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The cochlea plays a crucial role in mammal hearing. The basic function of the cochlea is to map sounds of different frequencies onto
corresponding characteristic positions on the basilar membrane (BM). Sounds enter the fluid-filled cochlea and cause deflection
of the BM due to pressure differences between the cochlear fluid chambers. These deflections travel along the cochlea, increasing
in amplitude, until a frequency-dependent characteristic position and then decay away rapidly. The hair cells can detect these
deflections and encode them as neural signals. Modelling the mechanics of the cochlea is of help in interpreting experimental
observations and also can provide predictions of the results of experiments that cannot currently be performed due to technical
limitations. This paper focuses on reviewing the numerical modelling of the mechanical and electrical processes in the cochlea,
which include fluid coupling, micromechanics, the cochlear amplifier, nonlinearity, and electrical coupling.

1. Introduction

L1 Scope of the Review. Models are useful tools to connect
our understanding with physical observations. The mam-
malian cochlea is the organ that converts sound into neural
coding and has extraordinary sensitivity and selectivity. It
is important to understand the mechanisms of mammalian
hearing not only because of the scientific challenges they
present but also because such knowledge is helpful in
diagnosing and potentially treating the multiple forms of
hearing problems from which people suffer. Modelling the
mechanics of the cochlea assists in this understanding by
allowing assumptions about its functions to be verified, by
comparing responses predicted by mathematical models with
experimental observations. A cochlear model can be thought
of as a tool with which to carry out “numerical experiments,’
in which researchers can obtain or predict output response
to different stimuli. These predictions can then be used to
compare with experimental observations and hence help to
refine and validate the model or even to provide a guide
on measurements that cannot be performed in experiments
due to technical limitations. The type of cochlear modelling
undertaken also depends on the purpose of the study and the
available data of the cochlea.

This review will focus on numerical modelling of the
mechanical and electrical processes that lead to the vibrations
of the BM, the cochlear amplifier, and other nonlinear
behaviours, in the mammalian cochlea. Some classical
cochlear models will be illustrated to give a physical insight
into how the cochlea works. This is not to judge which model
is the best but to review the progress of cochlear modelling
work.

1.2. Anatomy of the Cochlea. The cochlea can be taken as a
frequency analyser residing in the inner ear. The principal
role of the cochlea is to transform the hair cell motions
induced by the incoming sound wave into electrical signals.
These electrical signals then travel as action potentials along
the neural auditory pathway to structures in the brainstem
for further processing. The whole transformation can be seen
as a procedure of a real time spectral decomposition of the
acoustic signal in producing a spatial frequency map in the
cochlea. Mammalian auditory systems have the capability of
detecting and analysing sounds over a wide range of fre-
quency and intensity; for example, humans can hear sounds
with frequencies from 20 Hz to 20 kHz and over an intensity
range up to 120 decibels. This remarkable performance
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depends on mechanical and biophysical processes in the
cochlea and the peripheral organ of hearing.

The cochlea consists of a coiled labyrinth, like a snail,
which is about 10 mm across and has about 2.5 turns in
humans, embedded in the temporal base of the skull. It is
filled with fluid and divided into three main fluid chambers,
as described, for example, by Pickles [1], and shown in
Figure 1(a). Figure 1(b) shows that the scala vestibuli is at the
top, which is separated from the scala media by a thin flexible
partition called Reissner’s membrane, and the scala media are
separated from the scale tympani at the bottom by a rigid
partition that includes a more flexible section called the
basilar membrane.

Neither the coiling nor RM is believed to play a major role
in the mechanics of the cochlea; the dynamics of which can
thus be analysed in terms of two fluid chambers separated by
the BM. The motion in the cochlea is driven by the middle
ear via a flexible (oval) window at the basal end of the upper
fluid chamber, and the pressure at the basal end of the lower
fluid chamber is released by another flexible (round) window.
It is thus the difference in pressure between the upper and
lower fluid chambers that drives the BM. The OC sits on top
of the BM and contains two types of hair cells, as shown in
Figure 1(b). Each cross-section of the OC contains a single
IHC, which converts the motion of the stereocilia into neural
impulses that then pass up the auditory pathway into the
brain. There are also three rows of OHCs within the OC
that play a more active role in the dynamics of the cochlea.
The individual stereocilia of a hair cell are arranged in a
bundle, as shown in Figure 1(c). When this bundle is deflected
towards the longest unit, the fine tip links that connect the
individual stereocilium are put under tension and open gat-
ing channels that allow charged ions from the external fluid
into the stereocilia and hence into the hair cells, as shown
in Figure 1(d). The current due to this ionic flow generates a
voltage within the hair cell, due to the electrical impedance
of its membrane. In the IHC, it is this voltage, once it is
above a certain threshold, which triggers the nerve impulses
that send signals to the brain. The effect of this voltage on
the OHC:s is still being investigated in detail, but it is clear
that it leads to expansion and contraction of the cell, which
amplifies the motion in the OC at low levels.

This electromotility of the OHCs, as it is called, is due
to a unique motor protein (Prestin) of the cell membrane
that changes its shape when a voltage is applied, much like
a piezoelectric actuator. The overall action of each OHC is
thus to sense motion within the OC, via its stereocilia, to
control the voltage within it, via the gating channels and
capacitance, and to generate a response, via electromotility.
There are about 12,000 OHCs in the human cochlea and they
each act through this mechanism as local feedback controllers
of vibration. It is surprising how this large number of locally
acting feedback loops can act together to give a large and
uniform amplification of the global response of the BM. It is
also remarkable how quickly the OHCs can act, since they can
respond at up to 20 kHz in humans and 200 kHz in dolphins
and bats. This is much faster than muscle fibres, for example,
which use a slower, climbing mechanism to achieve con-
traction. This climbing mechanism is still used within the
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stereocilia, however, to regulate the tension in the tip links
and thus maintain the gating channels at the optimum point
in their operating curves [2].

1.3. Cochlear Mechanics. As previously mentioned, the prin-
cipal role of the cochlea is to transform the hair cell motion
induced by the incoming sound wave into electrical signals.
These electrical signals then travel as action potentials along
the auditory pathway to structures in the brainstem for
further processing. Carterette [3] summarized the history,
from the ancient Greeks to modern day, of studies of auditory
anatomy and function. He shows that at the early stages, the
studies were mainly focusing on anatomy and identifying
the major features of the auditory system like the eardrum,
the cochlea, and bones of the middle ear. von Békésy [4]
carried out pioneering work to reveal the waves in the cochlea
extracted from human cadavers in the 1940s. He found that
a travelling wave generated by a pure tone excitation propa-
gated along the BM with wave amplitude gradually increased.
After a peak at a specific location, where resonance occurs,
the vibration decays quickly along the BM. The frequency
of the input tone determines the location at which the peak
occurs and this peak is more basal at high frequencies and
more apical at low frequencies. This behaviour is one of the
most critical evaluation criteria for cochlear models.

The first finding related to the nonlinearity in the cochlea
was back in 1971. Rhode [5] pointed out that the BM response
to sinusoidal stimuli is less frequency selective for higher level
stimuli. With the development of more refined measurement
technologies, more and more evidence showed that the
cochlea is active and nonlinear. The idea of active processes
in the cochlea was first raised by Gold [6] and evidenced
by Kemp [7] in the form of objective tinnitus and otoacous-
tic emissions. These active processes provide a frequency-
sharpening mechanism. Lyon [8] and Mead [9] emphasized
that the active processes function primarily as an automatic
gain control, allowing the amplification of sounds that would
otherwise be too weak to hear. The response of the BM in
living ears was found to be different both qualitatively and
quantitatively from that seen in dead ears. From Figure 2(b),
the nonlinearity, as well as the sharp tuning behaviour, of the
living cochlea is seen to be different from that of the dead one.
In the living cochlea, the gain is higher at the lower stimulus
level, but for the dead cochlea this gain difference disappears
and the tuning becomes independent of the stimulus level
providing evidence of a nonlinear active process. Other
evidence of the active behaviour in the living cochlea is given
by the detection of sound in the ear canal, due to spon-
taneous oscillations originating from the cochlea, retrans-
mitted by the middle ear, in the absence of any excitation
(10].

It has been discovered that OHCs have a saturation
property, which yields nonlinear responses. The relation
measured between sound pressure and receptor voltage for
OHCs shows a typical S-shape as depicted in Figure 3(a). In
addition, the length change of the OHCs saturates with its
transmembrane potential, as shown in Figure 3(b). One of the
most significant nonlinear behaviours of the cochlea is high
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FIGURE 1: (a) A lateral view of the cochlear structure [41] (reprinted from American Journal of Otolaryngology, 33, Marinkovic¢ et al., Cochlea
and Other Spiral Forms in Nature and Art, 80-87, Copyright (2011), with permission from Elsevier). (b) The detailed structure of the OC [42]
(with permission from author). (c) The structure of a hair cell. (d) Schematic drawing of the hair bundle.

sound-level compression. Sound signals at low intensities
are amplified in a frequency-selective manner at certain
cochlear position, where the cochlea exhibits large gain,
while high-level sound signals are barely amplified, where the
cochlea exhibits small gain, as shown in Figure 2(a). Thus,
the cochlear responses at the peak show compressive growth
with input intensity. From an engineering point of view,
the cochlea accomplishes automatic gain control, in which
the gain of the cochlear amplifier becomes attenuated with
increase in input intensity.

1.4. Levels of Detail in the Cochlear Model. One clear differ-
ence between cochlear models is the level of detail included
in the models. The cochlea is a multiscale arrangement
of different cellular and membranous components, whose
dimensions vary from 10~ m down to 10" m, as shown in
Figure 4. In cochlear macromechanics, the vibration of one
radial section of the CP is often simplified to BM movement
only. In this way, the CP is often modelled as a series of

independent segments, each of which represents a beam or
plate strip with a predefined mode shape, yielding a relatively
simple radial profile of vibration. In cochlear micromechan-
ics, the vibrations of the different parts of the CP in relation
to each other are modelled, as well as the detailed motions of
the cellular structures within the OC. To achieve a reasonably
complete understanding of cochlear function, the model
should be able to explain how the vibrations of the cellular
and membranous components of the CP result in deflections
of the IHC stereocilia. Thus it is of immense interest to
investigate the “micromechanics” of the cochlea, that is, how
various sites of the OC, the BM, and the TM move in relation
to each other, as shown in Figure 1(b).

The current models of the micromechanics of the OC
often use a lumped-parameter representation of the BM, TM,
and the structures into which the hair cells are embedded. The
other way to study the micromechanics of the cochlea is using
numerical methods such as the finite element method which
is powerful in modelling complex structures. Determining
the optimal complexity of a model is largely dependent on
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FIGURE 2: (a) The normalised BM amplitude at different sound pressure levels (SPL). All curves converge below 10 kHz, indicating linear
response and equal gain, independent of the SPL. Measurements were performed using the Mossbauer technique in the basal turn of the
guinea pig cochlea. Maximal response frequency is at about 17 kHz [43] (reprinted from Hearing Research, 22, Johnstone et al., Basilar
Membrane Measurements and the Travelling Wave, 147-154, Copyright (1986), with permission from Elsevier). (b) Gain functions of the BM
displacement measured in the basal turn of the chinchilla cochlea with laser Doppler velocimetry. Maximal response frequency is at about
8.5 kHz. Measurements are shown at two sound pressure levels, 75 and 95 dB, and in conditions of living and dead cochleas [44] (reprinted
from Journal of Neuroscience, 11, Ruggero and Rich, Furosemide Alters Organ of Corti Mechanics: Evidence for Feedback of Outer Hair Cells
upon the Basilar Membrane, 1057-1067, Copyright (1991), with permission from Copyright Clearance Centre).

the modelling purpose and available (known) material prop-
erties. If the model is too simplistic, it will not embody the
important processes of the real system. More details could be
included if the needed geometry of the anatomical structure
and material properties are available. The analysis time for a
system may be inevitably increased with increase of system
complexity. Lim and Steele [11] adopted a hybrid WKB-
numeric solution for their nonlinear active cochlear model,
in which the WKB method was used in the short wave region
and numerical Runge-Kutta method was used in the long-
wave region, to keep computation fast and efficient.

2. Types of Cochlear Models

Compared to reality, cochlear models may be incredibly
simplified, but these crude models can still reflect important
components of how the real organ works. The motivations
of modelling the cochlea are to represent, within one frame-
work, the results from a large variety of experiments and
to explain the functions of the hearing system. In principle,
models should also be testable by providing predictions of
experiments that have yet to be done. Cochlear models have

been formulated and constructed in various forms. These
models are concerned with mechanical structures built up
with structural elements like plates or beams coupled with
fluid [12] or electrical networks [13] consisting of inductors,
resistances, capacitors, diodes, and amplifiers. After construc-
tion, these structures can be put into mathematical form and
then be solved numerically.

Models of cochlear mechanics are constructed to repli-
cate basic physiological properties, such as the fundamental
and harmonic cochlear responses to a single tone stimulus
and then applied to interpret more complex observations
and develop valid experimental hypotheses. For example,
cochlear modelling was used by Helmholtz (1877) to explore
perception of tones and by Gold and Pumphrey [14] to inter-
pret the sharp tuning observed in the cochlea and to predict
otoacoustic emissions. More recently models have been used
to demonstrate that a cochlear amplifier mechanism is neces-
sary to explain the sharply tuned response of the BM to single
tone stimulation [15]. Many different types of cochlear model
have been proposed including physical models, constructed
either from plastic and metal materials or electrical networks
[16-18] and computed mechanical models [12, 19-22]. Such
models, where the cochlea is split into finite segments in
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FIGURE 3: Saturating profile of outer hair cells. (a) The relation between acoustic pressure and outer hair cell receptor potential is S-shaped,
saturating at high pressure levels [45] (reprinted from Hearing Research, 22, Russell et al., The responses of inner and outer hair cells in the
basal turn of the guinea pig cochlea and in the mouse cochlea grown in vitro, 199-216, Copyright (1986), with permission from Elsevier).
(b) Changes in the cell body length of an isolated outer hair cell in response to various transmembrane voltage steps are also S-shaped
[46] (reprinted from Journal of Neuroscience, 12, Santos-Sacchi, On the Frequency Limit and Phase of Outer Hair Cell Motility: Effects of the
Membrane Filter, 1906-1916, Copyright (1992), with permission from Copyright Clearance Centre). As can be seen, hyperpolarization elicited
elongation, while depolarization caused contraction. Dots represent raw data. Solid line represents Boltzmann function. Insert represents
outer hair cell.
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FIGURE 4: Illustrations of the structure of the inner ear at various levels of magnification. The position of the inner ear in the temporal bone
is shown in (a). The cross-sectional structure within one turn of the cochlea is shown in (b) with the fluid chambers separated by the basilar
membrane and the organ of Corti. The details of the bundle of stereocilia that protrude from the top of the hair cells within the organ of
Corti are shown in (¢). Finally (d) shows the molecular details of the myosin motors that maintain the tension in the tip links that connect
the individual stereocilia within the bundle. The transduction channels (here labelled TRPA1) are now believed to reside at the bottom end
of the tip link rather than the top [47] (reprinted from Neuron, 48, LeMasurier and Gillespie, Hair-Cell Mechanotransduction and Cochlear
Amplification, 403-415, Copyright (2005), with permission from Elsevier).

the longitudinal direction, have varying numbers of degrees
of freedom ranging from 1 to over 1000 per slice [23, 24].
Early cochlear models were designed to simulate only the
amplitude and phase of linear, passive response of the cochlea
to single tone stimulation [25-29]. Models then progressed
to incorporate an active process and nonlinearity [19, 30-32].
The nonlinear models were either solved in the frequency
domain using iterative or perturbation techniques [33-35] or
in the time domain [22, 36-40].

2.1. Traveling Waves in the Cochlea. Most descriptions of
the mechanical response of the cochlea involve the forward
propagation of a single, “slow;” wave [26, 49]. This wave is
generated by an interaction between the inertia of the fluid in
the chambers of the cochlea and the stiffness of the BM and
can be reproduced using simple one-dimensional box models
[12]. Atlow sound pressure levels the amplitude of this wave is
amplified by a number of active processes within the OC, but
the basic description of slow wave propagation is valid even



when the cochlea is passive and also for high sound pressure
levels. Since the properties of the cochlea, particularly the
BM stiffness, vary along its length, the properties of this slow
wave are position-dependent when excited at a given driving
frequency. These properties can be characterised at each
position along the cochlea by a complex wavenumber; the
real part determines the wave speed and the imaginary part
determines the spatial attenuation of the wave.

If the wavenumber distribution along the cochlea can be
calculated from a model, or inferred using an inverse method
from measurements [15], the mechanical response of the
cochlea can then be calculated using the WKB method [26].
The WKB method has a number of inherent assumptions,
however, such as that the wave is only travelling in one
direction. This implies that no backward travelling wave is
generated by the normal hearing function of the cochlea,
even though such waves are believed to be responsible
for other phenomena such as otoacoustic emissions, for
example. Another assumption is that the wavenumber does
not vary too rapidly with position, as compared with the
wavelength [49], although this assumption appears to limit
the applicability of the WKB method in cochlear modelling
less than one would expect [50]. Zwislocki [51, 52] predicted
the delay of the travelling wave to accumulate with increasing
distance from the stapes. Steele [53] firstly adopted the WKB
method to solve cochlear mechanical problems and found
closed-form solutions for a 1D cochlear model. Zweig et al.
[26] found the closed-form WKB solutions for a 1D long-
wave model in 1976. Steele et al. also extended the WKB
method to solve 2D [54] and 3D [23, 55] cochlear problems.
de Boer and Viergever [49, 56] further developed the WKB
approach for cochlear mechanics. The WKB solutions for the
2D and 3D cochlear model showed good agreement with
more detailed numerical solutions, except for the region just
beyond the BM response peak, which was suggested to be
due to the nonuniqueness of the complex WKB wavenumber
in 2D and 3D models [56]. Elliott et al. [57, 58] applied
the wave finite element method to decompose the full BM
responses of both passive and active cochlear models in terms
of wave components. They found besides the conversional
slow wave, an evanescent, higher-order fluid wave starts to
make a significant contribution to the BM response in the
region apical to the peak location.

In the travelling wave theory, the “slow” wave propagates
on the BM from base to apex [4] and the energy incoming
from the stapes is transported in the cochlea primarily via
pressure waves in the fluid, since the longitudinal coupling
in the BM is believed to be very weak. von Békésy [59] first
observed the traveling wave caused by a pure tone input in a
cadaver cochlea, which carries displacement patterns propa-
gating along the BM. The wave amplitude increases gradually
toa peakata characteristic location along the BM, after which
it decays rapidly. The characteristic location depends on the
driving frequency; for example, the peak is close to the stapes
at high frequencies and further towards the apex at lower
frequencies. This “place principle” is a crucial mechanism
of frequency analysis in the cochlea and is caused primarily
by changes in the stiffness of the BM.
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In a general way, once we know the wavenumber k, the
displacement of the BM produced by a pure tone can be
expressed using the WKB approximation [56] as

w(x,t) = Ak(x, w)*?e @91 €))

where ¢(x) = on k(x',w)dx' denotes the integral of the
accumulating phase shift and gains or losses as the wave prop-
agates along the cochlea, x' is a dummy integration variable,
factor A is the wave amplitude at the base, and w = 27f is the
driving frequency. The additional k(x, w)** term is necessary
for conservation of energy when the wavenumber changes
with x.

From the experimental point of view, studies of the
travelling wave were based solely on measurements of BM
motion [43]. Direct demonstrations of the traveling wave
were obtained by measuring the phase accumulation of the
BM in response to identical stimuli [60]. Russell and Nilsen
[48] applied several 15kHz tones with different intensities
at the base of a guinea pig cochlea to measure the BM dis-
placement and phase lags expressed as a function of distance
from the stapes. It can be seen from Figure 5 that the phase
accumulation between the CF site and 1 mm basal to the CF
is about 1.5 cycles for 35dB tones, indicating a wavelength
at CF of about 0.67 mm and a wave velocity of about 10 m/s
[60]. Generally, the travelling wave is gradually slowing down
with a decreasing wavelength from the basal end until it
approaches the CF site and then decays rapidly.

Olson [61] developed an elegant way to measure intra-
cochlear pressure close to the cochlear partition. The fluid
pressure is a fundamental element of the travelling wave the-
ory. The observation of the slow pressure waves shows con-
sistency with those from BM motion and the observed phase
lags of the slow pressure wave are consistent with those of BM
vibration. Shera [15] proposed an inverse method for using
the experimentally obtained BM velocity transfer function at
a location along the in vivo cochlea in the frequency domain
to calculate the propagation and gain functions. He then went
on to reconstruct the BM velocity distribution in the spatial
domain to test the theory. This method gives strong evidence
for travelling wave amplification in the mammalian cochlea
based on BM velocity measurements, which are the real
and imaginary parts of the complex wavenumber, as shown
in Figure 6.

The method can also be used to reconstruct the BM
velocity distribution in combination with the WKB approach,
(1). Figure 7 shows good agreement between the original
measured BM magnitude and phase distributions and those
reconstructed from the derived wavenumber using the WKB
approximation [15]. This gives both strong theoretical and
practical evidence to support the travelling wave theory in the
cochlear mechanism. Since these measurements were taken
on an active cochlea, the imaginary part of the wavenumber
is not entirely negative, indicating that the active processes
are amplifying the wave at positions just before it reaches its
peak. Apart from this aspect the distributions of the real and
imaginary wavenumbers are similar to those predicted from
the simple analytic passive models [12, 23].
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2.1.1. Box Model of the Cochlea. The real structure of the
cochlea and the components within it are very complicated
[62, 63]. In order to replicate the basic functions of the
cochlea, the real structure of the cochlea has to be simplified
to be practical for numerical modelling. Generally, the coiled
cochlea is represented by a straight sandwich structure, box
model, with two fluid chambers, SV and ST, separated by
the BM. In order to describe the box model with math-
ematical formulae, assumptions and boundary conditions
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FIGURE 7: The BM velocity distribution reconstructed from the
derived wavenumber using the WKB approximation. The recon-
structed response (dashed lines), obtained using the WKB approxi-
mation, shows good agreement with that from measurement (solid
lines) (reproduced with permission from Journal of the Acoustical
Society of America, 122, Shera, Laser Amplification with a Twist:
Traveling-Wave Propagation and Gain Functions from throughout
the Cochlea, 2738-2758, Copyright (2007), Acoustic Society of
America).

are needed to make the model numerically available and
physically meaningful. The assumptions below are for the box
model, as shown in Figure 8, and may not hold for models
used for specific studies, geometrical nonuniformity or CP
longitudinal coupling, for example.



(1) The cochlear walls are immobile and rigid indicating
the pressure gradient is zero on the walls [64].

(2) The effect of “fluid ducts” can be neglected [64, 65].

(3) The spiral shape of the cochlea is straightened out.
This may lose some information in the apical region
of the model [66, 67], where the cochlear curvature
is greatest, but this is neglected as there is limited
physiological data available for the apical region.

(4) Reissner’s membrane is neglected as it is acoustically
transparent [68, 69].

(5) The two cochlear channels have equal cross-sectional
area and shape, so pressures of upper, SV, and lower,
ST, fluid chambers are equal with opposite sign [12].
This assumption is not necessary for those box models
with varying geometry along its length [70]. The
cross-sectional area of the chambers is assumed to
be rectangular, although de Boer [71] has shown that
similar results are obtained if the cross-section is
assumed to be semicircular. The effective height of the
chambers (the ratio of the cross-sectional area to the
width of the chamber) is assumed to be constant and
neglect any variation with distance from the base (this
assumption is only applicable for a uniform 1D box
model).

(6) The boundary condition at the helicotrema is
assumed to be pressure release; that is, the pressure
difference is equal to zero. This can alternatively be
more accurately modelled involving friction terms
[72].

(7) The cochlear fluids have negligible viscosity, so that
only the CP dissipates energy [12]. This is because
cochlear input impedance is not significantly affected
by the introduction of the fluid viscosity for frequen-
cies greater than 500 Hz [73, 74]. The cochlear fluids
and CP are incompressible [12].

(8) There is no structural longitudinal coupling along the
CP and elements along the CP interact through fluid
coupling only [12].

In many box models of the cochlea [12, 52, 75], the
cochlear partition is defined as a unit that interacts with the
cochlear fluids. Although this assumption neglects individual
movements of elements inside, it can reasonably well approx-
imate cochlear macromechanics. In such models, the motion
of the CP is often referred to as that of the BM, since the BM is
believed to dominate the mechanics of the OC passively [4].

2.1.2. Elemental Cochlear Model. It is computationally conve-
nient to divide a continuous system into a number of discrete
elements, which may be taken as an accurate representation of
the continuous system if there are at least six elements within
the shortest wavelength present, which is a condition com-
monly used in finite element analysis [76]. The linear coupled
behaviour of the cochlear dynamics can then be represented
by matrix representations of two separate phenomena. First,
the way that the pressure distribution is determined by the
fluid coupling within the cochlear chambers when driven
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FIGURE 8: A simple box model of the cochlea consists of two fluid
chambers separated by the BM. The longitudinal coordinate, x, goes
from the left, base, to the right, apex, and an external pressure
is applied on the left side (by the stapes) to represent vibration
transmitted from the ossicles. The two fluid chambers, SV and ST,
are separated by a flexible BM, which occupies part of the cochlear
partition width, and connect to each other at the end of the model
via the helicotrema, where the pressure difference between the two
chambers is zero.
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FIGURE 9: The discrete approximation for a straightened cochlear
box model.

by the BM velocity, and second, the way in which the BM
dynamics respond to the imposed pressure distribution. This
kind of elemental model was used, for example, by Neely and
Kim [19], to simulate an early model of the active cochlea, and
has been used by many authors since then.

The analysis can be generalised to the case in which the
radial BM velocity is the sum of a number of such modes
[77]. Here, for the purpose of illustration, a single shape is
assumed for the BM radial velocity profile, since the fluid
coupling is relatively insensitive to the exact form of the radial
BM velocity distribution. The radial variation of BM velocity
over the width of the CP, W, is assumed to be proportional to
a single mode shape, y(y), which is independent of the dis-
tribution of the pressure acting upon it but dependent on the
boundary conditions assumed for the BM [78].

The single longitudinal variables for the modal pressure
difference and the modal BM velocity are spatially sampled
as finely as required, dividing the cochlea into N segments.
At a single frequency, the vectors of complex modal pressure
differences and modal BM velocities, p and v, can be written
as [70]

p=[p(1),p2,....p )],
v=[1),vQ),....v (N5

2)

the elements of which are shown in Figure 9.

The BM, however, is assumed only to extend from
element 2 to element N — 1. Element 1 is used to account for
the effect of the stapes velocity, shown as u in Figure 9. The
final element, N, is used to account for the behaviour of the
helicotrema. With the stapes velocity set to zero, the vector of
pressures due to the vector of BM velocities can be written as

P = ZycV, 3)
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where Zy is a matrix of the impedances due to the fluid
coupling. Analysis of the form of the elements in this fluid
coupling matrix is an important part of this type of modelling.
Similarly, the vector of BM velocities can be written as

V=V, — Ygyup, (4)

where v, is vector with first element the stapes velocity and
Y, is a matrix of the BM admittances. The first and last
diagonal elements are zero, since the BM only extends from
element 2 to element N — 1. If the BM reacts only locally, then
Y;y is a diagonal matrix. Substituting (3) into (4) gives the
vector of BM velocities as

v=[I+ YBMZFC]_IVS. (5)

The total pressure vector due to both stapes motion and
motion of the BM can be written, using linear superposition,
as

P =Ps+ZgcV, (6)

where p, is the vector of pressures due to the stapes velocity.
Combining (5) and (6) gives

-1
p=[1+ZcYpu] s 7)

An advantage of this discrete formulation is that compli-
cated geometries need to be analysed only once to determine
the elements of Zy., using the finite element method for
example, [70], and (5) then provides a very simple method
of calculating the coupled responses, for a variety of models,
with a coiled cochlea, for example, [79], of BM dynamics.

The frequency to place mapping that occurs within the
cochlea can be described in terms of the propagation of a dis-
persive travelling wave within it. This wave motion involves
interaction between the inertia of the fluid chambers and the
stiffness of the basilar membrane. It occurs even for excitation
of the cochlea at high sound pressures, for which the active
processes within the outer hair cells are saturated and do not
contribute significantly to the dynamics. The fundamental
wave behaviour can thus be understood in the passive
cochlea, in which the feedback loops created by the outer hair
cells are ignored. In a simple one-dimensional “box model”
for the uncoiled cochlea, as shown in Figure 8, the velocity
of the BM at a longitudinal position x and a frequency of
w, v(x, w) depends only on the complex pressure difference
between the fluid chambers at the same position p(x,w), so
that

v(x,w) = =Ygy (% w) p (x,w), (8)

where Yp),(x, ) is the mechanical admittance, per unit area,
of the basilar membrane, and the negative sign comes from
defining v(x, w) upwards, but p(x, w) is positive with a greater
pressure in the upper chamber. The fluid in the cochlea is
assumed to be incompressible, since the cochlear length is
much smaller than the wavelength of compressional waves
in the fluid and also inviscid, since the height of the fluid
chamber is much greater than the viscous boundary layer

thickness, and damping is mainly introduced by the BM
dynamics. The pressure is assumed to be uniform across each
cross-section and the conservation of fluid mass and momen-
tum can be used to derive the governing equation for one-
dimensional fluid flow in the chambers, as described, for
example, by de Boer [12], as

*p (x) _ 2iwp

ox*  h
where p is the fluid density and £ is the effective height of the
fluid chambers, which is equal to the physical height of the

fluid chamber in the 1D cochlear model. Substituting (8) into
(9) gives the second-order wave equation

v(x), )

0* p(x,w) B
o0x?

where the position and frequency-dependent wavenumber is
given by

K (x, @) p (x,w) = 0, (10)

—21
k (x, @) = i\/ ;“’P Y (. ). (1)
The admittance of this single-degree-of-freedom model of the
passive BM can be written as

iw
Ypum (%, w) =

iwr (x) — w*m (x) + s (x)’ 12)
where m(x), s(x), and r(x) are the effective mass, stiffness,
and damping, per unit area, of the BM at position x. The dis-
tribution of natural frequencies, w, (x), illustrated in Figure 11,
can be assumed to be entirely due to the longitudinal varia-
tion of stiffness. The distribution of natural frequencies along
the cochlea is approximately exponential so that

w, (x) = wge ™", (13)

when [ is a characteristic length, taken here to be 7 mm, and
wg is taken as 27t times 20 kHz for the human cochlea. The
distribution of BM stiffness is then given by

s(x) = wi (x)my = wémoefzx/ L (14)

The distribution of the mechanical resistance, when a
constant damping ratio, {, is assumed along the BM, is then

r(x) = 2¢ymyw, (x) = ZCOmOwBe_x/l. (15)

Since the wavenumber varies with position and fre-
quency, conventional solutions to the wave equation in (10),
for homogeneous systems, cannot be used. Provided the
wavenumber does not change too rapidly compared with the
wave length, however, an approximate global solution for
v(x, w) can still be obtained using the WKB method [26] as

v () = A gy,
2iwp

(16)

A —ip(x
v(x) = =Ygy (x) ——e 9 ),

Vk (x)
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FIGURE 10: Simulations of the distribution of the magnitude and
phase (plot with respect to the velocity at the stapes, ug) of the
complex basilar membrane velocity along the length of the passive
cochlea when excited by pure tones at different frequencies.

where A is the amplitude, due to the driving velocity from
the middle ear. It is found that, to a very good approximation,
only a forward travelling wave exists in the cochlea, since this
is almost perfectly absorbed as it travels along the cochlea,
thus ensuring an optimum transfer of power from the middle
ear. Figure 10 shows the magnitude and phase of the BM
velocity as a function of position along the cochlea, for four
different driving frequencies, using the wavenumber distri-
bution given by (11) for the passive BM. The phase is plotted
in cycles, as is customary in the hearing literature, which, per-
haps, should be adapted more widely, since it has more imme-
diate physical significance than radians or degrees. One of
the main features of the BM velocity distribution in Figure 10
is that they peak at different places for different excitation
frequencies, providing a “tonotopic” distribution of fre-
quency.

2.2. Lumped-Parameter Models. The lumped-parameter
model of the cochlea is a simplification of the OC. In this
kind of model, the properties of the spatially distributed
OC are represented by a topology consisting of discrete
entities (masses, dampers and springs) that approximate the
dynamic behaviour of the OC under certain assumptions.
From a mathematical point of view, the dynamic behaviour
of the OC can be described by a finite number of ordinary
differential equations with a finite number of parameters.
Mechanically, every component in the lumped-parameter
model is taken as a rigid body and the connection between
each rigid body takes place via springs and dampers. The
model can be divided into a finite number of segments in the
longitudinal direction with each individual segment having
a unique characteristic resonant frequency, decreasing from
20kHz, at the base, in the human, to about 200 Hz at the
apex over the 35 mm BM length, as shown in Figure 11.
Various lumped-parameter models of the OC have been
developed by researchers. The simplest one only contains
one-degree-of-freedom, in which the TM is assumed only to
move with the same motion as the BM. Allen [28] derived
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the relationship between the transverse motion of the BM and
the shearing motion experienced by the OHC stereocilia. In
his model, the TM is assumed only to rotate with the same
angular movement as the BM. If the TM is allowed to move
radially, the OC can be expressed by a two-degree-of-freedom
model, in which the BM and the TM are assumed to move
only in a single direction. It is also possible to apply the active
force generated by the OHC on the model, as suggested by
Neely and Kim [19], although it is difficult to physically justify
what structure this force on the BM reacts off. An alternative
active model is one in which the force is assumed to act across
a very stiff OC, resulting in an active displacement, as in
the model of Neely [80]. More detailed lumped-parameter
micromechanical models have been proposed that have three
degrees of freedom [32, 75] or even more.

An advantage of such lumped-parameter models, how-
ever, is that the conditions for stability, which is not guaran-
teed in an active model and can otherwise lead to misleading
results, can be formulated using a state space representation
[22]. It is also possible to use this representation to incor-
porate nonlinearity into the cochlear amplifier, which leads
to compression of the dynamic range and many forms of
otoacoustic emission or distortion products [34]. In the active
cochlea, at least one extra mass has to be included in order to
create a higher-order resonant system to replicate the greater
frequency selectivity of the active cochlea.

2.3. Finite Element Models. Although the finite element
cochlear model is an elemental representation of the real con-
tinuous cochlea, the flexibility of the finite elements allows
the possibility of considering more detailed and complicated
cochlear structure than in the elemental model above. In
many areas, the finite element analysis is a key and indispens-
able technology in the modelling and simulation procedures.
However, a good understanding of physical, mathematical,
and computational modelling plays an important role in
utilizing these advantages of the finite element method.

A finite element version of the cochlear box model can
be obtained by dividing its length into N, elements, in the
x direction, and each fluid chamber into a N, x N, grid of
hexahedral elements, in the y x z directions. Using symmetry
it is only necessary to include a single fluid chamber in the
numerical model. The BM within each of the N, elements
can be modelled as N, thin plate (beam) elements, with
no longitudinal coupling between each other. Each plate
thus vibrates independently in the absence of the fluid and
provides a locally reacting model of the BM. If the motion of
the plate elements is represented by the vector w, then their
dynamics can be written in the matrix form as

Mw + Kw = Sp, 17)

where M and K are the mass and stiffness matrices for the
plate, W represents 9°w/dt*, and p is the vector of pressures
in elements of the fluid chamber, which drive the plate via the
coupling matrix S.

The dynamic response of the fluid can also be represented
in finite element form [76] as

Qp +Hp = —pRw +q, (18)
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FIGURE 11: Idealised representation of the outer, middle, and inner ear, showing the basilar membrane in the inner ear as a series of mass-
spring-damper systems distributed down the cochlea coupled together via the fluid shown in blue, together with the distribution of the natural

frequencies of these single-degree-of-freedom systems.

where Q and H are acoustic mass and stiffness matrices, q
is proportional to the external volume velocity due to the
motion of the stapes, p; is the fluid density, and R=S" denotes
how the pressure is driven by the displacement of the plate
elements. For the coupled system these two equations can be
combined to give

[pl;dR g] m " [Ig }ﬂ m ) [g] (19)

For a single frequency excitation, proportional to e,

K-wM -S w 0
[—wZPfR H-o’Q [p] B [q]’ (20

where damping can now be incorporated by using complex
elements in the stiffness matrix.

Finite element techniques have also been applied to prob-
lems associated with cochlear micromechanics, including the
motion of the hair cell stereociliary bundle [81] and the
stiffness of individual OHCs [82]. They have also been used in
complete cochlear models, with very simple representations
of the OC, to investigate gross fluid motion both in two
dimensions [83] and three dimensions [84]. Another study
has modelled the OC with high structural accuracy and
included nonlinear behaviour [85] within a short (60 ym)
section of the cochlea, but fluid-structure interactions were
not included.

Kolston and Ashmore [86] applied a 3D finite element
network to build a 3D cochlear model, as shown in Fig-
ure 12(a), with individual cellular and membrane components
of the OC being embedded within the fluid in their real
biological positions and then solving the problem using the
conjugate gradient method. The main new feature of the
method is that it allows individual cellular and membrane

components of the OC to be embedded within the model
fluid in their true structural positions, with connections to
neighbouring elements reflecting anatomical geometry. In
spite of the large size of the resulting model, it has been
implemented on an inexpensive computer and solved within
acceptable time periods. They presented the results obtained
from a small number of simulations suggesting that both
the TM radial stiffness and especially the Deiters’ cell axial
stiffness play a crucial role in the OHC-BM feedback loop.

Givelberg et al. [87, 88] developed a detailed 3D computa-
tional model of the human cochlea, which was built based on
geometry obtained from physical measurements, as shown in
Figure 12(b). The model consists of the BM, spiral bony shelf,
the tubular walls of the SV and ST, semielliptical walls sealing
the cochlear canal, the oval window, and the round window
membranes. The immersed boundary method, which is a
general numerical method for modelling an elastic mate-
rial immersed in a viscous incompressible fluid [89], was
used to calculate the fluid-structure interactions produced
in response to incoming sound waves. They used large
shared memory parallel computers to run several large scale
simulations. They observed a travelling wave propagating
from the stapes to the helicotrema. The amplitude of the
wave is gradually increasing to a peak at a characteristic
location along the BM. The speed of the wave is sharply
reduced as it propagates further along the BM after the
peak. The higher the value of input frequency is, the closer
the peak is to the base. Those observations are similar to
experiments qualitatively, but this kind of comprehensive
numerical model is computationally expensive.

Cai and Chadwick [90] developed a hybrid approach
for modelling the apical end of guinea pig cochlea. In their
FE cochlear model, they carry out only the first step in the
reduction of the 3D hydroelastic problem to a sequence of
eigenvalue problems in transverse planes. Then they used a
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FIGURE 12: (a) An oblique view of a small section of the cochlear partition in the 3D FE modeling technique [86] (reprinted with permission
from Journal of the Acoustical Society of America, 99, Kolston and Ashmore, Finite Element Micromechanical Modeling of the Cochlea in
Three Dimensions, 455-467, Copyright (1996), Acoustic Society of America). (b) FE models of the cochlea constructed by Givelberg and
Bunn [87]. In this view, several parts of the outer shell are removed in order to expose the cochlear partition consisting of the narrow basilar
membrane and the bony shelf. The round window is located directly below the oval window and in this picture it is partially obscured by the
cochlear partition (reprinted from Journal of Computational Physics, 191, Givelberg and Bunn, A Comprehensive Three-Dimensional Model
of the Cochlea, 377-391, Copyright (2003), with permission from Elsevier).

WKB-numerical hybrid approach to do this reduction and
provided the formalism for connecting the solution in differ-
ent transverse planes via an energy transport equation. Later,
they [91] used a similar approach to model cross-sections
of the guinea pig cochlea at several positions, as shown
in Figure 13, along the cochlea and solved the fluid-solid
interaction eigenvalue problem for the axial wavenumber,
fluid pressure, and vibratory relative motions of the cochlear
partition as a function of frequency. Computations are done
separately for each section which is believed to be the main
computational advantage of their method, which relies on the
WKB approximation. The fluid compartments are comprised
of viscous, incompressible fluid with dynamics following the
linearized Navier-Stokes equations. The solid domains (TM
and OC) are modelled as linear isotropic Voigt solids with
E replaced by a complex term to account for damping in
the solid. The extracellular fluid spaces and tunnel spaces in
the OC are not treated as fluid domains but are simplified
to be soft Voigt solids. The BM is treated as an orthotropic
plate, and the TM and RL are elastically coupled through the
stereocilia bundle stiffness. The OHCs are treated as passive
structural elements. Based on this 2D model, they retain
coupling in the axial direction through the wavenumber k
both in the fluid and solid domains.

Andoh and Wada used a finite element method to predict
the characteristics of two types of cochlear pressure waves,
fast and slow waves [92], and later estimated the phase of
the neural excitation relative to the BM motion at the basal
turn of the gerbil, including the fluid-structure interaction
with the lymph fluid [93]. A two-dimensional finite element
model of the OC, as shown in Figure 14(a), including fluid-
structure interaction with the surrounding lymph fluid, was
constructed based on measurement in the hemicochlea of the

gerbil [94]. They assumed that the cross-section of the OC
maintains its plane surface when external force was applied.
Meshing was done at a subcellular level using a triangular
element, by which the number of nodes and elements are
1,274 and 2,139, respectively. The fluid within the Corti tunnel
was treated as an elastic body without shear stiffness. The vis-
cous force was considered analytically on the assumption that
Couette flow occurs in this space. The effect of the mass of the
fluid in the subtectorial space was assumed to be negligible.
The SV, as shown in Figure 14(b), and the ST were constructed
in a 3D form to simulate the behaviour of the lymph fluid
and its interaction with the OC. The dynamic behaviour
of the local section of the OC, which extends in the lon-
gitudinal direction, was simulated and longitudinal widths
of both fluid models were determined to be 48 um, which
was less than one-fourth of the wavelength of the traveling
wave [95]. A grid with intervals of 6 um was adapted to
evaluate the pressure distribution around the OC in the scala.
As a result, the SV model and the ST model had 11,200 and
8,000 cubic elements, respectively.

Kim et al. [96] developed a finite element model of a
human middle ear and cochlea to study the mechanisms
of bone conduction hearing. The geometry of the cochlear
model was based on dimensions published in the literature
[97] similar to the actual curved geometry of the cochlea. The
BM was meshed with 14,000 8-node hexahedral solid shell
elements, BM supports were meshed with 13,687 six-node
pentahedral elements, and the RW was meshed with 1,719 six-
node pentahedral elements. The nodes along the perimeter of
the RW were fixed. The SV and ST were meshed with 222,350
4-node linear tetrahedral elements. The thickness of the bony
shell, the rigid structure of the cochlea, was assumed to be
0.2mm.
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FIGURE 13: Geometry and mesh of cross-sections at apical (a) and basal (b) regions of the cochlea. X and Y indicate the radial and transverse
directions, respectively. The TM and OC are modelled as 2D elastic domains. The TM is homogeneous, whereas the OC contains different
subdomains representing discrete cellular structures. The OC has the RL as its top boundary and rests on the BM, which is represented by
an orthotropic clamped plate. The TM-RL gap is the narrow fluid-filled space between the RL and the lower surface of the TM. Stereocilia
of the OHCs elastically couple the RL and TM (reprinted from PNAS, 101, Cai et al., Evidence of Tectorial Membrane Radial Motion in a
Propagating Mode of a Complex Cochlear Model, 6243-6248, Copyright (2004) National Academy of Sciences, USA).
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FIGURE 14: (a) 2D FE Model of the OC [93] (reprinted with permission from Journal of the Acoustical Society of America, 118, Andoh et al.,
Phase of Neural Excitation Relative to Basilar Membrane Motion in the Organ of Corti: Theoretical Considerations, 1554-1565, Copyright
(2005), Acoustic Society of America) and (b) 3D scala vestibuli with rigid boundary conditions, in which dark area corresponds to the OC
[92] (reprinted with permission from Journal of the Acoustical Society of America, 116, Andoh and Wada, Prediction of the Characteristics
of Two Types of Pressure Waves in the Cochlea: Theoretical Considerations, 417-425, Copyright (2004), Acoustic Society of America).

Finite element models have also been used to investigate
the effects of several longitudinal coupling mechanisms on
the coupled BM response [20, 24, 86, 91, 98]. Elliott et al.
[57] used the wave finite element method to decompose the
response of the fully coupled finite element model into the
components due to each wave to study how they interact,
which provides a way to give insight on numerical models
that incorporate various detailed features of the cochlea, and
allow the analysis of the contribution of each element in the
OC to the overall response.

2.4. Waves in the Cochlea. Our understanding of the cochlea
is largely based, either explicitly or implicitly, on the assump-
tion that only a single type of wave propagates along its
length. The properties of this “slow wave” can be calculated
from a simple model of the passive cochlea that includes
a locally reacting BM and 1D fluid coupling. In general,

however, there are many other mechanisms, apart from 1D
fluid coupling, that give rise to longitudinal coupling in the
cochlea, particularly, the higher-order modes associated with
3D fluid coupling [57].

The discussion of multiple wave types in the cochlea is
not new. Steele and Taber [23] and Taber and Steele [55], for
example, used a Lagrangian approach to derive a dispersion
relation, corresponding to the Eikonal equation in the WKB
method, for waves in the passive cochlea. For 2D and 3D
fluid coupling, the effective height of the fluid chamber is a
transcendental function of the wavenumber and this leads to
an infinite number of wavenumbers that satisfy the dispersion
equation and hence multiple wave types. These authors note
that the most difficult part of their numerical computation
is the extraction of “the necessary root” of this equation
that corresponds to a travelling wave solution that they are
seeking. Their WKB solutions are then constructed from this
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single wave type. Similarly de Boer and Viergever [56] derived
dispersion equations for 2D and 3D fluid coupling, noting
that they have multiple roots and describe methods by which
a single wavenumber may be selected corresponding to “the
correct solution”

These authors, and Steele and Taber [23], noted a differ-
ence between the WKB solution for the distribution of the
complex BM motion along the cochlea and the full numerical
solution, just apical of peak response. de Boer and Viergever
[56] suggested that this is because the “wrong” solution of the
dispersion equation has been chosen. Chadwick et al. [99]
described an analytic model of a slice of the cochlea having
subpartitions and four fluid chambers. They also derived
a dispersion equation, which in their case is quartic and
so yields four roots. It is noted that some roots represent
nonpropagating waves and a single wavenumber was chosen
for a given model to represent the propagating wave in their
asymptotic formulation. Steele [100] also describes how mul-
tichamber models give rise to multiple modes. Cai and Chad-
wick [90] discussed how a more detailed numerical model
of slices of the cochlea can be used to describe wave
propagation. In this case a finite element model of the 2D
cross-section was constructed and used to calculate multiple
values of the wavenumber, from which the one with the least-
negative imaginary part is selected for a WKB solution over
the length of the cochlea. In each of these models, it has
been assumed that a single wave type dominates the overall
response of the cochlea. Watts [101] returned to the observed
difference between the numerical and WKB solutions beyond
the peak and discussed how a second wave mode could be
introduced, which is necessary to satisfy the fluid coupling
equation, that could explain this difference. There has also
been recent interest in mode conversion in a two-chamber
model of the cochlea [102].

Elliott et al. [57] used the wave finite element method
[103], WEE, which was originally used to analyse wave propa-
gation in uniform engineering structures such as railway lines
[104] and tyres [105] to analyse a box model of the cochlea
into its constitutive wave components. The WEE was used to
calculate the position-dependent characteristics of the waves
that are able to propagate through individual sections of
a cochlear model. An advantage of this method over that
described by Cai and Chadwick [90], for example, is that
these sections can have a finite length and hence internal
structure, although this aspect of the method is not exploited
here. The main difference between this WFE model and other
models, however, is that the calculated properties of these dif-
ferent wave types can be readily used to decompose the results
of a full finite element analysis into individual wave com-
ponents. They suggested that the response beyond the peak
involves multiple wave types, however, as predicted by Watts
[101], which are identified as higher-order acoustic waves
in the fluid coupling. Following this, Ni and Elliott applied
the WEFE to predict wave propagations in an active, but still
locally reacting, cochlear model. This active model uses the
same elements as the passive one [57] but simulates the active
impedance by using a complex and frequency-dependent
Young’s modulus in its finite element model of the BM. The
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BM velocity distributions and fluid chamber pressure distri-
butions for the first few waves, which propagate with least
attenuation, are similar in the active and passive cases due to
the fact that the same finite element model is used for both,
even though the material properties are different. The real
part of the wavenumber for the slow wave has a higher peak
value for the active model, indicating a smaller wavelength.
The most significant difference, however, is that the imagi-
nary part of the wavenumber for the slow wave is positive just
before the peak position showing that the wave is amplified
there. Although the properties of the slow wave are modified
by the active components of the BM impedance, the other
waves are still determined by the evanescent higher-order
fluid modes.

It is only when additional forms of longitudinal coupling
are included in the model, such as provided by multiple fluid
chambers [99, 100, 102], that multiple propagating modes
might be expected. There are, however, a number of other
mechanisms for longitudinal coupling along the BM and
it is unclear how these might behave together or interact
with multiple fluid chambers, to determine the types of wave
that can propagate. These mechanisms include orthotropy in
the BM [106], tectorial membrane elasticity [107-109], lon-
gitudinal electrical coupling between the hair cells [21], and
the feedforward action of the OHCs [12, 110].

3. Fluid Coupling

As described in Section 2.1.2 (elemental cochlear model), the
linear coupled behaviour of the cochlear dynamics can be
represented by two separate phenomena: the way that the
pressure distribution is determined by the fluid coupling
within the cochlear chambers when driven by the BM velocity
and the way in which the BM dynamics respond to the
imposed distribution of pressure difference.

When the box model of the cochlea with a rigid BM,
Figure 15(a), is driven by the stapes, there are pressure dis-
tributions in the upper and lower chambers shown as p, and
p, in Figure 15(b). These can be decomposed into a uniform
mean pressure [111], p = (p; + p,)/2, in Figure 15(c), which
gives rise to a fast wave that does not drive the BM and a pres-
sure difference, p = p, — p,, which gives rise to a slow wave
that does drive the BM.

3.1. Fluid Coupling in the Cochlea. The 1D fluid coupling
assumed above is only valid when the height of the fluid
chamber is small compared with the wavelength [12]. While
this assumption is not unreasonable for the passive cochlear
model, it breaks down as soon as an active model is being
considered, since the wavelength of the slow wave in this case
can be less than the size of the fluid chambers, particularly,
at the base. More complete models of the fluid coupling must
include the three-dimensional fluid effects that occur close to
the BM, and the original formulation for 3D fluid coupling
was presented in the wavenumber domain [23]. More recent
formulations in the spatial and acoustic domains have been
developed [70], which consider the fluid coupling to be the
sum of the components due to far field, 1D, effects and to near-
field effects, as illustrated in Figure 16.
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FIGURE 15: (a) The box model of the cochlea, (b) the pressure distributions in the upper and lower chambers as p; and p,, (c) the mean

pressure, and (d) the pressure difference.
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FIGURE 16: Distribution of the total pressure difference, due to both
far and near-field components in the fluid coupling matrix, along
the length of the cochlea due to excitation of a single element on the

BM at x = 5mm, 15 mm, or 25 mm with a velocity of 10 mms " at a
frequency of 1kHz.

Generally, a cochlear box model is a three-dimensional
representation of the cochlea, since the fluid inside has the
ability to move in all directions. Following Steele and Taber
[23], in the wavenumber domain for the box model of the
cochlea, the box is assumed to be symmetric; that is, the two
fluid chambers above and below the BM are of equal area.
The pressure distributions in the two chambers are thus equal
and opposite and it is convenient to work with the single
distribution p(x, y, z), equal to the pressure difference, which
is twice the pressure in each chamber. The fluid is assumed
to be incompressible and inviscid and so the conservation of
fluid mass then leads to the equation

2 2 2
Oployz) 0plnyz) Fplorz) oy
0x? oy? 0z?

The bony structures outside the cochlear fluids can be
represented by hard boundary conditions on the sides and the
top of the cochlear chamber above the BM, so that following
relations must hold dp(x, y,z)/dy = 0aty = 0and y = W,
and dp(x, y,z)/0z = 0 at z = H, where W and H are width



16

and height of the fluid chamber. Since the BM separates the
two fluid chambers, the fluid velocity at z = 0 must match
that of the BM, so that dp(x, y,2)/0z = —2iwpvyy(x, y) at
z = 0, where the factor of 2 is due to the pressure doubling
when p(x, y,z) is defined as the pressure difference.

The BM velocity is now assumed to have a given distribu-
tion across its width, and in the longitudinal direction it has
a sinusoidal variation with wavenumber k, so that

ver (6, 9) = vy () =V Ry (y)e ™, (22)

where v(x) is the “modal” BM velocity distribution along
the cochlea and y(y) is the BM velocity distribution in the
transverse direction.

The distribution of the transverse motion across the width
of the BM is complicated and level-dependant in the real
cochlea [53, 112]. Homer et al. [113] developed a beam model
of the BM to study the effect of boundary conditions at the
two ends and compared their predictions with experimental
data [112]. They found that the best fit is obtained by assuming
the BM is simply supported at the arcuate end and clamped
at the other end. Steele et al. [114] used a similar beam model,
which is simply supported at the arcuate end and clamped
at the other end, but with an attached spring to simulate the
outer pillar, to compare the radial profile of displacement
of the BM with that from experiment [112]. They compared
the cases with both a pressure load and a point load and
found that by setting the effective spring constant to zero,
the model has a good fit with the profile of displacement
with the pressure loading. Ni and Elliott [78] investigate
the effects of BM radial velocity profile, y(y) on the fluid
coupling in the cochlea. Although experimental observations
[112] and modelling studies [113] suggest that the best fit to
experimental data is the BM mode shape obtained when the
BM is simply supported at the arcuate end and clamped at the
other end, they find that the fluid coupling and the coupled
response are not critically dependent on the tested boundary
conditions for the BM.

The normalised BM velocity distribution, y(y), in the box
model of the cochlea, as shown in Figure 8, can be given by

w
J v (y)dy =W, (23)
0

so that v(x) can be calculated from vy (x, y) as

1 (v
v(x) = W Jo van (%, 3) v (v) dy. (24)

The pressure field can be described by a summation of
modes of the form

p(x.3.2) = Y B, (3.2) ™, (25)
n=0

where each mode shape, ¢, (y, z), must satisfy the boundary
conditions defined. A suitable parameterisation of the pres-
sure mode shape [23, 77] is

¢, (1,2) =cos(%)cosh [m,(z-H)].  (26)
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In order for each term in the model expansion to satisfy
the equation for mass conservation, (21), then the real
parameter 1, must satisfy the equation

2 2
2 42 nrit
m, = k" + TR
The coefficients B, are determined by the boundary
condition at the BM, so that

(27)

S, 06 (52)
B,—————
Zo 0z (28)
= 2iwpV (k)y(y), atz=0.

Substituting (26) into (28) gives
ZBnmn sinh (m,,H) cos <ﬂ>
n=0 w (29)

= 2iwpy (y) V (k).

Multiplying each side of (29) by cos(nmy/W) and inte-
grating from 0 to W over y and using the orthogonality of
the cos(nmy/W) function yield

B, = Wzil:h—%wk), (30)
where the coupling coefficient for n = 0 is defined as
1 (v
A= 7 L v(y)dy, GD
and forn > 11is
A, = % J-Owcos(%%//(y)dy. (32)

The modal pressure can be written by analogy with the
modal velocity in (22) as [70]

p(x)=P(k)e™, (33)

where

A
P (k) = 2iwp * coth (kH)

(34)
A

[} 2
+Z L
= 2m,,

In the wavenumber domain, the pressure difference can
be represented by [70]

P (k) = 2iwpQ (k) V (k) (35)

coth (m,H) | V (k).

where Q(k) has the dimensions of length and has been termed
the “equivalent height” [115]. For the 3D case, Q,p (k) is given

by

A2
Qsp (k) = 70 coth (kH)

5 (36)
- A
+Z12 " coth (m,H).
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Based on the 3D expression of the fluid coupling in the
cochlear, 1D and 2D expressions can be obtained by some
simplifications. For example, the fluid component can be
simplified to a one-dimensional function of only longitudinal
position. In two-dimensional models, the height of the fluid is
taken into account and in the three-dimensional models the
width of the fluid and the width of the cochlear partition are
additionally included. For the two-dimensional model, the
pressure associated with the first term in (36) corresponds to
the pressure zero mode shape and has no radial variation [71],
and the equivalent height for this case can be written as

8B
QZD (k) = m COth (kH) . (37)

Using the long-wavelength approximation with the one-
dimensional model, in which the wavelength is large com-
pared to H, so that kH is significantly less than unity, the
equivalent height for the one-dimensional fluid model can be
given by

8B
m?WHK?*

For low values of kH, the wavelength of the longitudinal
BM vibration is much greater than the height of the fluid
chamber, and so 1D fluid coupling, Q,p, is nearly identical
to 2D and 3D fluid coupling, Q,, and Qsp, as shown in
Figure 17, and thus the pressure is almost uniform across the
cross-sectional area. As the wavelength becomes comparable
with the height, the difference among different models
becomes significant. When the wavelength is small compared
with the height, Q;, becomes proportional to 1/k, which is
larger compared with Q,p, and Q;p, as shown in Figure 17,
and the pressure is much greater closer to the BM than it is
in the rest of the fluid chamber. Thus when the wavelength is
small compared with the height of the fluid chamber, that is,
near CE 1D and 2D models do not well represent the cochlear
mechanics, since they do not have ability to take the increase
of the local mass loading [116] caused by BM resonance into
account.

Qup (k) = (38)

3.2. Modal Description of the Fluid Coupling. The Green’s
function was widely used for calculating the fluid coupling,
for example, by Allen [117], Mammano and Nobili [31], and
Shera et al. [118]. This method is, however, having singularity
in the near-field component due to the fact that the vibrating
element is a spatial delta function [20, 31, 119]. This singularity
can be avoided if the imposed BM velocity is assumed to
act over a finite length, as given by (19) in Elliott et al. [70].
Alternatively, the distribution of the fluid pressure can also
be described as a sum of different modes analogous to an
analysis of the acoustic field due to an elemental source in
a duct as described by Doak [120]. The complex pressure,
for positive values of x, due to a point monopole source of
volume velocity g, at location x = 0, y = y',and z = 2’
within a single cochlear chamber, modelled as a hard walled
rectangular duct, can be expressed as

P (%.3,2) = Y By, (3,2) e ™. (39)
m=0
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FIGURE 17: The normalised fluid equivalent height Q(k)/H as a
function of normalised wavenumber, kH. In this example, the BM
is assumed to be located at the edge of the CP and the width of the
BM is one-third of the CP. The assumed boundary conditions for
the BM are simply supported at the arcuate end and clamped at the
other end.

Only forward travelling waves are assumed, m denotes a
duo of modal integers, m, and m,, k,, is the modal wave-
number, and ¢,,(y, z) represents the assumed acoustic mode
shape

b, (1,2) = mcos<mxy>cos<%>. (40)

The normalization constants ¢,, and ¢,, are equal to 1 if
my or m, equal zero and are otherwise equal to 2, so that the
mode shapes are orthonormal, such that

W H
J ~|-*0 ¢n (y,Z) ¢m (y;z) dydz = WH’

y=0 Jz=
m=n,
(41)
W H
J J ¢ (9,2) b, (9,2)dydz = 0,
y=0 Jz=0
m#n.
The modal amplitude in (39) is given by
w
— P40 ¢m (y,Z), (42)

"™ 2Ak,

where A is the cross-sectional area of the chamber, which is
WH in this case.

The difference between this formulation and that in the
wavenumber domain is that the driving source is initially
assumed to be concentrated at a point, rather than the infinite
sinusoidal distribution along the cochlea assumed in the
wavenumber analysis, and that instead of the wavenumber
being a specified value, it is now a variable that changes with
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the modal order. In the case assumed here, where the fluid
is assumed to be incompressible, the modal wavenumber

becomes
2 2
km:ﬂngz>+<mﬁ>, 13)
w H

which can be written as +i/l,,. Provided m, and m, are not
both zero, corresponding to a fast wave of infinite speed,
the modal contributions are thus all evanescent, with a
longitudinal dependence that can be written, by choosing the
appropriate root of k,,,, as

—ik,,x

e = e ¥, (44)
where [, is a modal decay length.

The pressure in the chamber due to the velocity distribu-
tion corresponding to excitation of a single element of the BM
with a predefined modal shape y(y) can also be calculated
from (39), by generalizing (42) to give the modal amplitude
for a distribution of monopole sources [120], so that the
modal amplitude can be obtained by integrating over the area
of the element:

w w 0 »
- by () () ([ e
0 -AJ2

" WHk,,
A2
+ J e_x/lmdx> .
0
(45)

The modal pressure difference due to the far field compo-
nent is thus due to the plane acoustic wave, corresponding to
both m, and m, equal to zero. The near-field component of
the modal pressure can then be calculated, for m greater than
zero, by integrating the pressure in (39) over the BM width,
to give

2 w
mm=WJwUM@%®W (46)
0
The modal pressure due to the near-field of this vibrating
element of the BM can thus be written as

Py (%) = Z a,e /M, (47)
m=1

where a,, is the overall modal amplitude. Each mode has its
own decay length [, , and it is clear from (43) and the defini-
tion of [, that these become increasingly small as 7 becomes
larger, resulting in a more local response, which is enhanced
by the fall off in the mode amplitude, a,,, with m. The lowest
order evanescent mode, for which m; = 0 and m, = 1,
has a decay length, [,,,, which is equal to H/m. The condition
under which the effect of the near-field pressure can be
lumped together as a local mass [77] is thus that H /7 is small
compared with the wavelength of the cochlear wave. This is a
somewhat more restrictive condition than the conventional,
long wave, assumption for 1D fluid coupling, which is that
27H should be less than the wavelength [12].
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FI1GURE 18: Continuous distribution of the modal pressure along the
cochlea due to the fluid coupling near-field component (dashed line)
and the average pressure over each discrete element of the BM (solid
line), when excited by a single element at x = 10 mm with a velocity
of 10mms™' ata frequency of 1kHz. Also shown (dot-dashed line)
is the approximation to this discrete distribution obtained from the
sum of two exponentially decaying terms of an acoustic analysis of
the fluid coupling, (48).

In fact, a reasonable approximation to the averaged near-
field pressure due to a single BM element can be obtained
using only two terms of the infinite series in (47), so that in
the discrete model [121]

Pra (nl) _ 2iwp <Qle—n’A/ll + Qze—n’A/lz) Vs (48)

where ' is equal to |1 — 1| for excitation of the #1,th element,
Z, and Z, are two impedances, and [, and [, are the corre-
sponding characteristic decay lengths. This approximation to
the average pressure over the discrete elements is also shown
in Figure 18, with equivalent height Q; and Q, equal to 16 ym
and 41.56 ym, [, equal to H/3.47, and I, equal to H/12.8, and
is seen to provide a good approximation to the result obtained
from the inverse Fourier transform of (35).

3.3. Finite Element Modelling of the Fluid Coupling. The finite
element method is a powerful technique that has the advan-
tage of modelling complex structures. In the finite element
model, the fluid coupling (of the box model or of a complex
geometry such as a coiled model) of the cochlea can be
written as

QP + Hppg = Qs (49)

where Q is the mass matrix, H is the stiffness matrix, qgp is
the BM velocity vector, and pgy, is the vector of pressures at all
of the nodes [76]. Consistent with the fluid coupling models
mentioned above, the imposed velocity at the BM should have
a predefined radial profile.

The rectangular box geometry needs to be divided into
finite longitudinal sections to fulfil the requirement that there
are at least 6 elements within the shortest wavelength, which
isa common rule in finite element analysis [122]. The meshing
in the cross-section has to be finer than this in order to
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FIGURE 19: Modal pressure difference on the BM calculated using the
FE model for excitation of a single longitudinal segment of the BM at
x equal to 5 mm, 15 mm, and 25 mm with a velocity of 10 mm-s ™" at a
frequency of 1 kHz with 8 x 1 elements (dotted lines), 8 x 2 elements
(dashed lines), 8 x 4 elements (dot-dashed lines), 8 x 8 elements
(solid lines), and analytic solution (red lines) [121].

capture the near-field pressure variation close to the vibrating
BM [61]. Figure 19 shows the distribution along the cochlea
of the computed modal pressure difference on the BM, when
driven by a single longitudinal BM segment at different
locations, for various mesh sizes in the FE model [121]. It can
be seen that with relatively few elements, the FE model repro-
duces the long wavelength, far field, behaviour of the pressure
reasonably well, but a larger number of elements are required
to reproduce the near-field pressure on the BM and hence
the additional short wavelength component of the modal
pressure. The results with the smaller mesh size are in good
agreement with those computed from the analytic models
[70].

An advantage of the finite element method is that since
the fluid is modelled using acoustic elements, the compress-
ibility of the fluid, as well as its inertial properties, is taken
into account. The widely used theoretical models [23, 56, 123]
assume that the fluid is incompressible. The effects of com-
pressibility are expected to be greater at higher frequencies
as the inertial forces become larger. In the incompressible
model, the fluid pressure would be independent of frequency.
However, the magnitude and shape of the fluid pressure
changes significantly with frequency in the finite element
model [124]. The magnitude increases at a quarter wavelength
resonance, which is about 10 kHz for the human cochlea with
a length of 35 mm, and the distribution of fluid pressure is
no longer linear away from the excitation point. This acoustic
resonance increases the magnitude of the average pressure
across any cross-section of the cochlea, but does not influence
the short wavelength components which are unaffected by the
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compressibility of the fluid [125]. The resonant peak at the
frequency of a quarter wavelength resonance is accompanied
by a phase change, so that the pressure distributions for
excitation frequencies above and below that frequency are
almost entirely out of phase.

Itis interesting to compare the predicted frequency of this
quarter wavelength resonance with the upper frequency of
hearing in several species [126, 127]. This resonance appears
to occur, perhaps coincidentally, at about half the upper fre-
quency limit of hearing in each of these cases. Although this
acoustic resonance is, in retrospect, simple to predict, its exis-
tence for the pressure difference component and its effect on
cochlea mechanics does not appear to have previously been
widely considered. Peterson and Bogert [111] and Lighthill
[125] discuss a quarter wavelength resonance in the mean
pressure component, but this is associated with a pressure
source driving the cochlea as a closed duct, in order to
match the pressure release boundary condition at the round
window.

If the cochlear fluid is assumed to be compressible, then
the classical slow cochlear wave can be given by [111, 124, 128]

2
(50)

k(_x)a)) _ \j zleYBM (x’w) + w_z,

h G
where ¢, is the speed of sound in the cochlear fluid. The
wavenumber is thus not significantly affected by the com-
pressibility, since the maximum speed of the slow wave is
about 70 m/s, which is much smaller than the 1,500 m/s speed
of the fast wave.

Despite the very significant change in the pressure dis-
tributions in the fluid coupling calculations due to fluid
compressibility, this hardly appears to have any effect on the
coupled cochlea response at all. This surprising result can
perhaps be understood by returning to the way in which
the coupled model is formulated [70]. The fluid coupling
effects are first calculated independently of any BM motion
by defining the fluid coupling impedance matrix, for the fluid
chambers having rigid walls. It is this assumption that leads
to the quarter wavelength resonance in the uncoupled fluid
column. When the BM is allowed to move, in the coupled
response, however, this resonance does not get a chance
to become established, since the BM is sufficiently mobile
that it substantially equalizes the pressures in the two fluid
chambers well before the wave reaches the end of the cochlea.

3.4. Geometric Effect on the Fluid Coupling. Due to the fact
that the cochlear components of interests are housed in bone,
as shown in Figure 20, it is difficult to describe them in
an experimental way. Most cochlear mechanics researchers
reduce the real cochlea structure into a simple mathematical
model with assumed physical and geometrical properties
(12, 23]. Elliott et al. [70] developed an elemental model of
the cochlea in order to analyse the interaction between the
fluid coupling and BM motion and represented the cochlear
mechanics by defining a single longitudinal variable for the
pressure difference and for the BM velocity. The effect of
asymmetry of the cochlear structure has been discussed by
assuming that the width of the BM varies along the cochlear
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FIGURE 20: A micrograph of a plastic cross-section of the guinea
pig cochlea. The section is cut at a near midmodiolar plane [142]
(reprinted from Brain Research Bulletin, 60, Raphael and Altschuler,
Structure and Innervation of the Cochlea, 147-154, Copyright
(2003), with permission from Elsevier).

length. They found that due to the reduction of the equivalent
height with distance, the fall-off of the pressure difference
beyond the driving position on the BM is no longer linear
but has curvature, which was also observed by Shera et al.
[118] using a Green’s function approach. This indicates that
the nonuniformity has a great effect on the changes in the
wavelength of the BM motion as it approaches the character-
istic place, since the effective area of the cochlear chambers
becomes much less than that at the base. There is then a
reduction in longitudinal fluid flow due to reflection and
an increase in the local mass loading, slowing the wave and
increasing the phase accumulation. However, other geome-
tries, like the height of the fluid chamber and the width of the
CP, were assumed to be constant. As an extension to Elliott
et al. [70], Ni [121] developed a more general expression,
which takes variations of the BM width, CP width, and fluid
chamber height into account, to study the geometric effects
on the fluid coupling.

Another important geometric factor in cochlear mechan-
ics is coiling. It is believed that the coiled structure is an
adaptation to the problem of fitting a long basilar membrane,
to provide good low frequency hearing, into the relatively
small heads of early mammals [129]. The origins of the coiled
cochlea have recently been traced back 150 million years
[130]. In morphogenesis of extant marsupials and placentals,
the full coiling of the cochlear duct is inextricably linked
with the formation of the cochlear ganglion and complex
bony labyrinth structures, all during the late embryogenesis.
Obviously, the coiled cochlea is a key evolutionary innovation
of modern mammals. Despite providing a good blood and
nerve supply, however, the effects of the coiling on the
mechanics of the cochlea are still not fully understood.

von Békésy [4] states that the coiling is not essential
as far as mechanics are concerned because a few animals,
for example, the anteater, have a cochlea on the form of a
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slightly bent tube. The first mathematical attempt to analyse
the possible mechanical effects of the spiral coiling was due to
Huxley [131], who derived an ordinary differential equation
for the pressure in an uncoiled 1D cochlear model similar
to the box model which is widely used now and gave esti-
mates indicating that coiling of the cochlear geometry could
mechanically isolate adjacent sections along the cochlear
partition and provide a sharp resonance effect. Hereafter, only
a few researchers considered how spiral coiling may affect the
BM dynamics, fluid coupling, and low frequency perception.
Fleischer et al. [132] used a finite element model to study the
effect of coiling on the stiffness distribution of the BM along
the cochlea. They found that the coiling exerts its greatest
influence on the apical third of the BM, although a much
larger influence on the range of BM stiffness was the longi-
tudinal variation of its thickness. This reinforced the earlier
work of Viergever [66], who also concluded that the mechan-
ical behaviour of the cochlea is only slightly affected by its
spiral form.

An analytic model of the fluid coupling in the coiled
cochlea was developed by Steele and Zais [133], who con-
cluded that the response was not significantly affected by
the coiling. Kohlloftel [134] also suggested that the effect
of the coiling on the pressure difference is small and that
there is an equivalent straight cochlea in the limit of long
wavelength. The author also noted that the frequency of the
quarter wavelength resonance in the mean component of the
pressure is raised by about half an octave due to coiling.
Manoussaki and Chadwick [135] considered fluid loading
using an analytic model of the coiled “helical box” model of
the cochlea using a wavenumber analysis and found that the
fluid loading at the apex was only about 11% less in the coiled
cochlea compared with the straight cochlea. In subsequent
publications, however, Cai and Chadwick [90], Cai et al.
[67], and Manoussaki et al. [136] emphasised the redistribu-
tion of wave energy towards the outer wall of the cochlea
generating a radial force on the OC that significantly
increases its shear gain at the apex, which can lower the
fluid impedance at the apex, and thus helps detection of low
frequency sounds. Fleischer et al. [132] developed a three-
dimensional finite element model of the basilar membrane
to explore the impacts of coiling and other factors such as
material properties on the compliance of the unloaded basilar
membrane. They find that the coiling has a weak influence
on the BM compliance and the largest effect is in the apical
third of the cochlea, where the curvature is the greatest.
The increase of the BM stiffness is less than a factor of 1.6.
They also suggested that the reduction of curvature in an
isolated BM cannot achieve the 20 dB amplification found
by Manoussaki et al. [136], which indicates that the fluid-
structural coupling has a great effect on coiling, especially in
the apical cochlear region.

Ni et al. [79] calculated the pressure difference between
two fluid chambers using a three-dimensional finite element
model of the coiled cochlea and found that the effects of the
coiling on the far-field components are more obvious than
that on the near-field components. The magnitude of the
pressure difference has a reduction apical to the BM driving
position compared with that from a nonuniform straight
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model. This implies that the fluid impedance decreases at
those positions, which are close to the apex due to the spiral
coiling of the cochlea being greatest at the apex. Following
this, Ni [121] applied the elemental method [70] to study the
effects of coiling on the coupled response by assuming that
the BM dynamic is not affected by the coiling and the results
show that the difference between the coiled and the straight
model becomes larger at low frequencies, when the charac-
teristic place moves towards the apex, reaffirming that the
curvature plays a more important role close to the apical end
of the cochlea.

4. Cochlear Micromechanics

The representation of the cochlea can be discussed in terms
of its micromechanics and its macromechanics. The term
“micromechanics” refers to the dynamic behaviour of a radial
slice of the cochlea at the microscopic level. By contrast,
the term “macromechanics” deals with the coupling between
the micromechanical motion of the system at various points
along the cochlea, thus giving rise to a solution for the global
response of the cochlea.

Generally, all models used to describe the BM vibration
patterns or the pressure distributions along the cochlea are
dealing with macromechanics, since these models concern
the interaction between fluids in the two fluid chambers with
the CP (all the parts of which are assumed to move in a same
manner with the BM). The longitudinal coupling of the CP,
for example, the phalangeal processes which longitudinally
connect OHCs, is neglected. The components within the OC
can move with different magnitude and phase. Nowotny and
Gummer [137] observed that under electrical stimulation the
TM at both inner and outer radial positions vibrates in phase
with the RL of the OHC, which in turn vibrates 180" out of
phase with the RL of the IHC. This counterphasic motion
of TM and RL at the IHCs is considered as the reason of
pulsating fluid motion in the subtectorial space.

4.1. Passive Cochlear Micromechanics. In the classic travelling
wave model, the cochlea is taken as a hydromechanical
element, determined by the physical structure of the cochlea,
which provides the basis for frequency analysis. This passive,
travelling wave model was first proposed by von Békésy [4],
who measured the travelling wave in cadaver ears, using an
optical method that required very high input levels to make
the responses large enough to be observed. For this kind of
behaviour, the response is not dependent on stimulus level,
except for amplitude scaling, and is described as “passive.
Passive models of the cochlea, as reviewed by de Boer [12],
for example, can provide predictions of the distribution of
motion along the cochlea at a given frequency or of its
frequency response at a given position. These models include
the macromechanical behaviour of the fluid coupling along
the length of the cochlea, as well as the micromechanical
behaviour of the individual parts of the cochlear partition.
Such models are the starting point for more realistic non-
linear models. In order to produce numerical results, the
cochlear partition, which has mechanical parameters that
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vary continuously along its length, is often approximated by
a discrete set of elements. This allows a finite dimensional
set of equations to be solved one frequency at a time. The
number of elements is generally quite large, typically about
500 for the human cochlear model, so that a single model, as
shown in Figure 21(a), generates many hundreds of individual
frequency response functions, as shown in Figure 21(b).
Comparing with the cochlea in vivo, the passive cochlea
loses the active and nonlinear behaviours. The passive model
is a reasonable representation of the actual cochlear response
at high stimulus levels, above 80 dB SPL, since the cochlear
amplifier is saturated and plays no role in its dynamics.

4.2. Active Cochlear Micromechanics. The direct physiologi-
cal evidence of the active feedback process in the cochlea is
the observation of sound in the ear canal caused by spon-
taneous oscillations, apparently of cochlear origin, retrans-
mitted by the middle ear, which are called spontaneous
otoacoustic emissions [10]. The basic mechanism of the
active process in the in vivo cochlea can be explained as an
interaction between the BM and the OHCs. When the BM
moves upwards, the stereocilia of the OHCs are deflected
by the shearing motion between the RL and the TM, which
opens transduction channels and causes a change in the
OHCs intracellular potential and thus a change in the length
of the cell, which will generate a force upward acting on the
BM from the OHCs through the Deiters’ cells to enhance BM
motion. So the micromechanics of the OC have to be consid-
ered as a closed-loop feedback system [75]. The idea of mod-
elling the active function in the cochlea was developed in the
1970s and early 1980s and comprises two basic aspects: (1) the
normal cochlear function depends on an active, mechanical
feedback processes, and (2) OHCs operate as the agent of
feedback. Generally, cochlear models that take OHCs motility
into account are described as active models and those without
OHC motility are defined as passive cochlear models [77].
Based on this, OHCs motility has been introduced into a
number of active cochlear models to describe cochlear active
amplification [32, 35, 80, 138-141].

4.2.1. Modelling OHC Motility. In the early stages of cochlear
modelling, the models were formulated mechanically in the
frequency domain and active undamping was assumed at a
site basal to the characteristic place with only a single degree
of freedom to represent the dynamics of the CP. This fixed the
spatial distribution of undamping in the model, and thus the
pattern of impedances was only valid for one frequency [143].
One way to represent the active behavior of the OHC:s is the
inclusion of negative damping, providing energy rather than
dissipating. The first active cochlear model was proposed
by Kim et al. [37]. The model is two-dimensional and has
negative damping over a limited region. de Boer suggested
[144] that it was impossible for a passive mechanical short
wave model to have a “sharp response,” similar to that found
in hair cell potentials or auditory nerve fibers. In his 1D
lumped-parameter model, he defined the real part of the BM
impedance, Zgy; = iwm+s/iw+r, to be negative in the region
to the left of the resonance peak, as shown in Figure 22, to
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FIGURE 21: (a) One-degree-of-freedom micromechanical model, in which the BM and TM are assumed to always move parallel to each other
without radial motion. (b) Distribution of the magnitude and phase of the BM velocity of the passive cochlea in frequency domain calculated

using one-degree-of-freedom micromechanical model.
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FIGURE 22: The distribution of the BM impedance at frequency of
1kHz.

make the BM active in that region, which means the damping
term, r, must be negative close to the peak response region.
Diependaal et al. [39] developed a similar 1D model including
active and nonlinear mechanisms and solved the model in the
time domain using a fourth-order Runge-Kutta method.
Alternatively, Zweig [145] adopted negative damping to
describe the active behavior in the OC based on a passive
transmission-line cochlear model, in which OHCs were
conjectured to be active elements contributing to the negative
damping and feedback of the cochlear amplifier. Hubbard and
Mountain [143] applied the second filter using a travelling

wave amplifier in their active cochlear model. Following
the finding of nonlinear BM activity and the existence of
OAEs coupled with measurements of BM motion in vivo
[5,146-148], researchers began to incorporate active elements
into their models. Comparing with 1 DOF models, a second
degree of freedom is added to represent the TM above the
BM by many researchers [19, 22, 28, 40, 107]. This allowed
the active response to be generalized over the entire range
of locations along the CP and thus the entire spectrum of
audible frequencies [149].

A number of authors have extended the mass-spring-
damper representation of the passive BM mechanics, to
include lumped-parameter representations of the dynamics
of the OC. These micromechanical models can then include
forces due to the action of the outer hair cells in an attempt
to represent the cochlear amplifier. A good review of such
models is provided by Patuzzi et al. [150], although the most
famous model was put forward by Neely and Kim [19] to rep-
resent the active cochlea in the cat. The equivalent mechanical
system for Neely and Kim’s 1986 model is shown in Figure 23.
By careful selection of the values of the 10 mechanical
parameters in this model, and their distribution along the
cochlea, reasonable predictions of the coupled response were
obtained by Neely and Kim [19], assuming 1D fluid coupling.
One criticism of the Neely and Kim model is that the active
pressure has nothing to react off and is thus physically
incomplete. The Neely and Kim model is a solid basis for
the cochlear micromechanics and has been used and adapted
by other researchers for the human cochlea, for example, by
Elliott and Ku [22, 151]. The other important aspect in the
cochlear micromechanics is structural longitudinal coupling
in the BM and the TM. Mammano and Nobili [31] proposed
a micromechanical model of the cochlea described by an
integral equation. In the model, the shear motion between
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FIGURE 23: Mechanically equivalent system for Neely and Kim’s 1986
model [19], in which m, and k, represent the transverse mass and
stiffness of the BM and organ of Corti, and m, and k, represent the
transformed effect of the radial motion of the tectorial membrane,
TM. The model thus has two degrees of freedom. The active pressure
due to the outer hair cells, P,, is assumed to be proportional to the
difference in the displacement and velocity of m, and m, via the
impedance, Z,, and cochlear amplifier gain, r.

the TM and the RL was assumed as a function of the BM
displacement and the way that the forces applied by OHCs
amplify the BM motion is described as a cancellation of
the fluid viscosity. They suggested that longitudinal elastic
coupling due to the TM and RL is negligible as far as small BM
amplitudes are involved. In a more recent paper [106], Meaud
and Grosh found that viscoelastic longitudinal coupling in
the BM and the TM is nonnegligible and the latter one plays
a more important role in controlling the sharpness of the BM
frequency response and the duration of the impulse response.

More detailed lumped-parameter micromechanical mod-
els have been proposed that have three degrees of freedom
[32, 75] or even more. These clearly have even more parame-
ters that have to be selected. Although it would be attractive
to think that these parameters could be deduced from the
dynamic behaviour of the physical OC, this is generally not
possible. In practice the parameters are selected, as in the
Neely and Kim model, to provide a response that appears
reasonable, and a great deal of time can be taken up in such
“tuning” of the many parameters. There are also so many
parameters, that similar responses can be obtained with many
different sets of parameters, and the selection problem is
probably not unique. Also, the parameters selected to repro-
duce one aspect of cochlear behaviour; for example, sponta-
neous otoacoustic emissions [72] do not tend to work well
in reproducing other aspects of behaviour, for example,
distortion product otoacoustic emissions [128].

Figure 24 shows an equivalent mechanical system of a
cross-section of the cochlea, including the main components
of the OC [21, 152, 153], as shown in Figure 1(b). In this model,
the arch of Corti is assumed to pivot about its left bottom
corner, which is attached to the BM and causes this to rotate
as a more or less rigid body around this point [154]. Similarly,
the reticular lamina is believed to rotate about the top vertex
of the arch of Corti. The relative displacement of the OHC
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FIGURE 24: A lumped-parameter model of a cross-section of the
physical arrangement of the cochlear partition. The transverse
BM motion being driven both by the pressure difference in the
fluid chambers and the pressure due to the OHC. The TM moves
transversely and is radially driven by the OHC via the RL. The forces
due to the radial motion can be resolved into equivalent transverse
forces and the radial TM degree of freedom can be represented as an
equivalent transverse degree of freedom.

stereocilia is used in the model to recreate the force that
simulates an active cochlea.

Three equations of motion can be used to describe the
dynamic behaviour of the three-degree-of-freedom system,
shown in Figure 24, as [21, 152, 153]

Py = Pouc
= Myt + kWi + Ky (W — Wiy ) »
Poyc = mytgy, + k, (wry, — wpy) (51)
+ ks (wry, — wry) + kswe,
0 = mstpy — ks (wry, — wry) + kgwrys

where m,, m,, and m; are the BM mass, the physical TM
mass, and the transformed TM mass due to its shear motion,
ky, ky, k5, and k, are the BM stiffness, the OHC stiffness, the
HB stiffness, and the shearing stiffness of the TM, respec-
tively. wpy, Wry» and wy represent the displacement of the
BM, the RL, and the equivalent shear motion of the TM. The
damping can be incorporated in by defining a complex
stiffness term.

Many researchers have sought to refine active cochlear
models by including “feedforward” [32, 155] or “feedback-
ward” [139, 156] coupling between adjacent BM impedances.
The term “feedforward” refers to the force, which is positive,
provided by the OHCs being tilted apically toward the
helicotrema and the term “feedbackward” refers to the force,
which is negative, provided by the PhPs basally toward
the stapes, as shown in Figure 25. In particular, the apical
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FIGURE 25: (a) Anatomical scan of a longitudinal view of the organ of Corti of a mole rat cochlea with a representative OHC, Deiters” rod
(D), phalangeal process (PhP), and stereocilia bundle (S). (b) Schematic of the longitudinal view of the organ of Corti, showing the tilt of the
OHCs based on (a) [160] (reprinted from Biophysical Journal, 100, Yoon et al., Feedforward and Feedbackward Amplification Model from
Cochlear Cytoarchitecture: An Interspecies Comparison, 1-10, Copyright (2011), with permission from Elsevier).

inclination of the OHCs has been shown to provide a spatial
“feedforward” [110] effect that greatly enhances the wave
amplitude near the characteristic place. This idea has been
used in 1D, 2D [32,157],and 3D [35,158,159] cochlear models.
However, Yoon et al. [160] pointed out that the BM velocity
simulation results from these models do not agree with those
from in vivo experiments in phase lags. There is an excessive
phase excursion and there is a shift in the best frequency
between the passive and active models, which is about an
octave in simulations but half octave in measurements.

4.2.2. Three-Dimensional Models. Apart from those relatively
simply formulated active cochlear models, many researchers
have sought to refine model predictions by adding more
degrees of freedom to the CP [20], expanding solutions
into multiple spatial dimensions [86, 161]. The goal of these
models is to include components of the cochlea to represent
as realistically as possible the cochlea mechanics. Steele and
Lim proposed a three-dimensional model of the guinea pig
cochlea incorporating the viscous fluid effect, inner sulcus
mechanics, feedforward, and also material variation along the
cochlear length [158]. This model consists of two degrees of
freedom, one for the flexing of the pectinate zone and one for
the rocking of the arches. The phase-integral method, WKB,
is used to calculate the solutions for the model and results
show that a second travelling wave occurs due to the incor-
poration of the sulcus mechanics, though this has not been
observed in auditory nerve responses. In order to simulate in
the time domain to predict two-tone suppressions and har-
monic distortion these nonlinear properties, Lim and Steele
[35] proposed another three-dimensional model with the
BM modelled as an orthotropic plate. Full three-dimensional
models include varying details and geometrical complexities

have also been built using the FE method by Kolston and
Ashmore [86] and Bohnke and Arnold [85]. One of the
attractive findings from the Kolston and Ashmore [86] model
is that the TM and DC structural properties, especially the
DC axial stiffness, play an important role in the OHC-BM
feedback loop, which is due to the fact that the DC is the
connection between the OHCs and the BM and the active
force transmitted by the DC to the BM is determined by
the axial stiffness. However, one limitation of their model
is that the OHCs and DC are modelled as one-dimensional
structures indicating they cannot offer impedance to radial
fluid motion within the OC which is assumed to occur in the
spaces between the OHCs in the real cochlea. Bohnke and
Arnold [85] propose a finely detailed model to represent the
OC, in which OHCs and DCs are modelled as 3D beams,
to demonstrate the nonlinear mechanism in the cochlea.
Although the model is only of 60 ym length and cannot
represent the whole cochlear structure, it still well presents
the micromechanics of the OC and is practical for computing.

The high dimensional cochlear models with various
details of the OC are ideally suited for studying the microme-
chanics of the cochlea. They have the common limitation
that large numbers of degrees of freedom require massive
computing time and a powerful computer. Solutions in the
time domain are difficult because they require analysis at
thousands of time steps.

5. Nonlinear Models

In a linear cochlear model, a sinusoidal pressure difference
across the CP generates a sinusoidal BM velocity and so
the relationship between them can be simply represented
by an impedance function. In a nonlinear cochlear model,
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however, the waveform of BM velocity response to a sinusoid
becomes distorted. Many efforts have been made to model
the nonlinear behaviour of the cochlea, including the com-
pressive growth at high sound levels, two-tone suppression,
and DPOAEs [34, 36, 162-164]. The nonlinearity is typically
obtained by defining nonlinear elements, such as nonlinear
damping, nonlinear OHC force or pressure, and nonlinear
geometry.

5.1. Nonlinear Functions. To model the nonlinear behaviour
of the cochlea, we need to define nonlinear functions to
describe the system. In general, the input, u, and output, v,
of a system are related as

v=H(u). (52)

For a linear model, if u is multiplied by any constant
factor, the output v will be scaled by exactly the same constant
as

Bv=H (Bu). (53)

And, by superposition, for multiple inputs u;, u,, ..., u,,
the response to the sum of those inputs is equal to the sum of
the responses to the individual inputs as

H(uy +uy+--+u,)=H(u)+H(uy)++H(u,).
(54)

A linear system cannot generate signal components that
were not present in the stimulus spectrum, but any non-
linear system will produce harmonic distortion products in
response to simple tonal stimuli, and more complex stimuli
produce more complex distortion product spectra. To study
cochlear nonlinear behaviour, a time domain analysis is gen-
erally necessary. To start the time domain analysis, all relevant
system equations should be setup in the time domain using
differentiation and integration wherever appropriate.

5.2. Nonlinear Damping. Generally, the relationship between
the pressure difference, p, and BM acceleration, w, at different
positions, x, along the cochlea can be expressed by the long-
wave approximation as

Ipx) _ 2p
Ox? h

w(x), (55)

where the BM dynamics are related to the pressure difference
as

px)=mx)w+r(x,w)w+s(x)w, (56)
in which mass is usually assumed to be constant.
Substituting (56) into (55) gives

[rw)w+m(x)w+s(x)w],, = %lf)(x), (57)

where [ ], denotes double differential by x.
To solve this equation in the time domain, the first
step is to transform it into two coupled ODEs and then
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the spatial differential equation can be transformed to a
difference equation. The remaining ODEs in time can be
treated separately. The second-order equations can also be
rewritten as sets of first-order equations, which can be solved
with the numerical methods such as the Runge-Kutta method
[165].

Different researchers define different forms for the func-
tion g to represent the nonlinearity in their cochlear models.
Kim et al. [166] studied the nonlinear behaviour of the
cochlea using a 1D nonlinear model, which is represented by a
nonlinear differential equation. The damping term in this dif-
ferential equation is a function of velocity and “effective fre-
quency” which depends on the input level. They assumed the
characteristic frequency to be the limiting value of the effec-
tive frequency as the input amplitude approaches zero. Using
this model they predicted the distortion products and other
nonlinear phenomena in BM motion. The model behaves
effectively linearly at low input levels and nonlinearly at high
input levels. In a similar way, Hall [36] incorporated the
nonlinearity in a transmission-line model of the cochlea by
defining a nonlinear resistance and calculated the nonlinear
BM response and distortion products in the spatial domain.

One famous model is called the Van der Pol oscillator.
Basically, the oscillator is described by an ODE similar to
one that describes a damped mass-spring system, but the
damping term is an even nonlinear term, which has a negative
value for small amplitudes, which would make the oscillator
unstable. In his model, the damping term has a form of
the quadratic (parabolic) function. Small amplitude negative
damping specifies an oscillator that generates a limit cycle
oscillation if undriven and uncoupled. The relative scaling
of the active part is characterized by a parameter ¢, which
determines the major characteristics of the response. At high
amplitudes, the damping is positive again and monotonically
increasing (at least nondecreasing). For large amplitude, and
also for large velocity v, the damping terms r is set to be
proportional to v*, which leads to a power of 1/3dB/dB in
the output-input level curve. It should be noted here that
this symmetric nonlinearity can only generate odd-order
harmonic and intermodulation distortion [167]. Following
the van der Pol oscillator model, Duithuis et al. [168] gave
another form for the damping terms at position x as

r(x,v) = =1, (x) + 7, (x) VA, (58)

where r, and r, are related as the product r,/r,v’ is dimen-
sionless.

Duithuis also suggested that overlap of the responses is
found in the Van der Pol oscillators in the frequency domain
and also a decrease of selectivity. He proposed a modified
Van der Pol oscillator model [167] with a general even-order
nondecreasing damping term, which has a function that grew
more slowly than quadratic and might even saturate as

sinh (av) y
av cosh (Bv) |’

r(x,v) =ry(x) | x (59)
in which the hyperbolic sine function is approximately
constant for small amplitudes and increases exponentially at
large amplitudes.
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FIGURE 26: Scaled damping profiles as a function of velocity. (0)
A linear profile is independent of velocity. (1) The modified VDP
profile and the sinh(x)/(x) profile (2) continue to increase with
increasing velocity. Profiles (3) and (4), (59), move from low values
with low velocities to a saturation level with high velocities. The
Hopf-profile (5) [209] can be considered as a version of the VDP
profile, which is scaled so that its limit value for small deflections is
exactly zero.

The nonlinear model proposed by Furst and Goldstein
[38] was also very suited for time domain analysis. The g-
function proposed by Furst and Goldstein contains a non-
linear damping profile, similar to the Van der Pol nonlinear
profile, but lacking its characteristic near-zero negativity. An
additional nonlinear correction is applied to the stiffness term
as

Y (x,t)s(x,t)

1+ |bv(x,0)°
(60)

gx,t) =r(xt)v(x,t) [1 +ar’ (x,t)] +

where g, b, and § are parameters. When proper middle ear
coupling is incorporated into the model, it can be used to
generate DPOAEs but cannot predict SOAEs or CEOAEs
[169]. Figure 26 shows some examples of nonlinear damping
profiles using different functions.

5.3. Nonlinear OHC Force and Geometrical Nonlinearity.
Besides nonlinear damping in the single-degree-of-freedom
model, researchers also developed various nonlinear force
or pressure models to represent the effect of the OHCs
motility in the more complicated micromechanical models
in Section 4.2. Kanis and de Boer [33] developed a model
to replicate the nonlinear behaviour of the cochlea. Their
motivation was to provide insight into the mechanisms of
cochlear nonlinearity with a simple model. The model is a
long-wave model of the cochlea, 1D, containing a saturating
pressure generator, located at the OHCs, which modifies the
BM velocity via adding a nonlinear pressure to the pressure
difference across the OC. To achieve that, they define the
nonlinear pressure using the hyperbolic tangent function and
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solve the model with a “quasilinear” iterative method in
frequency domain. Later [170], they compared the result with
that from the time domain solution proposed by Diependaal
et al. [39] and showed that the two methods match well for
single-tone and two-tone stimulations.

Chadwick [34] treated the nonlinearity as a correction
to a linear hydroelastic wave in his two-degree-of-freedom
lumped-parameter model. The active force generated by the
OHC was expressed as a function of TM-RL transverse
displacement and the saturation of this force was represented
by the hyperbolic tangent function. He used multiple scale
approximation to express the equation of motion in a non-
linear homogeneous integrodifferential form and then related
the active force function to the local wavenumber which is a
function of the BM displacement. In this way, the nonlinearity
in the model depends not only on the TM-RL displacement
but also on the BM displacement. He also showed that the
nonlinearity of the outer hair cell generates retrograde waves
travelling backward toward the base.

Bohnke et al. [171] constructed a complex 3D FE human
cochlear model including detailed OC structure to further
analyse the active and nonlinear mechanics. In their model,
the OC was modelled with finite length including 8 OHCs
using the finite element method. Since only a section of the
OC was considered so that the travelling wave was neglected
in their model, the load due to surrounding lymphatic fluid
was represented by a symmetrical loading on the OC. The
nonlinearity was represented by defining a nonlinear OHC
function, which expresses the OHC receptor potential as a
function of the stereocilia displacement, using a second-order
Boltzmann function. However, the effect of the nonlinearity
was only roughly shown in terms of the distorted time signal.

Lim and Steele [35] developed a 3D uncoiled feedforward
nonlinear cochlear model based on the WKB method. The
model was built based on geometric and material properties
from a chinchilla cochlea, in which the CP was modelled as
an elastic orthotropic plate and viscosity of the cochlear fluid
was also included. Fourier series expansions were used for
an iterative procedure of solving the model. The model was
used to predict BM response under different input levels, BM
frequency response, BM velocity compression, distortion,
and two-tone suppression. Comparison between numerical
results and those from experiments shows a reasonable agree-
ment. Following studies of OHCs mechanoelectrical trans-
duction (MET), Liu and Neely [163] construct a nonlinear
model to study DPOAESs. The receptor current that flows into
an OHC is defined as a nonlinear antisymmetric function of
the RL displacement and velocity.

Bohnke and Arnold [85] analysed the geometrical non-
linearity caused by the phalangeal processes using a 3D FE
human cochlear model including detailed elements within
the OC, such as OHCs, RL, and Deiters’ cells. They considered
large deflections, large rotations but small strains, and also the
stiffening effect on the structure due to its state of stress. These
two types of geometrical nonlinearities in the Deiters’ cells
were modelled using a thin elastic beam with low modulus
of elasticity. In their model, an external force due to two-
tone stimulation is applied on top of the RL. This leads to
a displacement of the OHC between the RL and the DC.
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When the model is linear, the amplitude spectrum of output
displacement clearly shows two peaks corresponding to the
two driving frequencies. When the geometrical nonlinearity
is considered, however, distortion components appear in the
spectrum.

Comparing 2D and 3D nonlinear cochlear models,
Diependaal concludes [172] that the 2D response is close to
the 3D solution but that the 1D solution deviates considerably
from the multidimensional solutions. However, he points
out that response from the 2D passive model with realistic
values of the parameters may deviate significantly from the
3D response. So the dimensionality of a cochlear model
depends on how much output one wants to obtain from the
simulation. If one is only interested in cochlear macrome-
chanics, a 1D approach is often satisfactory. However, if one
wants information about interaction within the OC, cochlear
micromechanics, a more detailed model, a 2D, sometimes a
3D, is required.

5.4. Solving Nonlinear Equations. In practice, it is usually
impossible to analyse the nonlinear equations analytically,
which requires numerical methods of time domain analysis
or of linear approximation and perturbation techniques [39,
40, 166, 173-176]. In some cases, the perturbation approach is
an alternative to the numerical analysis in the time domain.
As long as the nonlinear effects are relatively small in the
model, the behaviour can be approximated by a set of linear
equations, and then a number of iteration steps adjust for the
relatively small nonlinear deviations. Taylor expansion and
Fourier series have been used to solve the nonlinear models
in the time domain. It may require many steps before a proper
stable solution is approached, and limitation to a few steps can
lead to disastrous errors. This type of approach starts with a
linear approximation of the solution and then tries to improve
the solution by using iteration steps. At each step, the number
of terms in the expansion is increased, up to the point where
the remaining error is deemed acceptable.

The state space approach is inherently set in the time-
domain and can express the dynamics of a system as a set
of coupled first-order differential equations and arranged in
vector matrix form [22] as

x(t) = Ax (t) + Bu (t),
(61)
y (t) = Cx(t) + Du(t),

where x(t) is the m x 1 vector of the states of a mth order
cochlear model, A is the mxm system matrix that contains the
mechanics of the cochlear model, B is the m X r input matrix
that scales the » inputs to the model, u(¢) is the r x 1 vector
composed of the model input functions, y(t) is the px1 vector
composed of the defined p outputs, C is the p x m output
matrix that selects the output states of the model, and D is
the p x r feed-through matrix that transmit the input directly
to the output, where m, r, and p are integer values defining
the dimensions of the vectors and matrices. The stability of
the state space system can be determined by calculating the
eigenvalues of the system matrix, A ([22, 72, 151]).

Although there are kinds of active nonlinear cochlear
models built by different numerical approaches, most of them
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can be implemented in the state space formalism [177]. For
the cochlear models [39, 40, 155, 170, 178, 179] which have
one-degree-of-freedom, there are two states, namely, BM
displacement and velocity. For the cochlear models with two-
degree-of-freedom [19, 22, 32, 77, 80, 180], there are four state
variables associated with the displacement and velocity of the
BM and TM. In this way, the coupled cochlear model can
be solved in the time domain using a Runge-Kutta algorithm
with variable internal step size [39, 165, 176]. Epp et al. [165]
adopted a fourth-order Runge-Kutta method with a compu-
tational frequency of 400 kHz to solve their nonlinear active
cochlear model, in which the nonlinearity was described by
a combination of velocity dependent damping and feedback
stiffness defined by a double sigmoidal function.

6. Electrical Coupling

Mechanical vibrations in the cochlea are generated by a
pressure input stimulus having a large dynamic range.
These vibrations activate the hair cells (sensory organs)
in the cochlea. Hair cells detect these vibrations, reduce
their dynamic range, and encode them to a form that
the nervous system can interpret. These processes are only
possible because of electrical activities inside the cochlea. The
following is a brief overview of these electrical activities, the
electrical properties of the cochlea, and the mutual inter-
action between electrical and mechanical parts in the cochlea,
as well as models of these phenomena.

6.1. Electrical Properties of the Cochlea. Recall from
Section 1.2 (Anatomy of the Cochlea) that the cochlea
is made up of three compartments which are filled with two
fluids called endolymph and perilymph. The endolymph,
which fills the scala media, has a unique ion content which
makes it more electrically positive than both the other fluid
(perilymph) and intracellular potentials. These differences
in potential levels produce standing flows of ions through
various structures of the cochlea which maintain steady state
potentials and currents in the cochlea. It is noteworthy to
mention that the unique ion content of the endolymph is
maintained by the electrogenic pumping of potassium by stria
vascularis [181]. Note that even though purely mechanical
models of the cochlea as explained so far can provide
much information about the cochlea function, incorporating
a detailed electrical model of the cochlea can lead to better
understanding of the functions of hair cells and consequently
the cochlear functions.

Vibrations of the basilar membrane deflect the stereocilia
and modulate these flows of ions. Deflection of the stereocilia
opens and closes pores known as MET channels, and due to
the potential difference between the perilymph, endolymph,
and the intracellular potential, the opening and closing of the
MET channels changes the inflow of ions which results in
activation of the hair cells. For investigating the properties
and effects of these standing and alternating flows of ions,
the cochlea can be modelled as a network of biological resis-
tances, capacitances, and voltage and current sources, that is,
an electrical model.
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6.1.1. Inner and Outer Hair Cells. As previously mentioned,
the organ of Corti consists of sensory receptors called the
IHC and OHC. The IHC transduces mechanical vibration
into neural stimulation which is sent to the brain for inter-
pretation. The OHC nonlinearly amplifies the small basilar
membrane motions, and this action consequently enhances
the sensitivity of IHC to weak stimuli and compresses high-
level stimuli. Thus the operation of the OHCs enormously
increases the dynamic range of hearing [182-184].

At least the longest stereocilia of the OHCs are imbedded
in the tectorial membrane, and hence the MET channels of
the OHCs appear to be sensitive to the relative displacement
of the basilar membrane and tectorial membrane [185].
This observation is actually at variance with some observed
behaviors of the cochlea, and several explanations have been
proposed for the discrepancy [186]. The stereocilia of IHCs
are sensitive to the velocity of the radial flow of endolymph.

The hair cells connect to the nervous system via the
eighth cranial nerve [187]. The interactions between hair
cells and the nervous system in response to sound stimulus
produce the whole-nerve or compound action potential of
the auditory nerve which is recordable from round window
electrodes [184] or at their generation sites. The innervation of
the organ of Corti indicates that the IHCs transmit electrical
signals to afferent fibers, and thus IHCs seem to be purely sen-
sory while the purpose of afferent connections of the OHCs
still remains unclear [184].

The IHCs and OHCs are the primary elements of the
electrical lumped model and can be individually divided
into apical and basolateral parts. Each part can be modelled
by membrane capacitances, variable resistances, and voltage
sources.

6.1.2. Mechanical Effects of the OHC. The OHC in the mam-
malian cochlea is thought to use both somatic electromotility
and hair bundle electromotility to provide mechanical active
amplification [183].

Hair Bundle Motility. The mechanosensory organelles which
protrude from the apical surface of the hair cells comprise
the hair bundle [188]. Hair bundle motility is considered by
some researchers to have an effective amplification property
in mammalian hair cells [189]. Deflection of the hair bundle
changes the stereociliary calcium ion concentration and
causes the hair bundle (using the myosin motor protein) to
spring back, opposing the stimulus [182]. The hair bundle
force is linked to the displacement of the hair bundle and
the probability of the opening of the MET channels [190].
The hair bundle electromotility mechanism was put forward
to explain amplification at high frequencies for which the
membrane time constant was thought to restrict OHC ampli-
fication [191].

More recent measurements have shown that the mem-
brane time constant does not limit OHC amplification. The
membrane time constant is approximately one order of mag-
nitude smaller than what was previously reported [192, 193].
Experimental data indicates that the energy contribution
of somatic electromotility of the OHC is much larger than
that of hair bundle motility and is therefore the primary
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amplification mechanism of mammalian OHC [194-197],
and this conclusion has been supported by comprehensive
cochlear models [198]. Hair bundle motility may be more
significant in the cochlear apex than near the base [198]. The
force intensity and purpose of the hair bundle electromotility
mechanism in the mammalian cochlea are disputed and still
require more investigation [183, 189].

Somatic Motility. Change to the length of the OHC is an active
mechanism which makes the mammalian cochlea remark-
ably sensitive and precisely frequency sensitive. The OHC
length depends on the hair cell membrane potential which
in turn depends on the current flowing through the MET
channel. Both of these effects are nonlinear. The MET channel
current can be described as a Boltzmann function of hair
bundle displacement [199] and this is the primary source of
nonlinearity.

By using some simplifications, it can be shown that the
ratio of OHC length change to the membrane charge, Q,
movement is approximately constant and the OHC can be
modelled as a piezoelectric material [200]. A capacitance
can be calculated as the first derivative of Q with respect
to cell membrane voltage V' [186]. Although this effect is
also nonlinear, the relationship is usually considered to be
approximately linear. These relations couple electrical prop-
erty of the OHC soma with the OHC mechanics and represent
the OHC somatic motility [193].

6.1.3. Organ of Corti. The electrical properties of the organ of
Corti without hair cells are similar to other biological tissues
of the human body and can be modelled as a passive electrical
network. However, the existence of the hair cells gives special
electrical properties to this sensory epithelium and affects
its mechanical behaviours. The mutual interactions between
mechanical and electrical parts of the organ of Corti have
significant effects on the cochlear function and must be
incorporated in a realistic cochlear model.

The battery or variable resistance model by Davis [201] is
an initial attempt to model the electrical network properties
and the distribution of potentials in the cochlea. In this
model, the resting potentials of the cochlea have been mod-
elled by two batteries: a primary battery in the hair cells and
an accessory battery in the stria vascularis. The MET channels
are modelled by variable electrical resistors. Accordingly, the
current through the hair cells is modulated by changing
electrical resistances resulting from cilia deflection, as shown
in Figure 27. Strelioff [202] suggested a network model of
the resistors and batteries to simulate the generation and
distribution of the cochlear potentials, as shown in Figure 28.
The results of this model were in agreement with previous
physiological findings.

In [203, 204] electrical properties of the organ of Corti
have been investigated. The electrical configuration com-
ponent values of the resulting detailed model for a radial
section of the organ of Corti have been determined heuris-
tically based on actual measurements of potentials inside the
cochlea. Some of these parameter values have been revised
later by other researchers [192].
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FIGURE 27: Battery or variable resistance model; +80 mvand —60 mV
are the endolymph and intercellular potential, respectively. From
[201] with permission.

FIGURE 28: Strelioff’s network model [202]. In this model, the
cochlea is considered in cross-section slices. Each slice has six
transverse resistors (R, to R¢) and five longitudinal resistors (R,
to Ry;). The parameter values of this model have been widely
used by other investigators in this area (reprinted with permission
from Journal of the Acoustical Society of America, 54, D. Strelioff,
A Computer Simulation of the Generation and Distribution of
Cochlear Potentials, 620-629, Copyright (1973), Acoustic Society of
America).

6.1.4. Mechanical-Electrical Models. Even though electrical
coupling has been rarely amalgamated into the cochlear
models, some works can be seen in the literature.

In Ramamoorthy et al. [21], a model has been proposed
which integrates the electrical, mechanical, and acoustical
elements of the cochlea. This model provides a framework
to successfully predict and reproduce the response of the
cochlea to acoustical stimulus comparable to experimental
data. Nonlinear characteristic of the MET channel and hair
bundle motility have not been considered in this model. A
notable observation from this model is that longitudinal elec-
trical coupling actually sharpens the mechanical response.
This effect is also reported in Meaud and Grosh [198] and is
in part the motivation for the models of Iwasa and Sul [205]
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FIGURE 29: A circuit diagram for the inner and outer hair cells.
Superscripts I and O denote inner and outer hair cells. Subscripts
MT and a and b indicate the MET channels and apical and basolat-
eral parts of the hair cells, respectively. This model configuration or
similar versions of it can be seen in Dimitridias and Chadwick [206];
Iwasa and Sul [205]; Dallos [203, 204]; Mistrik et al. [210]; Johnson
etal. [192]; Cheatham et al. [211] just to cite a few. Mistrik et al. [210]
has used this electrical model with longitudinal resistances to model
the current flow in a model of the cochlea, as shown in Figure 30.

and Dimitriadis and Chadwick [206]. Whether this effect is
significant in a nonlinear cochlea is not known.

Nonlinear saturation behaviour of the MET channel has
been incorporated in Liu and Neely [163] to explore distortion
product otoacoustic emission. In this model the longitudinal
electrical connection in the organ of Corti and the hair
bundle motility have been neglected. The model of Nam and
Fettiplace [183, 193] has used a mechanical model along with
electrical coupling to investigate the effects of the hair bundle
motility and the cochlear amplifier in high and low auditory
frequencies.

Electrical properties of hair cells in vitro and in vivo have
been thoroughly examined, and very sophisticated models
with detailed ion channels can be seen in the literature [207].
A simple model of the IHC and OHC above is presented in
Figure 29. This model or slightly different versions of it have
been widely used in the area of modelling the distribution of
the cochlear biopotentials and their effects. Figure 30 illus-
trates this model with longitudinal coupling. Longitudinal
coupling was proposed by Dimitridias and Chadwick [206] as
a mechanism for nonlocal sensing in the operation of the CA.
Figure 31 shows an equivalent configuration for the imbedded
OHCs with dependent current sources instead of variable
resistors. A detailed circuit model of the IHC is presented in
Figure 32. This model is used to investigate contribution of
the IHCs to auditory compression [208].

6.2. Responses to Stimulus. Experimental recordings from
the cochlea show that the cochlear amplifier results in
sharply tuned cochlear mechanical responses. These tuning
curves indicate that auditory nerve excitation fully matches
mechanical tuning [184, 213]. The tuning curves of the
IHC and OHC potentials and the basilar membrane are
compared in Figure 33. The basilar membrane velocity and
displacement are reported in Figure 34. There is a tuning
discrepancy between the aforementioned tuning curves and



30

BioMed Research International

FIGURE 30: The electrical network model of the organ of Corti [210]. This model is made up of the circuit of together with longitudinal

electrical coupling.
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FIGURE 31: The electrical network model of the organ of Corti with
dependent current sources instead of variable resistors [21, 212]. i,
and i, are the dependent current source for apical and basal surfaces,
respectively. R; and C; model the apical resistance and capacitance.
R, and C, model basolateral resistance and capacitance. Vj; and
Vopc are the potentials of apical and basal surface of the outer hair
cell, respectively. The longitudinal electrical coupling is similar to
Strelioff [202], as shown in Figure 28.

that of potentials recorded from the cochlea (the cochlea
microphonic) which is discussed in Section 6.3.2.

6.3. Application. Using realistic electrical coupling in
cochlear models will facilitate opportunities to gain further
information about mechanical and electrical interactions.

6.3.1. Neural Stimulation. Modelling the voltage distribution
in the cochlea not only helps to understand cochlear function
but also may be used to design new strategies for delivering
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FIGURE 32: An electrical model of the inner hair cell [208]. In
this model, the apical conductance g, is a function of the THC
stereocilia displacement, u(t). C, and C, model the apical and
basilar membrane of the IHC. R, and R, are epithelium resistances.
Vyr is membrane potential. gy ; and gy, are fast and slow basolateral
resistances. Ey  and Ey  represent potentiator associated with fast
and slow resistances. From [208] with permission of Journal of the
Association for Research in Otolaryngology.

acoustical signal information to auditory nerves which can be
used in cochlear implants [214].

In cochlear implants the number of physical electrodes is
limited to 12-22 in contemporary devices. This limited num-
ber of electrodes can only stimulate a small number of fairly
broad fixed regions along the cochlea. Frequency resolution
can be improved by using virtual channel techniques in which
additional places can be stimulated by the available electrodes
[215].
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FIGURE 33: A comparison between the hair cells and basilar
membrane tuning curves. The tuning curves are for IHC (O), OHC
(4), and basilar membrane displacement (). From [184] with the
permission of Elsevier.
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FIGURE 34: A comparison between the neural and basilar membrane
displacement/velocity tuning curves. From [184] with the permis-
sion of Elsevier.

Two techniques have been developed to create a virtual
channel. The current steering technique uses superposi-
tion of the electrical fields of two simultaneously activated
electrodes to trigger the intermediate auditory neurons. In
this approach, independent current sources are required.
Another technique uses fast consecutive pulses to activate
two electrodes. The impedance between these two electrodes
completes the circuit and results in the stimulation of neurons
between the electrodes [215].

6.3.2. Cochlear Microphonic. Deformations of the BM cause
deflection of the stereocilia which open and close the MET
channels. This alternation causes a varying electrical current
through the biological resistances and capacitances in the
organ of Corti and generates the potentials both inside and
outside of the hair cells. This potential outside of the hair cells
is referred to as the cochlear microphonic (CM). The CM was
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first observed by Wever and Bray in cats [216, 217]. Adrian
used the term cochlear microphonic to describe this signal
(218, 219].

The cochlear microphonic is a by-product of the cochlear
activities in response to a sound stimulus. The CM can be
observed by placing an electrode on the surface of the cochlea
[194] or with glass micropipette electrodes inserted in the
scala media [220]. The CM can also be obtained as a far
field signal which can be recorded noninvasively by placing
electrodes inside the ear canal or invasively by placing elec-
trodes on or close to the round window membrane [184, 221].
This potential can be used to assess the MET current of
outer hair cells ([222-224]) checking the biological effects
of infrasound on the human auditory system [225, 226],
diagnosing Méniere’s disease [227], and diagnosis of auditory
neuropathy spectrum disorder [228].

The CM is mainly generated by the OHC [229] and elec-
trical coupling models can reveal much information about
the CM and its longitudinal distribution. The effect of the
CM on nearby OHCs has been considered to be significant in
the operation of the CA [205, 206]. As mentioned earlier, the
cochlear amplifier causes the BM tuning curves to be sharply
tuned at the characteristic frequency. However, the CM,
which results from the BM vibration, has broad tuning curves
[220, 230]. Furthermore, in some recordings and models of
the CM, some notches can be observed in tuning curves of
the CM [212, 230]. It is likely that the CM generated at the best
place is reduced by interference with that generated at other
locations ([230, 231]) and the observable notches may result
from this cancellation. The phase difference between hair
bundle and the OHC soma has also been suggested as another
contributing factor to the broadness of CM tuning curves
[232].

Integrated mechanical and electrical models have the
potential to shed light on the source of these discrepancies
and notches.

7. Conclusions

7.1. Highlights of Cochlear Modelling

7.1.1. Data Requirement. Modelling work largely depends on
available data from experimental measurements, but material
properties of some components in the cochlea are difficult
or impossible to obtain, especially for humans. Assumptions
and data fitting are always used in modelling the cochlea,
especially for the models of cochlear micromechanics. Great
effort has been put into finding reasonable values for some
modelling parameter, but unfortunately, many others are still
largely empirical, making some models difficult to validate.

7.1.2. Nonlinearity. The sources of the nonlinearities in the
cochlear amplifier are still not well identified. Possible sources
include material, geometrical (the dependence of the stiffness
on the displacement), and state-dependent nonlinearities
of mechanical structures; the nonlinear mechanoelectrical
transduction process of auditory hair cells; and nonlinear
neural coding of information, for example, rate intensity
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functions. A mixture of all these nonlinear factors is effective
in vivo and it is difficult to distinguish the separate contribu-
tions [171].

The Hyperbolic tangent function was used to saturate the
feedback force in early nonlinear cochlear models [22, 33,
34]. The disadvantage of the hyperbolic tangent function
is the incapability of generating the even-order harmonics
observed in experiments [233]. Later, the Boltzmann function
was used in nonlinear cochlear models by many researchers
[72, 171], since it is similar to measured input-output charac-
teristics of OHCs in isolation [234, 235].

Another important area related to nonlinearity is the
method of solving the models in the time domain. Ku [72]
found that the simulation time of a nonlinear state space
cochlear model can be reduced by fourfold without decreas-
ing the accuracy by fine-tuning the error tolerances for each
individual state. Bertaccini and Sisto [236] suggested that a
hybrid direct-iterative solver is faster than standard sparse
direct solvers for models in which the system matrix is data
dependent.

An alternative approach for implementing a model in
the time domain is to use a circuit analogy of the model,
and a powerful nonlinear circuit simulator such as SPICE
(simulation program with integrated circuit emphasis) to
solve it [237].

7.1.3. Cochlear Micromechanics. The discussion of multimode
motion in the OC has been raised by some researchers
[57, 102, 143]. This requires a complex cochlear model with
detailed OC to investigate different coupling mechanisms,
such as phalangeal processes (PhPs) between OHCs. Material
properties, endolymph viscosity, and boundary conditions
also need to be carefully considered in order to replicate exp-
erimental measurements.

7.1.4. Modelling Damaged Cochlea. Besides replicating exper-
imental finding in laboratory animals, the other important
goal of modelling the mammalian (human) cochlea is to
predict hearing defects [238, 239] or the effects of cochlear
implants. Although there is still a great deal of basic research
to be done on the hearing system, it is important for cochlear
modellers to consider potential application of the models in
the clinical area. Some preliminary work has been done to
predict the effects of a cochlear implant on the BM response
[240] and fluid coupling [70]. It is of great importance
to predict the insertion position of the CI and interaction
between the CI and the BM using relatively simple models
to provide information for clinicians.

7.2. Open Issues and Debates

7.2.1. Match and Prediction. One goal of modelling cochlear
mechanics is to replicate results observed in experiments.
A complete quantitative cochlear model is currently not
feasible, since it requires extensive geometrical and material
properties, which are difficult to measure. In most cochlear
models, parameters have to be tuned to match observations
from experiments, which is time consuming. It is quite often
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that good agreement only occurs for a specific experimental
observation but cannot replicate all cochlear behaviours.

Another objective of modelling the cochlea is to predict
phenomena yet to be observed. If the model works well on
replicating certain behaviour of the cochlea, it is important
to test predictions from the model, which have not been
observed in practice, in new experiments.

7.2.2. Fast versus Slow Waves. Many authors [61, 241] decom-
pose the intracochlear pressure into two modes, the fast-
mode, due to the mean pressure in the fluid chambers, and the
slow-mode, due to the pressure difference. In this hypothesis,
the fast-mode is believed to play a dominant role for frequen-
cies higher than the best frequency and can cause an in-phase
motion of the cochlear partition (much smaller than that
caused by the slow-mode), which will not excite the cochlear
amplification process [241]. However, the slow-mode will
cause an antiphase motion in the cochlear partition, which
excites the cochlear amplification process. The notch in
measured intracochlear pressure found in some experiments
is believed to be due to cancellation between the fast and slow
modes. A notch is also obtained, however, in 3D cochlear
models, which is believed to be the consequence of transi-
tion between the travelling wave mode and a higher-order
mode [56, 101]. Elliott et al. [57] use a wave approach to
decompose the results from the full FE analysis to show the
contribution of each wave which suggests that a higher-order
fluid wave (local evanescent wave) starts to dominant the
overall response after the characteristic place.

7.2.3. Scale of Modelling. A multiscale model of the cochlea
is always desirable, since it can incorporate detailed compo-
nents in the cochlear partition. The question is how deep
a model needs to be. A 2-DOF model can reasonably well
represent the passive, active, and nonlinear behaviours of the
cochlea. Detailed micromechanics, however, are ignored. To
understand functions of each element, such as the RL, OHCs,
IHCs, BM, and TM, in the OC, a detailed model including
these elements is needed. Moreover, to explore the mecha-
nism of mechanoelectrical transduction, which is believed to
be the reason for cochlear active process, modelling on a scale
down to nanometre may be required to show the molecular
details of the myosin motors that maintain the tension in the
tip links that connect the individual stereocilia within the hair
bundle.

The argument is whether a model should cover every scale
of the cochlea, namely, from millimetre for the SV and ST
down to nanometre for tip-links, or, different scales could
be considered separately and incorporate each individual
response together to give an overall response. The former
would require an extremely fine mesh for those tiny compo-
nents, which leads to enormous number of elements that may
cause convergence and computation difficulties.

Nonlinearity is an elaborate feature in the cochlea and
could be modelled by different mechanisms, such as nonlin-
ear damping, nonlinear OHC force, or nonlinear geometry.
Different nonlinear mechanisms need different scales of
modelling and it is difficult to say which scale is appropriate in
any given situation.
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7.2.4. Somatic versus Bundle Motility for OHCs. In the mam-
malian cochlea, the amplification is a nonlinear active process
providing extraordinary sensitivity and selectivity along with
a large dynamic range and sharp frequency tuning. Although
it is generally agreed that the amplification results are from
active force generated by hair cells, there is a debate about the
cellular processes behind the nonlinear amplification. One
suggestion is that the outer hair cells electromotility underlies
the cochlear amplification and another is that it is due to the
active hair bundle motility.

The OHC electromotility is supported by a somatic motor
in the OHCs body, which has the ability to elongate or
contract axially, due to changes in membrane potential, and
could provide positive feedback to reduce viscous damping
and provide active amplification. Santos-Sacchi et al. [196]
found fully reversible processes between alterations in OHCs
electromechanical activity and cochlear amplification and
modulating chloride activity in vitro and in vivo, which
proved that OHCs motility is crucial for cochlear amplifica-
tion. However, it has been also shown in frog and turtle that
spontaneous movements of hair bundles endow them with a
nonlinear response with increased sensitivity that could be
the basis of amplification [191, 242, 243]. Sul and Iwasa [197]
used a theoretical hair bundle model to study the effectiveness
of hair bundle motility in the cochlear amplification, in
which they assumed that hair bundle energy is sufficient to
counteract viscous drag in the subtectorial space.

A finite element model of the organ of Corti, in which the
fluid loading and fluid longitudinal coupling were excluded,
was used by Nam and Fettiplace [183] to analyse the two
mechanisms at both basal and apical end of the cochlea and
found that they could induce comparable BM motion but
differ in the polarity of their feedback on hair bundle position.
Maoiléidigh and Jilicher [244] proposed a cross-sectional
model of the cochlear partition, in which the TM, HB, RL,
and BM were assumed to be rigid beam and suggested that
the properties of the cochlear amplifier could be a result of
the combination of both hair bundle motility and electro-
motility in an integrated system that couples these processes
through the geometric arrangement of hair cells embedded
in the cochlear partition. Following these researches, Meaud
and Grosh [198] constructed a global mechanical-electrical-
acoustical model of the guinea pig cochlea and found that the
active HB motility alone is not sufficient to provide energy
for high frequency amplification, but the somatic motility can
overcome the basolateral membrane resistor-capacitor and
provide sufficient mechanical energy for amplification in the
basal regions. As suggested by Santos-Sacchi et al. [196], the
OHC lateral membrane mechanical activity may occur for the
mammal to supplement an exist amplification system as an
extra boost.

7.2.5. Difference between Mechanisms in Base and Apex. It
is still a particular challenge to model the mechanism of
the cochlea in the apex, since only a few experimental
measurements are available from in vivo cochleae at this
position. Generally, the active amplification near the cochlear
apex behaves differently from that observed near the cochlear
base.
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Measurements show that there is a strong compressive
nonlinearity in the cochlear basal region and that hair bundle
and BM displacements are both amplified. However, the
amplification in the cochlear apical region is somewhat unidi-
rectional and only the hair bundle displacement is amplified
[245]. Another difference between the apex and the base is
the direction of the BM displacement and velocity when the
IHC has a maximum excitation. At the apex, the maximum
IHC excitation is found when the BM is between maximum
displacement and velocity toward scala vestibuli. However,
at the base, the excitation is with velocity toward scala tym-
pani. Steel and Puria [246] pointed out that the phase of IHC
excitation, related to the tension in the tip link of the tallest
stereocilia of the IHC, can “have any phase,” particularly
depending on the elastic properties of the overlying TM.

In conclusion, then, cochlear models are still limited by
both a lack of detail in the models and experimental data
on material properties and in vivo response for validation.
Although significant advances have been made on both
fronts in the last few decades, our understanding is far from
complete.

7.2.6. Backward BM Travelling versus Compression Wave
Theory of OAEs. OAEs were initially observed by Kemp more
than three decades ago [7]. Ever since then the reverse prop-
agation mechanism of OAEs has been intensively studied
and is still a subject of debate [247, 248]. Two opposing
hypotheses have been put forward to explain backward prop-
agation. According to the slow travelling wave hypothesis, the
vibration backpropagates as a travelling wave using the BM
as a medium [248-251], while in the other one, OAE exits
the cochlea by a fast compression wave in the cochlear fluid
[247, 252-257]. A wide variety of experiments and models
have been devised for demonstrating the validity of both
hypotheses and it has been shown that the original results
of He et al. [258] can be reproduced in models without fast
waves [259, 260]. However, in spite of all these attempts, the
exact mechanism of reverse propagation still remains unclear.

7.2.7. The Source of the SOAEs. SOAEs are one of the major
classes of OAEs which can be detected in the ear canal with-
out any acoustic stimulus. Existence of these emissions is an
explicit manifestation of the active mechanism in the cochlea
[261, 262]. However, there remains some discussion about the
source of SOAEs. There are two different theories that have
been established to explore the origin of SOAE. The global
standing-wave model proposes that SOAEs are produced by
coherent reflections between an impedance mismatch at the
middle ear and perturbations in the mechanics of the cochlea.
The SOAE amplitude is actively maintained and stabilized by
the cochlear amplifier [263]. This mechanism appears to be
the dominant one in mammals. The second model, known
as the local oscillator model, suggests that the active elements
inside the cochlea independently cause local oscillation [264-
266] which may explain similar effects in other animals.

7.2.8. Nonclassical Models and Longitudinal Coupling. In a
“classical” model of the cochlea, the dynamics of the cochlear
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partition are described by a local parameter [267], whereas
“nonclassical” models introduce some form of longitudinal
coupling. Naidu and Mountain studied the longitudinal cou-
pling in the basilar membrane in the excised gerbil cochlea
and suggested that the cells of the organ of Corti increase
the overall coupling exhibited by the BM and the longitudinal
coupling should not be neglected in the region of character-
istic place [268]. Jaffer et al. [269] detailed a one-dimensional
model of the cochlea, in which longitudinal elasticity element
was used to represent the aggregate mechanical effect of the
longitudinally connective tissues in the organ of Corti, and
showed that longitudinal elastic dynamics is weak but not
negligible and exhibits a cubic nonlinearity. Also other types
of longitudinal coupling exist in the cochlea including fluid
coupling through sulcus and organ tunnel, tectorial mem-
brane elasticity [107, 270] longitudinal electrical coupling
between the hair cells [20] and the feedforward action of the
outer hair cells [12, 110].

Ghaffari et al. [109, 270] showed ability of the TM
to support traveling wave which is similar to that of the
BM near the best place and suggested that the cochlear
micromechanics should be treated as a global process involv-
ing significant longitudinal distances. Following this, the
longitudinal coupling due to the TM started to be included in
cochlear models [106, 183]. Meaud and Grosh [106] pointed
out that TM longitudinal coupling has a more significant
effect than BM longitudinal coupling and allowed higher
stable gains for the cochlear amplifier.

Apart from the 1D fluid coupling accounted for in most
models, there are many other forms fluid and mechanical
longitudinal coupling in the cochlea. It is not currently clear
which of these types of longitudinal coupling are important
to the proper function of the cochlea and which are not.
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