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Alzheimer’s disease (AD) is known as a critical neurodegenerative disorder. It worsens as symptoms concerning dementia grow
severe over the years. Due to the globalization of Alzheimer’s disease, its prevention and treatment are vital. This study proposes a
method to extract substantial gene complexes and then introduces potential drugs in Alzheimer’s disease. To this end, a protein-
protein interaction (PPI) network was utilized to extract five meaningful gene complexes functionally interconnected. An
enrichment analysis to introduce the most important biological processes and pathways was accomplished on the obtained
genes. The next step is extracting the drugs related to AD and introducing some new drugs which may be helpful for this
disease. Finally, a complete network including all the genes associated with each gene complex group and genes’ target drug
was illustrated. For validating the proposed potential drugs, Connectivity Map (CMAP) analysis was accomplished to
determine target genes that are up- or downregulated by proposed drugs. Medical studies and publications were analyzed
thoroughly to introduce AD-related drugs. This analysis proves the accuracy of the proposed method in this study. Then, new
drugs were introduced that can be experimentally examined as future work. Raloxifene and gentian violet are two new drugs,
which have not been introduced as AD-related drugs in previous scientific and medical studies, recommended by the method
of this study. Besides the primary goal, five bipartite networks representing the genes of each group and their target miRNAs
were constructed to introduce target miRNAs.

1. Introduction

Alzheimer’s disease, as a significant disease, has attracted
researchers, especially in recent decades. Due to the impor-
tance of this disease, people should be informed to prevent
the progression of the disease [1]. The recent developments
and theoretic methods are introduced as a review study in
this field [2]. Our previous study utilized a gene coexpression
network to extract the biomarkers, including genes and miR-
NAs related to Alzheimer’s disease [3]. This study develops a
protein-protein interaction (PPI) network and a different
methodology to introduce the associated biomarkers and
drugs. Interactions between proteins are influential in cellu-
lar functions. Functionally related proteins are in identical
complexes and organelles. Thus, uncovering this structure

helps us recognize more about the role of genome variation
in disease [4]. Studying the association of cellular functions
and disease has received less attention, while it is as signifi-
cant as studying the association of cellular functions and
protein complexes [5]. Studying PPI networks helps us
understand the nature of complicated diseases as it can high-
light significant proteins which can be used in drug designing
[6]. Many previous studies examined the relationship
between disease and protein complexes. For example, in a
paper with this context, the writer maintains that patients
with some disorders, especially concerning the nervous sys-
tem, have mutations in adaptor protein complexes [7].
Another paper uses the PPI network of AD and nonalcoholic
fatty liver disease (NAFLD) to discover common pathways in
these two diseases [6]. Also, analyzing PPI networks in AD
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and Parkinson’s disease illustrates that similar proteins in
the same clusters have analogous ontology and sequence
different from other clusters [8]. Another related study com-
bines gene network information with brain-tissue protein
interactions and finds effective clusters of genes in AD and
expression levels in this disease [9]. Many studies in compu-
tational biology are aimed at figuring out biomarkers in dif-
ferent diseases, especially in cancer. For instance, there is a
study that introduces biomarkers in breast cancer [10] or
another study that utilizes the PPI network to find the effec-
tive genes in AD progression [11]. Reviewing the previous
studies indicates that protein complexes are not widely used
to find effective genes and related drugs, especially in AD.
Therefore, our research concentrates on these gaps and
attempts to extract meaningful groups of genes. Materials
and Methods introduces the database and the proposed
method in this study. In Results, the dataset description,
enrichment analysis of these gene groups, and the experi-
ments’ outputs are illustrated by relevant charts and tables.
Discussion contains clinical and medical instances support-
ing the applicability of the proposed method.

2. Material and Methods

In this part, the used dataset is described in detail, and then,
the adopted methodology and approaches are described.

2.1. Dataset. We utilized a dataset provided by Hu et al. by
retrieving the studies related to the genetic association in
Alzheimer’s disease from PubMed. The writers of this
paper have extensively reviewed 5298 reports. Then, by
omitting the unrelated reports, 823 publications presenting
more significant associations were chosen. Finally, there is
a list of 431 genes known as Alzheimer-related genes [12].
In the following, a step-by-step method used in this study
is described.

2.2. Gene Complex Extraction. We used the STRING data-
base to construct a PPI network. This database provides a
comprehensive global network that integrates all the avail-
able PPI information [13]. We just considered, in the pro-
cess of constructing this network, the interactions that are
obtained experimentally. One of the most important
methods of extracting protein complexes is using cluster
analysis in biological networks. ClusterViz is an application
to analyze and visualize the clusters in biological networks
and is supported by the Cytoscape platform. Cytoscape is a
versatile platform and popularly used to visualize biological
researches [14]. We used Cytoscape 3.7.0. in this study.
ClusterViz uses three different clustering algorithms. We
tested these three algorithms with different parameters and
led to choose EAGLE to construct the gene complexes. The
EAGLE algorithm (agglomerative hierarchical clustering
based on maximal clique) is an agglomerative hierarchical
clustering algorithm. In contrast with traditional agglomera-
tive algorithms, EAGLE uses the set of maximal cliques more
than the set of vertices [15]. There are also two other cluster-
ing algorithms named MCODE and FAG-EC.

2.3. Functional Enrichment Analysis. Gene ontology analysis
and biological pathway analysis have been developed to
accomplish enrichment analysis using the Database for Anno-
tation, Visualization, and Integrated Discovery (DAVID) [16]
that helped us extract biological mechanism and gene ontol-
ogy information. The Kyoto Encyclopedia of Genes and
Genomes (KEGG) database [17] was utilized to study the
pathways they involve.

2.4. Drug-Gene Networks. In the next step, drug-gene net-
works were constructed using DGIdb, which represents
drug-gene interactions from different resources. Its user-
friendly interface facilitates searching and filtering for easy
access. We used DGIdb 3.0 [18], which indicates a signifi-
cant database update by updating resources and adding
new resources.

2.5. Bipartite Gene-miRNA Networks. In this step, target
miRNAs of the genes in each group were extracted separately
using the miRWalk2.0. So, five bipartite gene-miRNA net-
works were constructed and illustrated by Cytoscape 3.7.0.
The miRNAs, which have a more considerable degree, achieve
a more regulatory role. So, subnetworks are constructed by
selecting miRNAs with a more considerable degree and their
related genes.

In the summary of this section, the flow of the study is
demonstrated by a flow chart diagram in Figure 1.

According to Figure 1, after preparing the dataset, the
first step was constructing the PPI network and then extract-
ing gene complexes. Enrichment analysis, including analysis
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Figure 1: Workflow of the study.
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on pathways and biological processes, was performed using
the obtained gene complexes. Two types of bipartite net-
works, drug-gene networks and gene-miRNA networks,
were constructed by having the gene complexes. According
to the primary goal of this study, which is to introduce
potential drugs, the drug-gene network was utilized to intro-
duce significant drugs. For representing the target genes that
the proposed drugs regulate, this part’s results were analyzed
using the CMAP database. Another analysis for the pro-
posed drugs was reviewing previous experimental studies
to prove the correctness of the methodology.

3. Results

This part describes the results extracted by different steps of
the methodology.

3.1. Extracting Protein Complexes from Protein-Protein
Interaction (PPI) Network. First, the STRING database
[13], which includes all interactions between proteins, was
utilized to construct a PPI network. The network that has
been built for this study is a collection of genes with experi-
mentally obtained interactions. The constructed PPI net-
work is displayed in Figure 2.

The extracted network is then clustered by the EAGLE
algorithm, one of the algorithms in the ClusterViz applica-
tion [14]. There are two parameters associated with the
EAGLE algorithm, named “CliqueSize Threshold” and
“ComplexSize.” After examining different values, 3 and 2
were selected as “CliqueSize Threshold” and “ComplexSize”

parameters, respectively. Among the 9 clusters constructed
by running this algorithm, 5 clusters were selected for the
following research step. Four remaining clusters were elimi-
nated because they were meaningless according to their
structures and could not represent a gene complex. Five
selected groups of genes are represented in Figure 3, and
the list of genes for each cluster is provided in Table 1.

3.2. Enrichment Analysis of Genes. Functional enrichment
analysis was accomplished for each cluster independently.
The results are demonstrated in separate tables. The p value
of the most significant pathway is equal to 4:16E − 04 and
involved six genes. The related term to this pathway is tran-
scriptional and is found in cluster 1. In cluster 3, the sub-
stantial pathway is Alzheimer’s disease. Its p value is equal
to 5:13E − 11, and it includes ten genes. In the sixth cluster,
the most crucial pathway is hepatitis c. Its p value is equal to
0.004662, including four genes. In the next cluster, cluster 7,
the most significant pathway is the neurotrophin signalling
pathway with eight genes. Its p value is 4:74E − 11, and it
includes eight important genes. In the last cluster, cluster
8, the most crucial pathway is malaria. Its p value is 7:32E
− 04 and consists of three genes. These are the most signif-
icant pathways for each cluster. More comprehensive infor-
mation, including all the pathways, is available in Additional
File 1 (Supplementary Tables 3–7).

According to the gene ontology analysis, the most
important biological processes for cluster 1 were, respec-
tively, transcription from RNA polymerase II promoter (p
value = 4:66E − 13), with 21 genes; regulation of

Figure 2: The PPI network with experimentally obtained interactions.
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transcription from RNA polymerase II promoter (p value =
5:45E − 13), with two genes; and positive regulation of cellu-
lar metabolic process (p value = 9:75E − 13) with 24 genes.

For cluster 3, membrane protein proteolysis was the most
significant biological process (p value = 1:78E − 15) and
included nine genes. The next important processes were
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Figure 3: Obtained PPI clusters. The nodes represent each cluster genes: (a) cluster 1; (b) cluster 3; (c) cluster 6; (d) cluster 7; (e) cluster 8.
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notch receptor processing (p value = 7:92E − 12) with six
genes and membrane protein ectodomain proteolysis (p
value = 8:90E − 12) with seven genes. In the sixth cluster,
the most important biological process with 18 genes (p value
= 3:91E − 09) was the negative regulation of the biological
process. The next three important processes were, respec-
tively, negative regulation of response to a stimulus with 12
genes (p value = 1:89E − 08), regulation of apoptotic process
with 12 genes (p value = 2:39E − 08), and regulation of pro-
grammed cell death with 12 genes (p value = 2:64E − 08). In
cluster 7, the important processes are, respectively, the trans-
membrane receptor protein tyrosine kinase signalling path-
way with 11 genes (p value = 4:21E − 13), the enzyme-
linked receptor protein signalling pathway with 11 genes (p
value = 1:99E − 11), and cell surface receptor signalling
pathway with 13 genes (p value = 2:55E − 10). In cluster 8,
significant processes are, respectively, vesicle-mediated
transport with 10 genes (p value = 5:86E − 08), endocytosis
with 8 genes (p value = 9:86E − 08), transport with 13 genes

(p value = 2:08E − 07), and establishment of localization
with 13 genes (p value = 2:87E − 07). The other important bio-
logical processes sorted by their p value are available in sepa-
rate tables in Additional File 1 (Supplementary Tables 8–12).

3.3. The Drug-Gene Interaction Network. To introduce the
potential drugs for Alzheimer’s treatment, we used the
DGIdb 3.0 database to extract drug-gene interactions [18].
By utilizing this database, medicines related to each cluster’s
genes are extracted and visualized in Figure 4.

The undirected associations between genes and drugs are
illustrated. The relation between each gene group indicates
the gene complexes, which are shown by separately drawn
clusters. Blue hexagonal nodes and the red oval nodes repre-
sent the drugs and the genes. Medicines related to each cluster
are illustrated in Additional File 1 (Supplementary Table 13).

3.4. Gene Set Enrichment Analysis (GSEA). The Enrichr [19]
database was utilized to perform CMAP analysis [20]. The

Table 1: List of the selected clusters along with their genes.

Number
of clusters

Number
of nodes

Nodes

1 31
PPARG, CAMK2D, RXRA, SP1, ESR2, GRIN2B, FAS, POU2F1, CDKN2A, NOS3, AR, CCNT1,

ABCA1, RUNX1, VDR, NME8, UBE2I, TP63, TP73, PPARA, NR1H2, UBD, PNMT, TBX3, ESR1,
CLOCK, SNX3, PIN1, TP53, BCR, CAV1

3 22
PSENEN, APH1A, TARDBP, NCSTN, PSEN1, APP, UBQLN1, APBB1, APBB3, COL25A1,

BACE2, BACE1, TRAK2, KLC1, CTSD, MAPK8IP1, APH1B, TGFB1, CD14, APBB2, PSEN2, TLR4

6 19
GSTP1, DAPK1, EIF2AK2, SLC6A3, SNCA, UBE2D1, LRP6, NLRP3, RAB7A, LRRK2, YWHAQ,

GSK3B, TRAF2, TNF, SLC6A4, RCAN1, EIF4EBP1, UNC5C, SERPINA1

7 13 NEDD9, NGF, SORCS3, NTRK1, LCK, NTRK2, PTK2B, BDNF, NGFR, NTF3, IRS1, PIK3R1, CD44

8 13 RELN, IL10, IL1B, LDLR, VLDLR, SORL1, LRP8, LRPAP1, LRP2, LRP1, A2M, ATP7B, CLU

Figure 4: The drug-gene interaction network along with related protein complexes.
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central concept of this analysis is to evaluate the therapeutic
effects of the proposed drugs. Two datasets called CMAP-up
and CMAP-down, respectively, contain genes upregulated
or downregulated by various extracted drugs. The results
of this analysis, which represent their significance, are dem-
onstrated in Table 2.

According to Table 2, nine of fourteen suggested drugs
were found in the CMAP database. The first column shows
drug names and the second one the degree of each drug.
The third column demonstrates the target genes related to
each drug. The last column shows regulating the status of
genes according to the CMAP database if it is upregulated
or downregulated by the related drug. The entries that are
empty in the last column are the ones in which there is no
regulating information in the CMAP database.

3.5. Bipartite miRNA-Gene Networks. Bipartite gene-miRNA
networks, illustrated by Cytoscape 3.7.0, can examine com-
plexes more in-depth. These bipartite networks are first ana-
lyzed by network specifications and then sorted by the
degree of the nodes. The miRNAs with a higher degree
and their associated genes and connections are normally
selected. Figure 5 shows bipartite gene-miRNA networks
for each cluster. The red oval nodes represent the genes,
and the blue rectangular ones signify their related miRNAs.
There is a representation of the miRNAs concerning each
cluster in Additional File 1 (Supplementary Table 1). After
extracting bipartite networks, some of the genes are to be
omitted. So, the lists of the genes are changed in the next step.
These updated lists of genes are represented in Additional
File 1 (Supplementary Table 2).

4. Discussion

In this article, we studied genes associated with Alzheimer’s
disease. Extracting PPI networks and then obtaining mean-
ingful gene complexes led to finding efficient gene groups
in Alzheimer’s disease. Performing enrichment analysis over
these gene groups, significant biological processes and path-
ways in the related part are listed. Target drugs of the

selected gene groups were introduced and visualized explic-
itly having significant genes. In this way, each gene group
was demonstrated by red oval nodes diagnosed as separate
groups and blue hexagonal nodes as the common drugs
related to different genes. In order to introduce effective
miRNAs, target miRNAs were extracted, and bipartite sub-
networks for each gene group were constructed for a second-
ary purpose. In the last step, to achieve the primary purpose
of this study, the drugs are sorted by their degree value to
launch a comprehensive inquiry of the obtained results.
Since drugs with a higher degree are associated with more
genes, fourteen drugs were selected; two of them tamoxifen
and raloxifene were with a degree value of 7; haloperidol
was with a degree of 6; doxorubicin, verapamil, gentian vio-
let, and progesterone were with the degree of 5; and the rest
with a degree value of 4, which are listed as the following:
alteplase, pilocarpine, estradiol, hexachlorophene, daunoru-
bicin hydrochloride, nicotine, and clozapine.

These are vital drugs introduced by this study for
Alzheimer’s disease. All 15 obtained drugs are reviewed
in previous experimental and medical studies to acknowl-
edge the accuracy of the present study’s results.

Initially, tamoxifen and verapamil were examined,
reviewing the previous studies. A case-control study in
Taiwan examined the relation between tamoxifen use and
AD and concluded that using this drug for a long time tends
to the longer life of Alzheimer’s patients [21]. Another study
indicated the role of tamoxifen in Alzheimer’s disease and
found that it enhances memory [22]. Another study showed
that tamoxifen contributes to reducing impairment and
improvement of the learning system [23].

According to the literature, a study introduced verapamil
as a medication for male and female samples dealing with
Alzheimer’s disease [24]. According to a review study, verap-
amil, previously used for cardiovascular disease, is currently
considered a treatment for neurological disorders [25]. In
addition to Alzheimer’s disease, verapamil is reported as a
treatment in Huntington and Parkinson’s diseases [26, 27].

The following thirteen drugs were examined as follows.
Alteplase, also known as t-PA, contributes to reducing

Table 2: The CMAP analysis on potential candidate drugs.

Drug Degree Genes Up- or downregulated genes

Tamoxifen 7 TGFB1, NTRK1, AR, TP53, ESR1, ESR2, VDR TP53-up

Raloxifene 7 IL1B, TP53, ESR1, ESR2, VDR, AR, PPARG AR-up

Haloperidol 6 SLC6A3, SLC6A4, BDNF, LDLR, AR, TP53
LDLR-up
TP53-up

Doxorubicin 5 TGFB1, GSTP1, NTRK2, BDNF TGFB1-up

Verapamil 5 TGFB1, SLC6A4, GSTP1, LDLR, IL1B —

Progesterone 5 TARDBP, AR, TP53, ESR1, ESR2 TP53-up

Clozapine 4 SLC6A3, SLC6A4, GSTP1, NTRK2 GSTP1-down

Estradiol 4 AR, ESR1, ESR2, PPARG
AR-up
ESR1-up
ESR2-up

Pilocarpine 4 NTRK2, NTRK1, NTF3, BDNF —
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Figure 5: Continued.
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AD-related pathology by making progress in the cognitive
function of the sample [28]. Another study about this treat-
ment method indicated that alteplase prevents ischemic
brain lesions from being progressed while imaging after
the stroke [29]. Another published paper maintained the
role of t-PA in omitting Aβ (deposition of the beta-amyloid
peptide as one of the important reasons for Alzheimer’s dis-

ease). This study also indicated that t-PA reduces the speed of
Alzheimer’s disease progression [30]. The next one is pilocar-
pine which is claimed to be instructive in detecting patients
with AD and dementia [31]. However, there is no other
related study. Raloxifene, the next one, which has a neuro-
protective role [32], was maintained to help decrease inflam-
mation of the brain. Another study claimed that raloxifene
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Figure 5: Bipartite gene-miRNA subnetworks for all of the clusters: (a) cluster 1; (b) cluster 3; (c) cluster 6; (d) cluster 7; (e) cluster 8.
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prevents cell death in neurons and meliorates mild cognitive
impairment in examined samples. Its beneficial effects on
Parkinson’s disease [33] were maintained as well. Another
study concluded that 120mg per day as the dose of raloxifene
reduces cognitive impairment risk [34]. The next one is gen-
tian violet, yet there is no study on the association of gentian
violet and Alzheimer’s disease. The next one, hexachloro-
phene, is almost associated with neurodegenerative disease
and helps reduction of Aβ42-induced toxicity and prevents
neural damage [35]. Another study indicated hexachloro-
phene as a potential drug in Alzheimer’s disease treatment
by regulating tau levels [36]. Nicotine affects the aetiology
of Alzheimer’s disease and Parkinson’s disease; however,
the writers did not recommend it for its other health prob-
lems [37]. Another paper observed cognitive progress using
nicotine in mild cognitive impairment (MCI) samples [38].
Doxorubicin represents a protective effect on the brain over
chemotherapy-induced impairment (CICI) [39]. The subse-
quent study investigated their relationship with cognitive
abilities and introduced more evidence about its effect [40].
There is no direct relation between AD and this drug, so this
study proposes it as an Alzheimer-related drug to be studied
extensively. The next drug is haloperidol that has an associa-
tion with patients with Alzheimer’s disease who have behav-
ior problems and represents relatively good changes in
patients’ behavior [41]. The next study indicated that using
a special dose of haloperidol decreases behavioral problems
(psychosis and destructive behaviors) in the abovementioned
patients [42]. Another study showed a decrement in delays
for finding new objects through the examinations [43].
Almost all the studies related to this drug, reviewed in this
part, are not directly related to AD, but they are indirectly
associated with changes in behaviors of patients with Alzhei-
mer’s disease or dementia. The next drug is daunorubicin
hydrochloride which is known as daunomycin, with trade
names Adriamycin, Cerubidine, and Blenoxane [44]. A study
stated that the compounds containing daunomycin prevent
Abeta fibril formation and slow down the progression of
Alzheimer’s disease [45]. This is the only study that noted
the relation between Alzheimer’s disease and daunomycin.
Another study proposed it for the long-term treatment of
patients with Alzheimer’s disease. Its results also maintained
its effect in the reduction of amyloid-beta (Aβ) deposition
[46]. Another study also introduced clozapine for psychosis
treatment in patients affected by Alzheimer’s dementia or
Parkinson’s disease [47]. The next paper introduced cloza-
pine as the related drug for Alzheimer’s treatment that
improves short-term memory [48]. The next drug is estradiol
which is stated as a useful drug for the enhancement of cog-
nitive functions [49]. The other study maintained that estra-

diol in higher levels provides a higher covariance in-memory
network and better cognitive health specially for women [50].
There are two other studies that suggested using estradiol as a
therapy in Alzheimer’s disease [51, 52]. The last one is pro-
gesterone which contributes to progression in learning and
memory abilities by improving glucose metabolism in neu-
rons [53]. Another article maintained that progesterone
increases cognitive abilities, prevents Aβ inflammation, and
is a therapy method in Alzheimer’s disease [54]. The next
study asserted some behavioral problems like depression
caused by Alzheimer’s disease and claimed that progesterone
decreases these behavioral problems [55].

According to the extensive and detailed review, the drugs
extracted by this article can be divided into three groups.
The first group is about AD-related drugs introduced by pre-
viously published researches. The second group is the drugs
that are not directly related to AD, or there has not been
enough study about them so far. The third group is about
the medicines that have not been mentioned concerning
AD in previous studies. This categorization is presented in
Table 3.

The first group’s drugs prove the accuracy of the pro-
posed method in this study because the obtained results
are consistent with previous medical publications. The sec-
ond list of drugs is proposed earlier, but they can be studied
more in detail as future works. The two drugs in the third
group are suggested by this study as Alzheimer-related
drugs, which can be examined experimentally.

5. Conclusions

The presented study is aimed at suggesting Alzheimer’s
disease-related drugs and introducing significant processes
and pathways by extracting important gene complexes. The
proposed method utilized PPI networks to extract these gene
complexes. Then, for each gene complex, a bipartite subnet-
work was drawn using their most important target miRNAs.
In the next phase of the study, drug-gene networks were
extracted and illustrated, along with related gene groups. By
detailed investigation over the selected drugs, gentian violet
was proposed as Alzheimer-related drugs by this study. The
significance of the findings in this study was suggesting poten-
tial candidate drugs related to Alzheimer’s disease. The candi-
date drugs can be experimentally investigated in future works.

Data Availability

The results of analysis in terms of tables used to support the
findings of this study are included within the supplementary
information file.

Table 3: A categorization of the extracted drugs.

Number of drugs Drug names

9 Tamoxifen, verapamil, alteplase, raloxifene, hexachlorophene, nicotine, clozapine, estradiol, progesterone

4 Pilocarpine, doxorubicin, haloperidol, daunomycin

1 Gentian violet
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