA secondary structure, impairs photosynthesis, 
and leads to ion leakage across membranes [7, 12-16].  
 Below sub-zero temperature, ice formation first takes 
place in the intercellular spaces of plant tissues and finally 
culminates in the intracellular symplastic freezing. The ex-
tracellular ice formation results in a drop in water potential 
and causes intracellular water to move out of the cell. It is 
followed by dehydration and shrinkage of cells causing 
freezing injuries [8, 17, 18]. The level of such dehydration is 
determined by the severity of temperature drop which in-
creases with the decreasing temperatures. Finally, ice can 
penetrate the symplast and spoil the intracellular structures 
resulting in death of the tissue [19, 20]. Cold-induced dehy-
dration results in various physiological effects, for example, 
precipitation of molecules, protein denaturation, membrane 
damaging effects and cell lysis [8, 21]. The signs and symp-
toms associated with chilling-induced stress injuries in chill-
ing sensitive plants are varied and generally express within 
48 to 72 h of exposure to the stress. The phenotypic signs of 
chilling stress consist of reduced leaf expansion, chlorosis, 
wilting, and necrosis [22]. Chilling also causes defect in 
plant reproductive development. For example, rice plants 
displayed sterility upon exposure to chilling temperatures 
during anthesis [23]. The severity of plant damage depends 
on multiple factors such as the developmental stage of plant, 
duration of the frost, rates of cooling and rewarming, and the 
extent of ice formation [24]. As a consequence, plants adopt 
two strategies to resist the frost-related injuries: first, preven-
tion of ice formation in tissues; and second, tolerance to 
apoplastic extracellular ice. Further, an individual plant may 
utilize both types of mechanisms for frost resistance in dif-
ferent tissues [25]. 

3. COLD ACCLIMATION 

 Cold acclimation is a process where temperate plants 
acquire freezing tolerance upon previous exposure to low but 
non-freezing temperatures [26-28]. This ability is not found 
in plants from the tropical and sub-tropical regions. As a 
consequence, these plants cannot tolerate ice formation in 
their tissues. This process is considered as the first line of 
defence and has an important role in stabilizing plasma 
membranes against cold-induced injury [7, 29-31]. Several 
mechanisms, including processes like change in lipid com-
position [30] and accumulation of simple sugars [32] con-
tribute to this stabilization. Additionally, LEA (late embryo-
genic abundant) and hydrophilic proteins help stabilize 
membranes against cold-induced damage. Several chilling-
related injuries can also be associated with ROS, especially 
in chilling sensitive plants [7, 33-35]. As the counteractive 
mechanisms, plants develop effective oxygen-scavenging 
systems which consist of several antioxidant enzymes such 
as ascorbate peroxidase, Superoxide Dismutase (SOD), Glu-
tathione Reductase (GR) and catalase. Moreover, non-
enzymatic antioxidants, such as ascorbic acid and reduced 
glutathione also help in minimizing the negative effects at-
tributed by high ROS levels [36-38]. 

3.1. Perception of Cold 

 Stress perception determines the specificity of the signal 
transduction network and adaptation of plant’s physiology in 
a particular environment [21]. Plants exhibit a variety of re-
sponses to the environmental temperature in a time based 
fashion. While a few of these responses are short term, other 
responses require long exposure to low temperature; some-
times for several days or weeks as in the case of vernaliza-
tion process [39]. Evidence suggests that plant cell preferen-
tially senses the rate of temperature change (dT/dt) over the 
absolute temperature as fast cooling of temperature between 
22°C and 16°C have been found to generate strong depolari-
zation of membrane than the slower cooling in cucumber 
[40]. Although the mechanism of sensing low temperature in 
plants remains unclear, the temperature dependent modifica-
tions of membrane fluidity were initially considered as the 
primary temperature sensor in cyanobacteria and yeast [11, 
41]. 
 Plasma membrane, being the interface between internal 
and external environment of the cell, is considered as a site 
for the perception of temperature change [7, 42-44]. In 
plants, the potential sensors of cold include Ca+2 influx chan-
nels, two-component histidine kinases and receptors associ-
ated with G-proteins [45]. The initial evidences established 
that plant response to low temperature involved an influx of 
Ca+2 from apoplast into the cytosol and a positive correlation 
exists between Ca+2 influx and the rate of temperature drop 
[7, 46-49]. Cellular Ca+2 dynamics are detected in response 
to cold within 40 s through a novel aquaporin-based Ca+2 
signaling mechanism in Arabidopsis [50].  
 It has been suggested that the cold induced calcium tran-
sients may occur downstream to membrane rigidification and 
cytoskeletal reorganization in signal transduction pathway 
[7, 21, 51-53]. Further, stabilization and destabilization of 
cytoskeletal components such as actin microfilament at dif-
ferent temperatures, 4°C and 25°C respectively, can control 
cold stress responses by preventing both expression of COR 
genes and Ca2+ influx [51]. It is known that drugs that 
strengthen microfilaments decrease cold sensitivity. In con-
trast, the drugs that destabilize microfilaments can stimulate 
cold-dependent downstream processes even in the absence of 
cold, suggesting that cytoskeletal reorganization possibly 
participates in the sensor mechanisms [51]. Nonetheless, 
cytoskeletal reorganization was found not to be an absolute 
requirement for cold-induced responses and therefore it is 
not considered as the primary cold sensor [28]. 
 Additionally, expression of the two-component response 
regulator-like proteins has been implicated in low tempera-
ture responses in Arabidopsis [54, 55] and Synechocystis 
[56-58]. Low temperature induced receptor-like protein 
kinases have also been suggested as possible cold sensors [7, 
59, 60]. The extracellular domains of these proteins undergo 
a temperature-induced conformational modification and 
leads to induction of their kinase activity in cytoplasm. 
Analysis of cold-induced gene expression in transgenic or 
mutant plants with changes in membrane lipid saturation or 
sterol content revealed that membrane fluidity is a part of 
cold sensing mechanisms in higher plants. Besides, recent 
evidence also suggests an important role of chromatin re-
modelling in low temperature sensing [7, 61, 62]. The his-
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tone remodelling proteins such as HOS15 (high expression 
of osmotically responsive genes), and AGC1 (aspar-
tate/glutamate carrier) or histone subunits may play an 
equivalent role in cold sensing at lower temperatures. Taken 
together, it can be concluded that more than one thermo sen-
sors are involved during cold sensing in plant cells [28]. 

3.2. Signal Transduction Mechanism 

 In general, the signal produced by physical factors such 
as cold converted to a genetic response which initiates 
changes in gene expression leading to physiological and 
metabolic changes in the cell and culminates in a response. 
Upon experiencing low temperature, plants identify the in-
duced signal and transduce it to the nucleus. 

3.2.1. Role of Calcium 

 Calcium (Ca+2) is the most ubiquitous secondary mes-
senger in eukaryotes [63, 64]. Within seconds of low tem-
perature exposure, free cytosolic Ca+2 level is elevated by its 
influx from apoplast or vacuole [46, 49]. Such cytosolic Ca+2 

oscillations can be recognized within a short time span, just 
few seconds or minutes after transferring the plant to low 
temperature. The extent of these Ca+2 oscillations also de-
pends on the previous exposure of temperature stress to 
plants as recurring experience of low temperature leads to 
reduced Ca+2 oscillations, suggesting that plants have a Ca+2 

signature memory associated with earlier temperature expe-
riences [65]. The prompt Ca+2 influx is induced by activation 
of ionophores or Ca+2 channels agonists which in turn leads 
to activation of cold-acclimation-specific genes [7, 66, 67]. 
The cytosolic influx of Ca+2 during stress is needed for the 
expression of some cold-induced genes like COR6 and KIN1 
(Knotted1) n Arabidopsis thaliana [47-49]. The Ca+2 re-
leased from internal cellular reserves, mediated by inositol 
triphosphate, is upstream to the expression of C-repeat Bind-
ing Factors (CBFs) and Cold Responsive (COR) genes in the 
cold-signaling pathway [53, 68, 69].  
3.2.1.1. Ca+2 Regulated Proteins (Decoders of the Calcium 
Signature) 

 The signal-specific Ca+2 signatures (cytosolic Ca+2 

changes) are decoded by a large number of Ca+2 binding pro-
teins in plants [70]. These proteins change their phosphoryla-
tion status on the elevation of intracellular Ca+2 level and 
function as Ca+2 sensors [7, 48, 71, 72]. The majority of Ca+2 

sensors possess high affinity Ca+2 binding helix-turn-helix 
structures; also known as EF-hands [71, 73]. Ca+2 sensors 
have been broadly divided into two classes: sensor relays 
and sensor responders [74, 75]. Bonafide sensor relay pro-
teins do not possess any known enzymatic or functional do-
mains. Instead, upon binding to Ca+2, these interact with an-
other group of proteins and regulate their activities in down-
stream signaling. Some of the major sensors included in this 
group are calmodulin (CaM), CaM-like (CMLs) and cal-
cineurin B-like proteins (CBLs) [76-79]. 
 The sensor responders are protein kinases which consist 
of one or more EF-hand motif and whose activity is con-
trolled by binding of Ca+2 to EF hand motifs. In this group, 
sensing via EF-motif and responses via protein kinase func-
tion are combined within a single protein. It includes Ca+2-
Dependent Protein Kinases (CDPKs), [80, 81], Ca+2 and 

Ca+2/CaM-dependent protein kinase (CCaMK) [82-84], cyto-
solic phospholipase A2 (cPLA2), phospholipase C (PLC) 
and some lipid (AtCLB, Caleiosins, PLD, Annexins) or 
DNA binding proteins (SUB1, Calreticulin) [71, 85-88].  
 Calmodulin (CaM) is one of the most conserved and best 
characterized small acidic Ca+2 binding proteins found in 
eukaryotes [89]. Its binding to Ca+2 induces a structural 
change and relay the signal to downstream components. 
CaM activity is essential for the expression of cold inducible 
genes in many systems, including Arabidopsis and Alfalfa 
[90]. CaMs are constituted by a small gene family in plants 
[91-94]. Over-expression of Arabidopsis CaM3 hinders cold 
induction of some of key cold responsive genes, including 
RD29A, KIN1(Knotted1 Induced1) and KIN2 (Knotted2 In-
duced2) [95]. In plants, CaM also presents an example of 
indirect regulation of gene expression by mediating through 
a CaM-binding protein kinase and a CaM-binding protein 
phosphatase [96].  
 Similar to CaMs, Calcineurin B like (CBL) proteins (also 
called SOS3-like Ca+2 binding proteins, ScaBLs) form an-
other group of Ca+2 sensors. These proteins (AtCBLs/ 
SCaBPs) were first identified in Arabidopsis and lack any 
enzymatic activity [97-101]. Overexpression of AtCBL1 has 
been found to confer increased stress tolerance in transgenic 
Arabidopsis plants. These plants showed decreased rate of 
water loss with upregulated CBF/DREB transcription factors 
and other related genes in non-stressed plants [102]. Whereas 
mutation of this gene affected the transcript levels of cold 
regulated genes, its overexpression induced the expression of 
early stress responsive transcription factors [102]. However, 
CBLs alone cannot function and require a group of ser-
ine/threonine protein kinases, named CBL-interacting pro-
tein kinases (CIPKs), to impart their roles under cold stress 
conditions [103]. In total, 10 CBLs and 26 CIPKs genes have 
been identified in Arabidopsis [104]. Likewise, 10 CBLs and 
33 CIPKs are present in rice [101, 105]. Interactions CBLs 
and CIPKs have been found to be Ca+2 dependent in cold 
stress responses. [99, 106, 107]. For example, CIPK3 has 
been suggested to act downstream of the Ca+2 signal [108]. 
Further, CIPK7 is induced by cold and interacts with CBL1 
both in vitro and in vivo conditions [103]. Moreover, over-
expression of OsCIPK3 in transgenic lines of rice, showed 
an improved cold tolerance and found better survival rate 
[109]. 
 Calcium-dependent protein kinases (CDPKs) are other 
important sensors which are involved in response to abiotic 
stresses, including cold [81, 110-113]. These genes are also 
multigene family members. For example, it has been re-
ported that this gene family is comprised of 34 CDPK mem-
bers in Arabidopsis [81], 20 members in wheat [114], 29 
members in tomato [115] and 31 members in rice [116]. 
CDPKs often have a conserved structure with an N-terminal 
variable domain, which mediate isoform specificity and lo-
calization [117, 118], a middle catalytic protein kinase do-
main, which is linked to a junction sequence, and C- termi-
nally located CaM-like domain, which canonically harbours 
four EF-hands. A junction sequence acts like an auto-
inhibitory region and keeps the kinase inactive using pseudo-
substrate-binding mechanism [119-121]. Under low cyto-
plasmic calcium concentration, CDPK remains inactive due 
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to the blocking of catalytic site by auto-inhibitory region. 
Upon stress perception and calcium influx into the cell, cal-
cium binding to the EF-hands triggers the intramolecular 
interaction between CaM-like domain and the auto-
inhibitory domain causing the conformational change that 
leads to activation of the enzyme [120, 122, 123]. Subse-
quently, downstream responses such as phosphorylation and 
activation of many regulatory proteins including transcrip-
tion factors, changes in ion fluxes across membranes, accu-
mulation of stress-related metabolites and developmental 
growth processes are induced [124-127]. Transient transacti-
vation assays of stress-responsive CDPKs-reporter gene con-
structs in transformed maize (Zea mays) protoplasts provided 
the first evidence of their involvement in specific sig-
nal/response pathways [128]. In rice, a membrane associated 
CDPK is activated after exposure to cold [129]. Similarly, 
OsCPK7/OsCDPK13 or OsCPK13/OsCDPK7 is activated 
by a 3 h cold treatment [7]. Further, overexpression of 
OsCPK7/OsCDPK13 OsCPK13/OsCDPK7 confers cold 
tolerance in transgenic rice [7, 130]. These studies suggested 
the possibility of involvement of CDPKs in Ca+2 mediated 

signaling during acquisition of cold tolerance. Genetic analy-
sis also proved that CDPKs act as positive regulators [130] 
whereas CaM3 acts as a negative regulator of gene expres-
sion during cold tolerance [95]. Similar to CIPKs, CDPKs 
perform their functions by binding to their targets and a few 
potential targets of CPK3 such as RARE COLD INDUC-
IBLE 1A (RCI1A) and ALCOHOL DEHYDROGENASE 1 
(ADH1) have already been discovered in Arabidopsis. Fur-
ther, cold inducible CPK4 targets a b-ZIP transcription factor 
ABF1, encoded by an ABA- and cold-inducible gene, for 
phosphorylation. It shows that ABF1 might participate in 
ABA-mediated cold acclimation in plants [131]. 

3.2.2. MAPK Cascade 

 MAPK family includes a large family of serine/threonine 
protein kinases in plants. A typical MAPK cascade is com-
posed of three protein kinases. Inactive Mitogen Activated 
Protein Kinase Kinase Kinases (MAPKKKs) are activated 
by a stress signal messenger. Three kinds of MAPKKKs, 
including CTR1, ANP1-3 and MEKK exist in Arabidopsis 
thaliana. Among these, MEKK is expressed in response to 
various abiotic stresses, including cold. Upon activation, 
they activate MAPKKs by phosphorylation at conserved 
serine/threonine residue. Activated MAPKKs in turn activate 
MAPKs by phosphorylating MAPK at both threonine and 
tyrosine residues in the TXY motif; which leads to phos-
phorylation of various effector proteins like enzymes or tran-
scription factors [132]. MAPK cascade is conserved among 
eukaryotes and transduces extracellular stimuli for cellular 
responses [133]. MAPK pathways are also triggered by vari-
ous abiotic stresses [134]. The role of MAPKs in cold accli-
mation was demonstrated in Arabidopsis by a MAPK path-
way mediated by Ca2+/CaM-CRLK1-MEKK1-MKK2-
MPK4/6 under cold acclimation. A positive regulator of the 
cold tolerance, Ca2+/Calmodulin-Regulated Receptor-Like 
Kinase (CRLK1) has been reported in plants [135]. CRLK1 
has been found to interact and phosphorylate MEKK1 [136, 
137]. In turn, MEKK1, which is induced by cold, phosphory-
lates MKK2 during cold treatment [136]. It has been sug-
gested that Ca2+ signaling occurs upstream of the MEKK1–
MKK2 pathway [137]. Further, enzymatic activity of 

MEKK1 is increased kinase in the presence of MKK2 after 
cold treatment. MKK2 also interacts with MPK4/MPK6 dur-
ing cold signaling [138]. Such interaction was also validated 
genetically as mkk2 mutant showed freezing sensitive pheno-
type, as no interaction of MKK2 with MPK4 nor MPK6, 
suggesting that MKK2 is present upstream to these two pro-
teins during cold signaling [138]. Evidence suggests that 
MAP kinase pathways may also act independently of Ca+2. 
More specifically, MPK4 and MPK6 were found to operate 
independently of CPKs [139, 140]. However, it is not clear 
how Ca+2-dependent and Ca+2-independent (MAP kinase) 
pathways leading from cold perception affect post-
translational modifications of TFs responsible for the regula-
tion of cold gene expression [69] and the interplay between 
calcium and MAPK signaling pathways warrants future in-
vestigation [141]. 

3.2.3. Transcription Factor CBF/DREB Regulon 

 Changes in gene expression profiles upon exposure to 
low temperatures are well established and many genes which 
are either up- or down-regulated have been identified [142, 
143]. A multidisciplinary approach in tomato suggested the 
role of transcriptome reprogramming in cold acclimation. 
Early response (after a few hours of suboptimal growth tem-
perature exposure), resulted in changes in the expression 
levels of stress-related proteins including those belonging to 
transcription factors, hormone biosynthesis and signaling. In 
contrast, a late response (after 24 h of exposure) induced 
stable changes in the gene expression resulted in extensive 
adjustment of metabolism, photosystems, transcription and 
translation machineries by stable changes in gene expression 
[144]. Homologs of DREB1/CBFs have been identified in 
many agronomic crops, such as rice, maize, soybean (Gly-
cine max) and wheat (Triticum aestivum) [145]. DREB1/ 
CBFs acts upstream to the cold-inducible genes, including 
cold-regulated genes (COR) and regulate their expression 
[142, 146]. Initially, promoter analysis of a cold inducible 
gene, COR15A, identified a region that conferred cold, ab-
scisic acid (ABA) and drought responsive expression [147, 
148]. Promoters of many other ABA-independent, cold- and 
drought-induced proteins contain one or more copies of De-
hydration-Responsive/C-Repeat Element/Low Temperature 
Responsive Element (CRT or DRE or LTRE) cis-acting ele-
ment. This element is attributed by the presence of CCGAC 
as its core sequence [147, 149, 150]. Additionally, many 
COR genes have ABA-responsive elements (ABREs) in their 
promoter, however, expression of COR genes is not strictly 
correlated by its presence as their transcript levels are regu-
lated by both ABA-independent and ABA-dependent path-
ways [151, 152]. 
 The CRT/DRE/LTRE element is recognized by a group of 
three similar cold induced transcription factors, known as 
either C-repeat binding factors, CBF1-3 or dehydration-
responsive element binding factors DREB1A-C. These TFs 
control ABA-independent expression of COR genes in re-
sponse to cold stress [150, 153-156]. The CBF pathway of 
Arabidopsis remains the best-understood regulatory pathway 
with its role in freezing tolerance [28, 157]. As reported, 
CBF1(DREB1b), CBF2 (DREB1C) and CBF3(DREB1A) are 
strongly and rapidly upregulated at the transcriptional level 
by low temperature and possess overlapping effects on COR 
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gene regulation [158]. The CRT/DRE is also recognized by a 
group of drought-inducible transcriptional activators such as 
DREB2A-B, which are structurally not related to the 
CBF/DREB1 group. Overexpression of the CBF/DREB 
genes has resulted in enhancement of cold tolerance in 
Arabidopsis, tobacco and other agricultural important spe-
cies such as rice and wheat [153, 159]. Overexpression of 
OsDREB1 in rice plants showed higher survival rate of 
transgenic plants in chilling (2°C) stress condition in com-
parison to the wild type [160]. Similarly, overexpression of a 
sweet pepper (Capsicum annuum) CBF3 gene in tobacco 
plants showed enhanced chilling (4°C) tolerance through 
higher accumulations of proline, soluble sugars, unsaturated 
fatty acids, and lower accumulations of ROS [161]. Arabi-
dopsis plant overexpressing HbCBF1 gene of Hevea brasil-
iensis showed chilling resistance and activated expression of 
CBF pathway downstream target genes, such as AtCOR15a 
and AtRD29a [162]. AtCBF3 overexpressing Arabidopsis 
transgenic plants also demonstrated enhanced tolerance to 
freezing stress [163, 164]. It was recently reported that freez-
ing tolerance of Muscadinia rotundifolia CBF2-
overexpressing transgenic Arabidopsis lines was enhanced 
along with an increased expression of the cold regulated 
genes AtCOR47, AtCOR15A, AtRD29A, AtKIN1 and AtSuSy 
(Arabidopsis sucrose synthase 2) [165]. However, role of 
constitutive overexpression of either AtCBF1 or AtCBF3 
genes in improving cold tolerance is not universal as their 
overexpression do not improve freezing tolerance in freez-
ing-sensitive tomato plants. Further, studies in CBF2-
deficient mutant have revealed that CBF2, which negatively 
regulate CBF1 and CBF3, may have distinct function in 
freezing tolerance from the other CBFs [166]. However, it 
can also not be ruled out that coordinated action of CBFs are 
required for cold acclimation [167]. While CBF1 and CBF3 
have a concerted additive effect in the induction of whole 
CBF regulon, they both are simultaneously required for the 
induction of CBF target genes [167, 168].  
 Transcription of CBF genes is subjected to both positive 
and negative regulation. Several regulators have already 
been identified as inducer of CBF expression 1 (ICE 1) pro-
teins [169], inducer of CBF expression 2 (ICE2) proteins 
[170], MYB15 [171], calmodulin binding transcription acti-
vator 3 (CAMTA3) [172], ZAT12 [168] and Ethylene Insen-
sitive 3 (EIN3) [173]. The promoter regions of the 
CBF/DREB1 TFs lack DRE element, suggesting that they do 
not regulate their own expression. Further, mutational 
screens have determined the regulatory aspect of CBFs and 
identified additional components involved in the regulation 
of the cold-induced expression of CBFs [174]. ICE1 and 
ICE2 encode a MYC-like basic helix-loop-helix (bHLH) 
transcriptional activator and positively regulate CBF1, CBF2 
and CBF3 by binding to the MYC recognition sequences 
present in their promoters. These TFs are known to act up-
stream to the most of other factors involved in cold stress 
responses. ICE1 and ICE2 are the master regulators of cold 
responses and control COR genes and CBF/DREB1 [170, 
175]. In response to low temperature, ICE1 is modified (sta-
bilized and activated) by sumoylation involving the SIZ1 
SUMO E3 ligase. This promotes ICE1 binding to the CBF3 
promoter and increases CBF3 expression [176]. Further, 
over-expression of ICE1 enhanced the expression of CBF 

regulon under cold stress and improved the cold tolerance of 
transgenic Arabidopsis plants [169]. In contrast, ice1 mutant 
showed inhibition of cold-induced transcription of a CBF3 
gene. Further, a dominant negative mutation of ICE1 elimi-
nates the cold-induced CBF3 expression. These mutant 
plants also showed loss of freezing tolerance [169, 175]. 
However, the limited impact on the accumulation of CBF2 
transcripts in ice1 indicated occurrence of diverse activation 
mechanisms within the CBF/DREB1 family [169]. Similarly, 
over-expression of SlICE1 led to improved chilling tolerance 
by inducing the expression of dehydrin Ci7 homolog 
(SlDRCi7), SlCBF1 and Δ1-pyrroline-5-carboxylase syn-
thase (SlP5CS) genes in tomato [177]. Recently, it has been 
reported that a central component of ABA signaling path-
way, OPEN STOMATA 1 (OST1), plays a crucial role in 
cold response. OST1 is induced by cold. OST1 is known to 
contribute to the increased plant tolerance to freezing by 
phosphorylating ICE1; a biochemical event which enhances 
its stability [178]. Another important gene, SCRM, can func-
tion as an inducer of CBF expression1 (ICE 1). This gene 
along with its homolog SCRM2 is essential for the functions 
of SPEECHLESS (SPCH), MUTE, and FAMA during sto-
matal development. Both ICE1/SCRM and SCRM2 are re-
dundant proteins and have overlapping functions. The evi-
dences point towards a possible link between the transcrip-
tional regulation of environmental adaptation and stomatal 
development in plants [179]. 
 Feedback repression of transcription factors that regu-
lates cold-responsive gene expression also seems to be an 
important mechanism for sustaining perfect cold-induced 
transcriptome (Fig. 1). For example, high expression of os-
motically sensitive (HOS1) gene acts as a negative regulator 
of ICE1. HOS1 encodes a RING E3 ligase and targets ICE1 
and ICE2 for their proteasome-mediated degradation [170, 
180]. One of the member of Zn finger transcription factor 
family, ZAT12, also acts as a negative regulator of 
DREB1/CBFs, though it is generally induced in this 
timeframe in Arabidopsis [168, 181]. CBFs are also nega-
tively regulated by MYB15 transcription factor. Knockout 
mutants of myb15 showed enhanced CBF expression and 
freezing tolerance after cold acclimation, whereas overex-
pression showed the opposite effect [171]. CAMTA3 
(Calmodulin-binding transcription activator 3) was shown to 
be a positive regulator of Arabidopsis DREB1C/CBF2, 
through its binding to the CM2 cis-motif present in the pro-
moter of that gene [172]. A quantitative trait locus COLD1 
also contribute in the regulation of signaling pathway of cold 
tolerance. It encodes a regulator of G-protein signaling and 
localizes on plasma membrane and endoplasmic reticulum 
(ER). Its interaction with the α-subunit of G-protein activates 
Ca2+ channel for sensing decreased temperature and to accel-
erate G-protein GTPase activity [182]. 
 Interactions between low temperature and other abiotic 
stresses are also known to have an effect on cold-regulated 
gene expression. For example, pre-exposure of plants to 
NaCl has been found to delay the low-temperature induced 
expression of cold-inductive genes [183]. Some of these in-
teractions may be mediated by the cold-inducible and 
drought-inducible transcription factors via interacting with 
DRE elements. However, the role of other nodes within the 
signal transduction network has also been suggested and 
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their validation warrants further investigations [65]. In such 
a similar study, transcriptome profiling of the model leg-
ume, Lotus japonicus, under cold stress condition identified 
different types of cold-inducible transcription factors such as 
AP2/ERF, NAC, MYB, and WRKY families and other puta-
tive novel transcription factors. The findings of this study 
can serve as a template for future research [184]. Likewise, 
comparative transcriptome profiling of three maize inbred 
lines indicated that cold acclimation process in plants in-
volves modifications in the photosynthetic apparatus, cell 
wall properties and developmental processes [185]. Com-
parative transcriptomic and proteomic analyses have identi-
fied specific regulatory targets during CA (cold acclimation) 
and DA (de acclimation) processes in Arabidopsis. Based on 
the accumulated evidences, it is expected that identification 
of several putative targets of translational regulation under 
cold stress will help understand the mechanism of RNA 
regulation during CA and DA in other plants [186]. High-
throughput transcriptome analysis of rice germinating seeds 
of two indica genotypes further identified novel genes re-
lated to cold tolerance [187]. Altogether, understanding the 
cold signaling regulon will help in the transcriptome engi-
neering of crop plants for enhanced tolerance to multiple 
abiotic stresses. 

3.2.4. ABA 

 ABA plays a central role in abiotic stress tolerance as it is 
involved in the integration of various stress signals [22, 188, 
189]. Cold stress is known to mildly enhance endogenous 
ABA levels in plants. Further evidence suggests that exoge-
nous application of ABA induces cold tolerance in herba-
ceous plants [16, 188, 190]. Global transcriptional response 
to cold stress in chilling tolerant Japonica rice suggested a 
role of ABA signaling in chilling tolerance [191]. Gene ex-
pression analyses have further identified a common set of 
stress-responsive genes induced under both cold and ABA 
[45, 192]. These observations suggested that ABA accumu-
lates in response to low temperature and it is important for 
providing improved freezing tolerance. Further, promoter 
analysis of cold-inducible genes of Arabidopsis plants re-
vealed the abundance of ABRE in the promoters [149, 193]. 
Reduced cold acclimation was also reported in ABA-
deficient aba1 and ABA-insensitive abi1-1 mutants of 
Arabidopsis and stress was found to induce lethality in these 
mutants [152].  
 Similarly, ABA application was found to induce expres-
sion of temperature responsive genes (ZmCOI6.1, ZmACA1, 
ZmDREB2A and ZmERF3) in Zea mays [194]. Two major 
cis-acting elements, ABRE and CRT/DRE (C-repeat/DREs), 
which function in ABA-dependent and ABA-independent 
manner, respectively, contribute independently or in concert 
with the ABA-induced gene expression [195]. ABA-
dependent gene expression is usually controlled by transcrip-
tion factors that are part of bZIP (ABRE-binding factors or 
AREB’s), MYC and MYB families [69]. A global promoter 
analysis indicated that both ABRE and CRT/DRE are con-
served in cold-inducible promoters of soybean and Arabi-
dopsis. Though, ABRE is also conserved in rice, CRT/DREs 
show variation in cold inducible promoters [196]. ABA can 
also enhance the expression level of CBF1, CBF2, CBF3, 
and ICE1 genes, but such induction is considerably lower 

than that caused by cold [197]. ICE1 also participate in 
ABA-dependent pathways (glucose and ABA signaling), 
suggesting that ICE1 might play a new role in cross-talk be-
tween ABA-independent and ABA-dependent pathways 
[198]. Many experts have reported that both ABA-
independent and ABA-dependent pathways regulate cold-
responsive genes [69, 199]. 

3.2.5. Cytokinins 

 Cytokinin signal transduction pathway plays a significant 
role in cold signaling [200, 201]. The multistep phosphorelay 
cytokinin signaling pathway is composed of sensor histidine 
kinases (AHK2, AHK3, AHK4), histidine phosphotransfer 
proteins (AHPs), and downstream response regulators 
(ARRs). Transcription of Cytokinin Response Factors 
(CRFs), the downstream component of this pathway, is in-
duced after exposure to cold (4 °C). Likewise, in comparison 
to the CRF4 overexpressing plants, the crf4 mutant (lacking 
the expression of CRF4) plants showed more sensitivity to 
freezing temperatures [202]. A number of temperature re-
sponsive proteins such as LL-diaminopimelate aminotrans-
ferase and peroxisomal malate dehydrogenase are involved 
in early response to cytokinin. Role of calcium has been im-
plicated in the cytokinin-mediated responses under cold 
stress and a molecular link between cytokinin and calcium 
signaling has been established. It was observed that inhibi-
tion of calcium signaling affected the cytokinin-mediated 
regulation of several phosphoproteins [203]. Another hint 
that cytokinin is involved in the regulation of cold tolerance 
is provided by the fact that both cytokinin- and temperature 
shocks-altered proteomes share a high proportion of co-
regulated proteins [204]. Numerous studies have also estab-
lished the role of cytokinins in cold mediated adaptive 
mechanisms in response to the increased concentration of 
cytokinin [200, 201, 205, 206]. 

3.2.6. H2O2 

 Over the years, H2O2 has become an established signal-
ing molecule. Its small size mobile, long half-life (1 ms) and 
high permeability across membrane allow H2O2 to traverse 
through cellular membranes and migrate to different com-
partments to mediate different biological outcomes, includ-
ing the one that leads to its own synthesis [207-213]. H2O2 
performs a vital role in induction of physiological, bio-
chemical and molecular responses under stress conditions in 
plants [214].  
 At low concentration, it functions generally as a mediator 
of signaling pathways and results in stress acclimation; how-
ever, at higher concentration it causes cellular damage and 
cell death. The multi-functionality of H2O2 actions such as 
stress alleviation on one side and the risks at higher concen-
trations requires a very strict control of H2O2 concentration 
in plant cells. H2O2 has been found to accumulate in response 
to various biotic and abiotic stresses, including cold [33, 
215]. Likewise, exogenous application of H2O2 induces low 
temperature stress tolerance in maize. During cold acclima-
tion H2O2 act as a signal to induce synthesis of ROS-
scavenging enzymes [216, 217]. H2O2 enhance the antioxi-
dant capacity of cells by alleviating the activities of antioxi-
dant enzymes, such as Ascorbate Peroxidase (APX), Catalase 
(CAT), and Superoxide Dismutase (SOD) [218]. It has been
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Fig. (1). Schematic representation of signaling network in response to low temperature stress. It shows the early events of cold perception, 
leading expression of COR genes regulated by CBF transcription factors. Characterized Ca+2 sensor proteins and their target proteins are also 
shown. Refer to text for detailed descriptions. CBF/DREB, C-repeat binding factors/DRE-binding proteins; CBL/CIPK, calcineurin B-like 
protein/CBL-interacting protein kinase; CAMTA, Calmodulin-binding transcription activator; COR, cold-regulated; HOS, high expression of 
osmotically responsive gene; ICE1, inducer of CBF expression 1; RCI1A, Rare cold inducible 1A and ADH1, Alcohol dehydrogenase 1; 
ABF1, ABRE binding factor 1; EIN3, Ethylene Insensitive; HOS1, high expression of osmotically responsive genes; SIZ1, E3 SUMO ligase. 

observed that exogenous application of H2O2 resulted in in-
creased activities of APX, CAT, GPX, and GST in manila 
grass and APX, POD and GR activities in mascarene which 

protect plants against damage by chilling [219]. Additional 
studies revealed that H2O2 functions as a mediator in stress 
responses, via interacting with many other important signal 
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molecules (Ca+2, SA, ABA, JA, ethylene, NO) [220-224]. 
Functional characterization of a cold induced MfSAMS1 
(Medicago sativa subsp. falcata S-adenosyl methionine syn-
thetase 1) in tobacco showed that H2O2, ABA and NO inter-
actions mediated its cold-induced expression and cold accli-
mation in falcate. Overexpression of MfSAMS1 favoured 
polyamine synthesis and oxidation. As a consequence, it 
improved H2O2-induced antioxidant protection and led to 
enhanced cold tolerance in transgenic plants [225]. H2O2 has 
also been observed to communicate with ethylene in re-
sponse to cold stress [226]. Notably, H2O2 regulates the ac-
tivities of many signaling components such as protein 
kinases, protein phosphatases and various transcription fac-
tors (TFs) [69, 227].  

3.2.7. Cytoskeleton Rearrangement 

 Plant cytoskeleton maintains proximity with the plasma 
membrane that provides an important platform for signal 
perception and transduction [228, 229]. The bond between 
plasma membrane and cytoskeleton arises through a hydro-
phobic domain, which is present either on the tubulin mole-
cule or it is facilitated indirectly through interaction with an 
integral membrane protein [230]. For example, Phospholi-
pase D (PLD) has been confirmed for having the ability to 
make structural and signaling connections between cortical 
microtubules and the plasma membrane [231-234]. Role of 
cytoskeletal reorganization and PLD activation in cold ac-
climation has also been reported [235, 236]. In this mecha-
nism, activation of PLD leads to cytoskeletal reorganization 
by releasing the cortical array of microtubules from plasma 
membrane [232]. Further, the enhanced production of PLD 
has been found to confer improved frost tolerance after cold 
acclimation [237]. 
 The cytoskeleton plays a key role as low temperature 
sensor in plants during cold stress signaling and acclimation 
process [238, 239]. The activities of various ion channels in 
plant cells have been analysed to show the importance of 
cytoskeleton reorganization [239-242]. Based on the Ca+2 

channel activity under cold, it was found that specific type of 
cytoskeletal components (microtubules and actin filaments) 
are involved in cold sensing by regulating the activity of 
these ion channels. The subsequent membrane rigidification 
further assists this hypothesis [51, 243, 244]. A synergistic 
increase in Ca+2 influx in the cold shocked tobacco plants 
treated with oryzalin and cytochalasin (destabilizers of mi-
crotubules and microfilaments, respectively) further estab-
lished the link between cytoskeleton and Ca+2 ions [245]. 
Exposure of plants to low temperatures has been found to 
result in destabilization and depolymerisation of microtu-
bules. Upon continuous exposure to low temperature, cold 
labile microtubules are swapped with cold stable microtu-
bules. In cold stress-treated root tip cells of cucumber (Cu-
cumis sativus L.), stable cortical microtubules were found to 
be located both under the plasma membrane as well as in the 
cytoplasm. It was suggested that these additional microtu-
bules might be associated with organelles [246]. In wheat (T. 
aestivum L.), three members of α-tubulin gene family were 
induced during cold acclimation. A fourth member showed 
increased mRNA level for up to 14 days during cold accli-
mation and had decreased levels after 36 days of cold treat-
ment [247]. In tobacco, a mutational screen identified both 

aryl carbamate (a blocker of microtubule assembly) and 
chilling tolerant mutants. The carbamate tolerant mutants 
were also resistant to chilling stress. It was observed that the 
stability of microtubules in cold treatment can be improved 
by Microtubule Associated Proteins (MAPs). In case of 
Arabidopsis thaliana, nine such genes constitute the evolu-
tionarily conserved MAP65 family and the presence of At-
MAP65-1 provides more resistance to microtubules in cold 
stress [248]. An Actin Depolymerizing Factor (ADF) has 
also been characterized for its role in cold acclimation in 
wheat. The accumulation of ADF was higher in freezing 
tolerant wheat cultivars compared to less tolerant cultivar. 
Thus, cytoskeletal rearrangements and again remodelling of 
the actin cytoskeleton was proposed to be very important for 
the improvement of frost tolerance in plants [249]. 

CONCLUSION AND FUTURE PROSPECTS 

 Research on cold tolerance mechanism has made our 
understanding better on adaptation of plants under cold stress 
but there is more to be discovered in this field. The current 
review covers the involvement and acting mechanisms of 
different players in cold signal transduction by which plants 
develop cold tolerance. Briefly, sensing of low temperature 
is initiated by plasma membrane rigidification or by histidine 
two component system or calcium channels which lead to 
influx of calcium ions into cytosol. The signal is then trans-
ferred to the nucleus by decoders of calcium for transcrip-
tional regulation through CBF-dependent or CBF-
independent mechanisms. Though, the role of master regula-
tor ICE1 in cold signaling is largely known, more research 
about the mechanism of modification and regulation of ICE1 
is necessary. Moreover, better understanding of the molecu-
lar mechanisms underlying the cross talk among different 
signaling pathways at various points is necessary and re-
mains an area of intense research in the near future.  
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