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Abstract

The analysis of visually guided tracking movements is important to the understanding of imi-

tation exercises and movements carried out using the human visuomotor control system. In

this study, we analyzed the characteristics of visuomotor control in the intermittent perfor-

mance of circular tracking movements by applying a system that can differentiate between

the conditions of invisible and visible orbits and visible and invisible target phases imple-

mented in a 3D VR space. By applying visuomotor control based on velocity control, our

study participants were able to track objects with visible orbits with a precision of approxi-

mately 1.25 times greater than they could track objects with invisible orbits. We confirmed

that position information is an important parameter related to intermittent motion at low

speeds (below 0.5 Hz) and that tracked target velocity information could be obtained more

precisely than position information at speeds above 0.5 Hz. Our results revealed that the

feedforward (FF) control corresponding to velocity was delayed under the visible-orbit condi-

tion at speeds over 0.5 Hz, suggesting that, in carrying out imitation exercises and move-

ments, the use of visually presented 3D guides can interfere with exercise learning and,

therefore, that the effects of their use should be carefully considered.

Introduction

We use countless body movements to observe, hold, and move objects in our daily lives. In

particular, the visually guided tracking of movements is an important function in learning or

imitating movement [1–5].

Research on visually guided movement tracking has focused on tasks in which the trajecto-

ries of visually guided targets are tracked along one-dimensional (1D) straight lines or on two-

dimensional (2D) planes through various joint movements in a three-dimensional (3D) space

[6–16]. For example, Miall et al. (1986, 1988, 1993) examined the task of tracking a visually

guided target with a 1D sinusoidal trajectory using the multi-joint motion of an arm in a 3D

space. Tests in which monkeys and humans carried out this task revealed that the control
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parameters differed depending on the periodicity of the target orbit on the 1D tracking space.

Beppu et al. (1984, 1987) performed tests in which patients with cerebellar disease and control

patients carried out a tracking task using an elbow joint motion with one degree of freedom

under the visual guidance of a 1D ramp trajectory. Their results revealed parameters that

could quantitatively evaluate the severity of cerebellar disease in patients.

Circular tracking movements have periodic tracking characteristics similar to those of 1D

sinusoidal tracking movements. Unlike 1D tracking, however, circular tracking enables the

examination of constant-velocity continuous movement on a 2D plane [12–19]. Several studies

have examined the tracking of targets with visually guided trajectories on a 2D plane using a

stylus-equipped tablet, a 2D tracer (i.e., computer mouse), and two-degree-of-manipulandum

arm and wrist movements. In our previous research, we analyzed the characteristics of visuo-

motor control using 2D circular tracking movements in a polar coordinate system in which

the feature parameters theta and omega measured the precisions of position and velocity con-

trol, respectively [12]. We confirmed that these parameters could be used to analyze the char-

acteristics of visuomotor control in carrying out circular tracking movements in a 3D VR

space under monocular and binocular vision conditions [23–24].

Intermittent circular tracking movements can be used to study the characteristics of motor

control under feedback (FB) and feedforward (FF) visuomotor control [8, 10–14]. In systems

in which a target and tracer are visible on some sections of a circular tracking path, position

correction using FB control can be performed to reduce the difference between the two. Simi-

larly, FF-based prediction control for tracking targets along trajectory sections in which they

are invisible have been carried out [12, 14]. Previous studies on humans compared the effects

of the visible and invisible phases of 2D circular tracking movement on the FB and FF controls

[12, 14]. However, in previous studies the orbit of the target was displayed to make it easier for

the subject to perform the experiment. In these studies, the FF control in the invisible phase of

the target orbit was implemented via position correction control obtained from visual infor-

mation regarding the orbit. Furthermore, previous studies did not consider the effect of the

quadrant on circular tracking movement in analyzing the data; instead, data were adopted

from different quadrant regions based on the visible and invisible phases of the 2D circular

tracking movement.

Given the existing literature background, we pose the following challenging question: What

are the differences between the characteristics of visuomotor control in visible and invisible

target phases along visible and invisible target orbits during 3D target-tracking movements?

To address this, we examined data obtained from the quadrant regions corresponding to the

visible and invisible phases of a 3D intermittent circular tracking movement.

Thus, our study investigated the characteristics of visuomotor control in carrying out inter-

mittent circular movement by implementing a system that presented the conditions of visible

and invisible circular orbits in a 3D VR space during visible and invisible target phases. As

controlling the position and speed of movement is closely related to the functioning of the

human cerebellum, which controls body movement [20–22], we utilized position and velocity

parameters measured in polar coordinates to analyze visuomotor control [12, 23, 24]. Finally,

we quantitatively analyzed the characteristic of the FB and FF controls based on the changes in

target speed between the visible and invisible circular orbit conditions on the same quadrant

regions.

Materials and methods

The subjects recruited for the study comprised 18 men and one woman with a mean age of 20

± 0.71 years (Table 1). All subjects had normal or corrected-to-normal vision with a binocular
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vision greater than 0.7. The visual acuity of each subject was determined based on the results

of their health examination. None of the subjects had previously participated in similar studies.

All subjects provided written informed consent prior to participation. All experiments were

conducted in accordance with the relevant guidelines and regulations following a protocol

approved by the ethics committee of the National Institute of Technology, Gunma College.

Each subject was asked to conduct intermittent 3D circular tracking tasks under visual

guidance in which a tracer was used to track a virtual target in a 3D VR space (Fig 1) [23–25].

In carrying out the tasks, the position of the tracer was synchronized with the hand movements

of the subject. During the experiment, the target was moved continuously along visible and

invisible circular orbits with radii of 15 cm, as shown in Fig 1(A1) and 1(B1), respectively. The

insets on the left of (A1) and (B1) show how the two outcome measures (Δθ, Δω) were derived

from the path data of the target (or tracer) under each condition. In (A1) and (B1), the target

rotates clockwise at a constant speed and moves from quadrants 1 to 4 in order. (A2) and (B2)

show typical trials of the tracer path (black line), which is plotted versus time at a speed of 0.25

Hz on the X-, Y-, and Z-axes, respectively. On the graphs, the regions in which the visible tar-

get and tracer (VIS(1)) and only the visible tracer (VIS(2)) are displayed are indicated in cyan

and red, respectively. Data from the second and fourth quadrant regions corresponding to VIS
(1) and VIS(2), respectively, were used to assess the 3D intermittent circular tracking

movement.

We performed an additional examination to evaluate the stereo acuity of the subjects in the

VR space. After calibrating the display position of the target, each participant was asked to

confirm verbally whether they could appropriately perceive it; if not, the inter-ocular distance

was adjusted accordingly. The stereo acuity of the participant was then evaluated by perform-

ing a task in which the tracer was placed at the center of a 3D target. Each subject who success-

fully performed this task four times or more in five attempts was selected for further research.

Table 1. Subject information: Age, sex, and dominant hand.

Subject no. Age Sex Dominant
hand

1 19 M R

2 20 M R

3 21 M L

4 21 M R

5 20 M R

6 20 M R

7 19 M R

8 20 M R

9 20 M R

10 20 M R

11 19 M R

12 20 M R

13 20 M R

14 19 F R

15 19 M R

16 20 M R

17 20 M L

18 21 M L

19 21 M R

https://doi.org/10.1371/journal.pone.0251371.t001
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Experimental task

The experiments were performed in a VR space (Fig 1). In each experiment, the subject was

seated in a custom-built chair with a head-mounted display placed on their head while holding

a controller in their dominant hand. The initial position of the target was then calibrated for

each subject. The target was rotated at 0.25, 0.5, or 0.75 Hz along a visible or invisible orbit

after a countdown of 3 s accompanied by sound effects, as shown in Fig 1(A1) and 1(B1). Dur-

ing the countdown, the subject was asked to move the tracer to the target position and then

perform a circular tracking movement. As shown in Fig 1, in each trial the target was stopped

after four revolutions. In total, there were four trials in which the target rotated in the frontal

plane over an invisible circular orbit (ORB(1)) and a visible circular orbit (ORB(2)). Thus, for

each subject 192 revolutions were carried out in total (4 revolutions × 4 trials × 3 speeds × 2

Fig 1. Experimental procedure. VIS(1): visible target and tracer, VIS(2): only visible tracer. ORB(1): invisible circular orbit, ORB(2): visible circular orbit. (A1) Schematic

of circular tracking experiment for ORB(1). Under ORB(1), the target path is not visible to the subjects during the experiment. (B1) Schematic of circular tracking

experiment for ORB(2). Under ORB(2), the target path is visible to the subject. The green lines indicate the target path in the 3D VR space. The insets on the left-hand sides

of (A1) and (B1) show how the two outcome measures (Δθ, Δω) were derived from the path data of the target (or tracer) under each condition. In both (A1) and (B1), the

target rotates clockwise at a constant speed, moving from quadrants 1 to 4 in order. (A2) Typical trial data showing tracer path (black line) versus time at a speed of 0.25

Hz on three axes. (B2) Typical trial data showing target (green line) and tracer paths (black line) versus time at a speed of 0.25 Hz on three axes. The three graphs in (A2)

and (B2) show the path of the tracer as seen from the X-, Y-, and Z-axes, respectively. In the graphs, regions VIS(1) and VIS(2) are indicated in cyan and red, respectively.

https://doi.org/10.1371/journal.pone.0251371.g001
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phases × 2 orbits). In all, there were 12 experimental conditions (3 speeds × 2 phases × 2

orbits). The first trial under each setting was discarded from the analysis to account for the

adjustments required on the part of the subjects with respect to the experimental protocol.

After the movements made by each subject were tracked under condition VIS(1), they were

tracked under the visible tracer condition VIS(2) because the circular tracking model was gen-

erated by the efference copy in the brain.

Data analysis

To measure data, polar instead of Cartesian coordinates were used, with the angular displace-

ment “θ” and angular velocity “ω” in polar coordinates measured for data analysis (see Fig 1).

Because the second and fourth quadrants of the tracking circle had phases of VIS(2) in the

experimental task, we used data extracted from these quadrants under each experimental con-

dition, as shown in Fig 1(A2) and 1(B2). The data obtained from the first trial under each con-

dition were discarded from the analysis.

The absolute value of the difference in angular displacement between the target and the

tracer can be defined as

Dy ¼ jytracer � ytargetj; ð1Þ

similarly, Δω, the absolute value of the difference in angular velocity between the target and

tracer, can be expressed as

Do ¼ jotracer � otargetj: ð2Þ

In this study, we investigated the differences in the parameters Δθ and Δω between the circular

tracking movements on the frontal plane.

To analyze the differences in circular tracking movements in terms of Δθ and Δω, we car-

ried out a three-way repeated measure analysis of variance (ANOVA) based on the phase fac-

tor (at two levels, namely VIS(1): visible target and tracer, and VIS(2): only visible tracer), the

speed factor (at three levels, namely V(1): 0.25 Hz (n = 19), V(2): 0.5 Hz (n = 19), and V(3):
0.75 Hz (n = 19)), and the orbit factor (at two levels, namely ORB(1): invisible circular orbit,

and ORB(2): visible circular orbit). Table 2 summarizes the factors and levels used in the statis-

tical analysis.

The main effects and interactions between the phase, speed, and orbit factors with respect

to Δθ and Δω were assessed using the repeated measures function in the IBM SPSS Statistics

software [26]. A post-hoc test was conducted through pairwise comparisons of the Bonferroni

correction. Except where noted, we described the data in terms of the mean (M), standard

error (SE), and standard deviation (SD). We considered comparisons yielding p< 0.05 to be

statistically significant and those yielding p< 0.01 to be highly statistically significant. These

methods and statistical analyses were used to produce the data listed in S1 and S2 Tables.

Table 2. Summary of the factors and levels related to the statistical analysis.

Factors Levels Condition
Phase VIS(1) visible target and visible tracer

VIS(2) only visible tracer, invisible target

Orbit ORB(1) invisible orbit

ORB(2) visible orbit

Speed V(1) target speed of 0.25 Hz

V(2) target speed of 0.50 Hz

V(3) target speed of 0.75 Hz

https://doi.org/10.1371/journal.pone.0251371.t002
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Using the G�Power software, we performed a priori power analysis to determine the mini-

mum required sample size for repeated measures and within-between interaction ANOVA

[27]. For an effect size of 0.25, alpha = 0.05, number of groups = 12, power = 0.80, number of

measurements = 3, and non-sphericity correction = 1, the analysis revealed that 17 participants

were required to detect with an actual power of 0.8. To meet this minimum sample size, we

tested 19 subjects.

Results

We studied the characteristics of visuomotor control using the measured Δθ and Δω values

obtained under each phase and orbit level during the intermittent 3D target-tracking movements.

Effect of phase and orbit factors on visuomotor control during intermittent

3D target-tracking movements in terms of Δθ
Fig 2(A1) and 2(A2) show the values of Δθ for each orbit and phase level at the three target

speeds (0.25, 0.5, and 0.75 Hz).

Fig 2. Typical examples of circular tracking movements at speeds of 0.25, 0.5, and 0.75 Hz. V(1): 0.25 Hz (n = 19), V(2): 0.5 Hz (n = 19), and V(3): 0.75 Hz (n = 19).

(A1) Absolute values of Δθ under ORB(1) and (A2) under ORB(2). (B1) Absolute values of Δω under ORB(1) and (A2) under ORB(2). In the graphs, the regions of VIS(1)
and VIS(2) are indicated in cyan and red, respectively.

https://doi.org/10.1371/journal.pone.0251371.g002
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The values of Δθ were assessed to investigate the differences in the position angle between

VIS(1) and VIS(2) at each orbit level and target speed. A three-way repeated-measures

ANOVA (orbit × phase × speed) revealed that there was a significant second-order interaction

between the phase, speed, and orbit (F (1.368,24.619) = 5.349, p = 0.021, partial η2 = 0.229;

Item A in S1 Table). There was also a significant effect in terms of speed (F (2, 36) = 64.111,

p = 0.000, partial η2 = 0.781), indicating that the speed factor affected Δθ in the intermittent

circular tracking movement results. In addition, the interaction between the orbit and phase

factors at each target speed affected the performance of Δθ in evaluating the precision of the

position control.

The orbit levels ORB(1) (M = 5.9˚, SE = 0.385˚) and ORB(2) (M = 5.88˚, SE = 0.343˚) per-

formed nearly identically in synchronizing the position angle of the target and tracer (F (1,18) =

0.005, p = 0.944, partial η2 = 0). By contrast, the speed factor was found to increase the level of

speed (0.25 Hz: M = 3.67˚, SE = 0.206˚; 0.5 Hz: M = 5.302˚, SE = 0.324˚;0.75 Hz: M = 8.709˚,

SE = 0.653˚) (F (1.1,19.78) = 64.11, p = 0, partial η2 = 0.78).

We next investigated effect of the phase level on the position angle for ORB(1) and ORB(2)
(Fig 3). A two-way repeated-measures ANOVA (orbit × phase) revealed that there was signifi-

cant interaction between phase and orbit (Item F in S1 Table), although the simple effect of the

orbit factor on Δθ indicated a significant difference by orbit factor at VIS(2) (F (1,18) = 5.532,

p = 0.03, partial η2 = 0.235; Item G in S1 Table). The Δθ of ORB(1) for VIS(2) was less than

that of ORB(2) at 0.75 Hz (Fig 3(C)).

Fig 3. Effect of visuomotor control on Δθ. For each ORB level, effects of VIS on Δθ are shown at (A) 0.25, (B) 0.5, and (C) 0.75 Hz.

https://doi.org/10.1371/journal.pone.0251371.g003
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The differences in Δθ between phase levels at each orbit level and target speed were then

examined. Fig 3 shows the results of a pairwise comparison (Bonferroni correction) in terms

of Δθ (Item H in S1 Table).

Under both ORB(1) and ORB(2), there were significant differences between the phase levels

at 0.25 Hz. Because VIS(1) was performed under the FB control, which depends on the visual

information of the target, at the low speed of 0.25 Hz, its results differed significantly from

those of VIS(2), which was performed without visual information of the target and therefore

produced a larger error in position than VIS(1). At 0.5 Hz, there was a significant difference

between VIS(1) and VIS(2) under the visible-orbit condition ORB(2). At 0.75 Hz, the Δθ for

VIS(2) tended to be lower than that for VIS(1); in particular, there was no significant difference

between VIS(1) and VIS(2) under ORB(2) at 0.75 Hz. The results indicated that, in controlling

the position angle, the orbit factor did not delay the start of the FF control at speeds greater 0.5

Hz. In addition, the Δθ of the FF control was less than that of the FB control at 0.75 Hz (Fig 3

(C)) and the FB control of the position angle in 3D circular tracking movement was superior

to the FF control at speeds below 0.5 Hz.

Effect of phase and orbit factors on visuomotor control during intermittent

3D target-tracking movements in terms of Δω
Fig 2(B1) and 2(B2) show the values of Δω obtained under various orbit and phase levels at the

three target speeds (0.25, 0.5, and 0.75 Hz).

We evaluated Δω to compare the velocity control accuracies under the VIS(1) and VIS(2)
levels at each orbit level and target speed. A three-way repeated-measures ANOVA (orbit ×
phase × speed) revealed a significant second-order interaction between the phase, speed, and

orbit (F (1.423,25.61) = 11.86, p = 0.001, partial η2 = 0.397; Item A in S2 Table). Furthermore,

significant effects were observed in terms of orbit (F (1, 18) = 29.61, p = 0.000, partial η2 =

0.622) or phase (F (1, 18) = 78.94, p = 0.000, partial η2 = 0.814) and speed (F (1.194, 21.49) =

247.624, p = 0.000, partial η2 = 0.932). This indicates that, under intermittent circular tracking,

Δω was affected by the orbit, phase, and speed factors and that the interactions between these

three factors affected the performance of Δω in evaluating the velocity-control precision of the

intermittent circular tracking movements.

The participants were, overall, more accurate in velocity control under ORB(2) (M = 26.13˚ s-1,

SE = 0.88˚ s-1) than under ORB(1) (M = 32.61˚ s-1, SE = 1.67˚ s-1) when synchronizing the angular

velocities of the target and tracer (F (1,18) = 29.61, p = 0, partial η2 = 0.62). The tracking movement

was, in general, more accurate in carrying out velocity control under VIS(1) (M = 25.854˚ s-1,

SE = 1.072˚ s-1) than under VIS(2) (M = 32.887˚ s-1, SE = 1.424˚ s-1) (F (1,18) = 78.94, p = 0, par-
tial η2 = 0.81). Moreover, the speed factor was found to increase the level of speed (0.25 Hz:

M = 14.4˚ s-1, SE = 0.585˚ s-1; 0.5 Hz: M = 26.3˚ s-1, SE = 1.09˚ s-1;0.75 Hz: M = 47.42˚ s-1,

SE = 2.243˚ s-1) (F (1.19,21.49) = 247.62, p = 0, partial η2 = 0.932).

We next evaluated the differences in velocity control accuracy by phase level under ORB(1)
and ORB(2) (Fig 4). A two-way repeated-measures ANOVA (orbit × phase) revealed that there

was significant interaction between phase and orbit (Item F in S2 Table). In addition, the sim-

ple effects on Δω differed significantly by orbit level (Item G in S2 Table). Furthermore, there

were the significant results of pairwise comparisons (Bonferroni correction) (Item E in S2

Table) at 0.5 Hz. Above 0.5 Hz, the velocity control accuracy of 3D circular tracking was signif-

icantly improved under ORB(2) as shown in Fig (4B) and (4C).

The effects on Δω of orbit level and target speed at both phase levels were then examined.

Fig 4 shows the results of pairwise comparisons (Bonferroni correction) between the Δω results

obtained under VIS(1) and VIS(2) for the ORB(1) and ORB(2) conditions at the three target
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speeds. The differences in Δω by phase level were found to be statistically significant on Item F

in S2 Table.

This result suggests that the participants were generally more accurate at velocity control

under the ORB(2) (M = 26.13˚ s-1, SE = 0.88˚ s-1) condition than under the ORB(1) (M =

32.61˚ s-1, SE = 1.67˚ s-1) condition when synchronizing the angular velocities of the target and

tracer at speeds above 0.5 Hz (F (1,18) = 29.61, p = 0, partial η2 = 0.62; Item A of S2 Table).

The accuracy in terms of angular velocity under ORB(2) was approximately 1.25 times higher

than that under ORB(1). Under ORB(1), FF control with increasing target speed began above

0.5 Hz whereas, under ORB(2), FF control began at 0.75 Hz, a delay in FF control onset that

we attribute to the presence of a visible orbit. Furthermore, at speeds above 0.5 Hz the values

of Δω obtained under VIS(2) decreased relative to those under VIS(1).

Discussion

In this study, we quantitatively evaluated the motor control characteristics of the intermittent

circular tracking movements of participants tracking a target orbit in a 3D VR space. Our anal-

ysis of the spatiotemporal relationship between the visible and invisible target phases during

the 3D target-tracking process revealed that the visible orbit condition delayed the onset of the

FF control of the kinematic parameters, i.e., the position and velocity, during the intermittent

circular tracking movement. By using visuomotor control based on velocity control, the sub-

jects performed tracking with a precision of approximately 1.25 greater under the visible orbit

condition than under the invisible condition.

Fig 4. Effect of visuomotor control on Δω. For each ORB level, effects of VIS on Δω are shown at (A) 0.25, (B) 0.5, and (C) 0.75 Hz.

https://doi.org/10.1371/journal.pone.0251371.g004
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In the following, we discuss three issues: (1) the differences between the visible and invisible

target phases in terms of the characteristics of visuomotor control used to carry out intermit-

tent 3D target tracking movement; (2) the differences between the visible and invisible orbit

phases in terms of these visuomotor control characteristics; and (3) the limitations and future

application of the proposed system.

Differences between visuomotor control characteristics used to carry out

intermittent 3D target tracking under visible and invisible target phases

To enact visuomotor control in carrying out intermittent circular tracking movements, track-

ing movements under the target-visible phase (VIS(1) in Figures) primarily involve the appli-

cation of FB control, including control under the forward model involving visual and

proprioceptive information. By contrast, tracking movements under the target-invisible phase

(VIS(2) in Figures) are more dependent on FF control applying the inverse internal model of

target motion in the central nervous system (CNS) [8, 10–14]. In other words, visuomotor

control in tracking movements to a moving target must consider two problems: the sensory

feedback noise and delay in the motor system (i.e., 100–200-ms sensorimotor delay [28–31]),

and the environmental target motions (i.e., the position and velocity information correspond-

ing to target motion). To address the motor system problem, recent studies have applied for-

ward internal models that can predict the sensory consequences of a motor command by

using its efferent copy [32]. The theory assumes that the CNS estimates the position of the

hand by combining the predictions made by the forward model using the efference copy with

actual sensory feedback to perform accurate goal-directed movements. Furthermore, during

periodic target tracking such as that used in a circular tracking task, the CNS acquires informa-

tion (i.e., position and velocity) on target motion by applying an inverse model in which the

hand position is compared with the desired target state based on feedback error learning [33,

34]. The results of this study suggest that FB control under the VIS(1) target-visible phase pre-

diction is governed more by the prospective forward model than by the retrospective inverse

model as the former allows for accurate comparison of the states (position and velocity) of the

target and tracer during on-line target tracking movement [35–38]. By contrast, under the tar-

get-invisible VIS(2) phase the significance of the FF controller using the inverse model exceeds

that of the FB controller using the forward mode because comparison of the tracer and target

states is impossible as all target visual information has been removed. In other words, in the

VIS(2) phase the overall motor commands to enact arm movements are primarily defined by

FF using the inverse model [33, 34].

Previous studies qualitatively demonstrated the differences in the frequency components or

the smoothness of the trajectory between the FB-dominant VIS(1) and FF-dominant VIS(2)

phases through the enhanced and reduced intermittencies obtained, respectively, when using

FB and FF control [8, 10]. By contrast, this study examined relative changes in the control

parameters (i.e., the angular error (Δθ) and angular velocity error (Δω) as indices of position-

control and velocity-control precision, respectively) between the FB-dominant VIS(1) and FF-

dominant VIS(2) phases, revealing quantitative changes in control strategy (i.e., the use of

position and velocity controls) in terms of, for example, which parameter was more accurately

considered under the FB and FF controls. In other words, we analyzed how FB and FF control

mutually interact with these control parameters in carrying out intermittent circular tracking

movements. For example, the increase in Δθ (representing the position-control precision)

from VIS(1) to VIS(2) at velocities below 0.5 Hz (Fig 3) revealed that positional information

was the more critical parameter for FB control in the target-visible phase of slow target track-

ing movement. Similarly, the decrease in Δω (representing the velocity-control precision)
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from VIS(1) to VIS(2) (Fig 4) revealed that velocity information was more important in FF

control in the target-invisible phase.

Differences between visuomotor control characteristics used to carry out

intermittent 3D target tracking on visible and invisible orbits

In previous studies, the differences in the effect of orbit visibility between the ORB(1) and ORB
(2) phases on 3D circular tracking movement were not quantitatively analyzed; instead, they

were simply displayed to enable easier 2D circular tracking during the invisible target phase

[12, 14]. In this study, we quantitatively analyzed the differences between ORB(1) and ORB(2)
under 3D circular tracking.

Previous studies reported that, when the target disappeared during the circular tracking

movement, Δω was reduced and predictive FF control was performed [12]. The results of this

study revealed significantly that, at target speeds of 0.5 Hz and above, the Δω values under VIS
(2) were lower than those under VIS(1) under the invisible-orbit ORB(1) condition. Further-

more, at 0.5 Hz the FF control corresponding to the velocity was delayed by the presence of a

visible orbit; in other words, at target speeds of 0.75 Hz or above there was a significant differ-

ence between the orbit conditions in that the Δω of VIS(2) was lower than that of VIS(1) under

the orbit-visible ORB(2) condition.

It is widely known that the cerebellum detects and corrects for errors in the on-line control

of movement. This error processing is a central component of cerebellar functions including

motor learning [39, 40] and the construction of internal models [32–34]. Error signals in the

cerebellum are generally believed to be transmitted via climbing fiber input. In other words,

Purkinje cell complex spike discharge is associated with errors during eye [41, 42] and arm

movements [39, 43, 44]. In the VIS(1) phase examined in this study, the FB controller detected

and corrected errors based on target and tracer visual information during the tracking move-

ment. When the target visual information was eliminated under the VIS(2) phase, the FB con-

troller failed to detect these errors and, as a result, the FF controller was primarily used instead

to encode circular tracking movement. Under the visible-orbit condition ORB(2), the presence

of visual orbit information appeared to induce the FB controller to attempt to detect the errors

between the visual tracer and the memorized target during the target-invisible VIS(2) phase

using the cerebellum. Consequently, at high speeds the FF control might be delayed (impaired)

by the visibility of an orbit. In other words, through a comparison of the visible and invisible

orbit conditions (Figs 3 and 4) we revealed that the visual presentation of 3D guides might

interfere with the learning processing that is a central component of cerebellar functions such

as motor learning and internal modeling.

As the target speed increases, the visuomotor control of the temporal space depends

increasingly on FF control based on velocity in place of FB control [6, 12, 24]. The benefits of

tracking using a guideline at slow target speeds and ages were reported in [45]. Our results

revealed that, at target speeds above 0.5 Hz, limb FF control was superior under intermittent

circular tracking movement regardless of the orbit level (Fig 4).

Furthermore, we found that, consistent with a previous study [12], under the ORB(2) con-

dition Δθ increased under VIS (2) at V(1) and V(2). This result indicates the position control

of circular tracking movement is difficult in the absence of visual target information in 3D

space. At V(3), FB control was more difficult than FF control even when the target information

was present. There were significant differences between the results for V(1) and V(3) under

ORB(1), when the orbit was not visible. At the lowest-speed condition, V(1), the Δθ under VIS
(1) was less than that under VIS(2), whereas at the highest-speed condition, V(3), the Δθ under

VIS(2) was less than that under VIS(1).
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These results indicate that, when the speed is less than 0.5 Hz, the FB control, which

depends on the visual information of the target, dominates; by contrast, when the speed is

greater than 0.5 Hz, the FF control based on the prediction of the target dominates.

A previous study reported that the omega parameter is an important component of inter-

mittent movement based on changes in speed [12]. In this study, we found that, at speeds of

less than 0.5 Hz, the position-related theta parameter is an important indicator of intermittent,

speed-based motion during the 3D circular tracking movement. Moreover, the velocity infor-

mation of the tracking target could be more precisely obtained than its position information

and could be used as a control model by participants in carrying out intermittent circular

tracking movement at speeds greater than 0.5 Hz.

The FF control is necessary to compensate for the delays in sensory information [24, 39]

that are present in all stages of the sensorimotor system from reception of afferent sensory

information to the response of muscles to efferent motor commands [28]. The results of this

study revealed that the FF control corresponding to velocity was delayed speeds of 0.5 Hz

when the orbit was visible. This indicates that a visually presented orbit can delay the onset of

the FF control and suggests that the use of visually presented guides in imitation exercises and

movements could interfere with exercise learning.

Future applications and limitations of the proposed system

In this study, we quantitatively analyzed the effects of using a target with a constant speed and

direction experimentally. In future studies, we plan to analyze the effects of target irregularity

in terms of the direction and speed of intermittent circular tracking movement by adding con-

ditions in which the directional motion of the target changes irregularly or the speed is not

constant.

Individuals with disabilities or damage to the visuomotor system as a result of illness or

accidents can have difficulty in working with their hands in carrying out tracking tasks. The

system proposed in this study can help in the setting up of spatiotemporal environments for

the tracking of targets through the use of visually presented orbits. In particular, the level of

visuomotor movement associated with the cerebellum can be quantitatively analyzed through

the presentation of intermittent movement.

Conclusions

In this study, we quantitatively analyzed the visuomotor control characteristics of intermittent

circular tracking movements displayed as target orbits in 3D VR space. Our research examined

relative changes in the use of control parameters (i.e., Δθ and Δω as indices of position and

velocity control precision, respectively) between FB- and FF-dominant conditions indicating

quantitative changes in control strategy (i.e., position and velocity controls). We found that,

because they could apply visuomotor control based on velocity control, the tested individuals

improved their precision of target tracking by a factor of approximately 1.25 when the tracking

orbit was visible. It was shown that, at the low-speed condition below 0.5 Hz, positional infor-

mation is a more critical parameter for FB control in the target-visible phase and that, at the

high-speed condition above 0.5 Hz, velocity information is more relevant to FF control under

the target-invisible phase. Our results revealed that the FF control corresponding to velocity is

delayed under the visible-orbit condition at speeds greater than 0.5 Hz. Based on this, we sug-

gest that using 3D visually presented guides can interfere with the learning processing that

serves as a central component of cerebellar functions including motor learning and internal

modeling.
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