
REVIEW
published: 22 December 2017
doi: 10.3389/fcell.2017.00112

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 December 2017 | Volume 5 | Article 112

Edited by:

Sabine Elowe,

Laval University, Canada

Reviewed by:

Song-Tao Liu,

University of Toledo, United States

Mar Carmena,

University of Edinburgh,

United Kingdom

*Correspondence:

Susanne M. A. Lens

s.m.a.lens@umcutrecht.nl

Specialty section:

This article was submitted to

Cell Growth and Division,

a section of the journal

Frontiers in Cell and Developmental

Biology

Received: 10 October 2017

Accepted: 04 December 2017

Published: 22 December 2017

Citation:

Hindriksen S, Lens SMA and

Hadders MA (2017) The Ins and Outs

of Aurora B Inner Centromere

Localization.

Front. Cell Dev. Biol. 5:112.

doi: 10.3389/fcell.2017.00112

The Ins and Outs of Aurora B Inner
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Error-free chromosome segregation is essential for the maintenance of genomic integrity

during cell division. Aurora B, the enzymatic subunit of the Chromosomal Passenger

Complex (CPC), plays a crucial role in this process. In early mitosis Aurora B localizes

predominantly to the inner centromere, a specialized region of chromatin that lies at

the crossroads between the inter-kinetochore and inter-sister chromatid axes. Two

evolutionarily conserved histone kinases, Haspin and Bub1, control the positioning of

the CPC at the inner centromere and this location is thought to be crucial for the CPC to

function. However, recent studies sketch a subtler picture, in which not all functions of

the CPC require strict confinement to the inner centromere. In this review we discuss the

molecular pathways that direct Aurora B to the inner centromere and deliberate if and

why this specific localization is important for Aurora B function.

Keywords: Aurora B, Chromosomal Passenger Complex, Haspin, Bub1, Shugoshin, chromosome segregation,

centromere, mitosis

INTRODUCTION

The segregation of chromosomes duringmitosis is perhaps themost dramatic event of the cell cycle.
The underlying forces that mediate the division of our DNA must be tightly controlled to ensure
accurate distribution of the genomic content between the newly formed daughter cells. The mitotic
kinase Aurora B plays a crucial role in this process. Aurora B is the enzymatic component of a larger
protein assembly, termed the Chromosomal Passenger Complex (CPC). In mitosis, the CPC is
concentrated at the inner centromere, a highly specialized region on the chromatin where the inter-
sister chromatid axis and the inter-kinetochore axis intersect (Figure 1). Concentrating the CPC at
the centromere region is considered crucial for its function as it places Aurora B in close proximity
to its substrates on kinetochores. At the same time, its confinement to the inner centromere is
thought to allow discrimination between spatially separated substrates (Liu et al., 2009; Welburn
et al., 2010). Multiple regulatory networks involving multiple mitotic kinases determine the site of
CPC activity. Intriguingly, these networks are themselves centered on Aurora B activity and thus
involve multiple feedback circuits. In this review, we discuss the molecular determinants that guide
the CPC toward the (inner) centromere and deliberate on the relevance of this specific localization
for Aurora B function.

THE CHROMOSOMAL PASSENGER COMPLEX

In addition to Aurora B, the CPC consists of the accessory subunits Borealin, Survivin, and
INCENP. The complex can be divided into two functional modules that are bridged by INCENP.
The first module consists of Borealin and Survivin, which bind to the N-terminal region of INCENP
(referred to as the CENmodule) and together control the localization of the CPC (Klein et al., 2006;
Jeyaprakash et al., 2007; Carmena et al., 2012). The second module harbors the activity of the CPC
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and consists of Aurora B associated with a region at the C-
terminus of INCENP (known as the IN-box). The interaction
between Aurora B and the IN-box not only links Aurora B to the
CPC but is also required for its full kinase activity (Bishop and
Schumacher, 2002; Honda et al., 2003; Sessa et al., 2005).

The CPC is first observed in the nucleus in late S phase
with expression peaking in G2/M phase (Carmena et al., 2012).
Upon entry into mitosis all CPC subunits can be observed along
the length of the chromosome arms although their localization
quickly becomes restricted to centromeres, specifically at the
inter-sister chromatid region referred to as the inner centromere
(Figure 1). At anaphase onset the CPC translocates to the
central spindle where Aurora B activity contributes to cytokinesis
(Carmena et al., 2012). In this review, however, we will only focus
on the role of the CPC at the inner centromere.

We stress the use of consistent terminology when describing
the various pools of proteins at the centromere region. First,
we define the inner centromere as the intersection of the inter-
sister chromatid axis and the inter-kinetochore axis (Figure 1).
Proteins found at the inner centromere include the cohesin
complex, the CPC, Shugoshin 1/2 (Sgo1/2), Haspin and the
phospho-mark H3T3ph, which are typically observed as a single
focus in between the kinetochores (Figure 1). Second, we define
the region located more outward along the inter-kinetochore axis
as the kinetochore-proximal centromere. Proteins found at the
kinetochore-proximal centromere include CENP-A, CENP-B,
Sgo1/2 and the phospho-mark H2AT120ph, which are observed
as two foci adjacent to kinetochores (Figure 1). The final region
along the inter-kinetochore axis consists of the kinetochores,
large protein structures assembled on CENP-A containing
chromatin. The kinetochore can further be divided into the inner
kinetochore, consisting of the CCAN (Constitutively Centromere
Associated Network) proteins and the outer kinetochore, which
includes the KMNnetwork (comprising Knl1, theMis12 complex
and the NDC80 complex), Bub1 and Mps1. These proteins are
also observed as two foci located further apart along the inter-
kinetochore axis (Figure 1). Confusion arises as proteins are
often labeled as belonging to “a kinetochore pool” based solely
on the observation of two distinct foci. While it may be difficult
to discriminate between the kinetochore-proximal centromere
and the kinetochores experimentally we believe the distinction
is important when discussing the spatial regulation of CPC
function.

HOW IS INNER CENTROMERE
LOCALIZATION OF THE CPC REGULATED?

The Two Recruitment Arms That Control
Inner Centromere Localization of the CPC
Inner centromere localization of the CPC depends on the activity
of two histone kinases, Haspin and Bub1, which phosphorylate
histone H3 on threonine 3 (H3T3ph) and histone H2A on
threonine 120 (H2AT120ph) respectively. These phospho-marks
are believed to function as the centromeric receptors for the CPC
(Figure 2). The CPC can indeed bind directly to H3T3ph via
Survivin and depletion of Haspin or inhibition of Haspin kinase

activity results in dispersion of the CPC over the chromosome
arms (Kelly et al., 2010; Wang et al., 2010, 2012; Yamagishi
et al., 2010; De Antoni et al., 2012). Moreover, mutations in the
BIR domain of Survivin that abrogate H3T3ph binding result
in a similar phenotype (Lens et al., 2006; Yue et al., 2008; Kelly
et al., 2010; Wang et al., 2010; Yamagishi et al., 2010). However,
while the CPC becomes largely dispersed over the chromatin
in the absence of Haspin activity, a residual centromeric pool
of the CPC adjacent to kinetochores has been observed (Bekier
et al., 2015). As of yet it is unclear what controls the localization
of the CPC in the absence of Haspin activity, however, it is
tempting to speculate the involvement of Bub1 and Sgo1/2,
as the CPC appears to co-localize with H2AT120ph at the
kinetochore-proximal centromeres in this case (Bekier et al.,
2015). Alternatively, the two foci may represent a kinetochore
pool of the CPC, as previously suggested by DeLuca et al.
based on their observation of an active pool of Aurora B at the
kinetochores, using phospho-specific antibodies (DeLuca et al.,
2011; Caldas et al., 2013).

The interaction between H2AT120ph and the CPC requires
the Shugoshin paralogs, Sgo1 and Sgo2. Sgo1 and Sgo2 localize
to centromeres in a Bub1 dependent fashion, where they play
a crucial role in protecting centromeric cohesin from Wapl-
and Plk1-dependent removal during prophase (Figure 3A) (Salic
et al., 2004; Tang et al., 2004; Kitajima et al., 2005, 2006;
McGuinness et al., 2005; Gandhi et al., 2006; Kueng et al.,
2006; Tanno et al., 2010; Haarhuis et al., 2013; Tedeschi et al.,
2013). Sgo1 and Sgo2 directly interact with both H2AT120ph
and the CPC, suggesting they may serve as adaptors that control
centromere localization of the CPC (Kawashima et al., 2007,
2010; Tsukahara et al., 2010; Yamagishi et al., 2010; Liu et al., 2015;
Baron et al., 2016). Indeed, depletion of Sgo1 and Sgo2 results in a
marked decrease in centromere levels of the CPC, similar to what
is observed for the depletion or inhibition of Bub1 (Yamagishi
et al., 2010; Baron et al., 2016).

It is clear that Haspin and Bub1, in conjunction with Sgo1
and Sgo2, cooperate to define a unique chromatin environment
that supports recruitment of the CPC toward the inner
centromere. Major advances in the past decade have resulted in
a picture that suggests that Haspin and Bub1 exert their control
over the CPC by regulating two distinct axes along mitotic
chromosomes: while Haspin-H3T3ph facilitates recruitment of
the CPC toward the inter-sister chromatid axis the Bub1-
H2AT120ph-Sgo1/2 pathway restricts the inter-sister chromatid
pool of the CPC to centromeres. Together, these pathways form
an evolutionarily conserved mechanism that defines the inner
centromere (Table 1) (Yamagishi et al., 2010).

Haspin, H3T3ph and the Inter-sister
Chromatid Axis
Clearly, the mitotic kinase Haspin plays a crucial role in
regulating CPC localization (Kelly et al., 2010; Wang et al., 2010).
By phosphorylating H3T3 it generates a receptor that directly
recruits the CPC via Survivin. This raises the question how H3T3
phosphorylation becomes enriched at the inner centromere. The
data so far point to a complex regulatory network that involves
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FIGURE 1 | Schematic depiction of the chromosome regions described in this review. The boundaries of various chromosome regions are shown. Examples of

(phospho)proteins and protein complexes that localize to each of the regions are indicated. For sake of clarity we have limited the number of proteins depicted and by

no means is the list intended to be comprehensive.

the regulation of Haspin localization and kinase activity, the
spatial control of the H3T3ph counteracting phosphatase Protein
Phosphatase 1γ (PP1γ), and perhaps the presence of other
epigenetic marks within the H3 tail that changes its ability to
serve as a substrate for Haspin.

Regulation of Haspin Localization
Defining the native localization of Haspin has been hampered by
technical challenges. Available antibodies do not allow detection
of endogenous Haspin by immunofluorescence, suggesting that
the protein is likely expressed at very low levels (Higgins,
2001b). Indeed, endogenous Haspin tagged with YFP is observed
at very low levels on mitotic chromatin (Hindriksen et al.,
2017). This localization pattern appears similar to what has
been observed for overexpressed GFP-Haspin (Dai et al., 2005).
More detailed analysis of chromosome spreads has revealed that
ectopically expressed GFP-Haspin is concentrated at the inner
centromere, coinciding with H3T3ph and the CPC (Dai et al.,
2005; Yamagishi et al., 2010; Yoshida et al., 2016; Goto et al.,
2017). Multiple factors contribute to the defined localization of
Haspin at the inner centromere. First, Haspin directly interacts
with the cohesin-associated proteins Pds5A/B (Yamagishi et al.,
2010; Carretero et al., 2013; Goto et al., 2017; Zhou et al., 2017).
The cohesin complex is established along the entire length of the
inter-sister chromatid axis during S phase (Figure 1). However,
the majority is removed early in mitosis. This process is termed
the prophase pathway and depends on the activity of Wapl
and Plk1 (Figure 3A) (Hauf et al., 2005; Haarhuis et al., 2014).

Centromeres are resistant to the cohesin removing activity of
Wapl and Plk1 due to the presence of Sgo1 that is bound to the
phosphatase PP2A, thereby keeping sister chromatids together
until anaphase onset (Haarhuis et al., 2014). Thus, through the
progressive removal of cohesin complexes from the chromosome
arms, the prophase pathway is thought to contribute to the
concentration of the cohesin complex, including Pds5A/B and
Haspin, at the inner centromere (Watanabe, 2010). In line with
this model, interfering with the prophase pathway, through
depletion of Wapl, results in a more dispersed localization of the
CPC along the chromosome arms (Haarhuis et al., 2013; Tedeschi
et al., 2013). Interestingly, recent work has demonstrated that
Haspin and Wapl compete for the same binding site on
Pds5B. Therefore, Haspin also directly contributes to centromeric
cohesion protection (Goto et al., 2017; Zhou et al., 2017).

In addition, recent work has highlighted a role for
Topoisomerase II (TopoII) in Haspin recruitment. TopoII plays
a central role in the architecture of mitotic chromatin but also
resolves topological problems, for example those that arise during
DNA replication (Nitiss, 2009). TopoII displays a distinct axial
localization along the chromosomes, and also accumulates at
centromeres where its activity resolves topologically linked sister
chromatids, or catenanes, prior to and during early anaphase
(Earnshaw andHeck, 1985; Rattner et al., 1996; Christensen et al.,
2002; Tavormina et al., 2002; Hudson et al., 2003; Kireeva et al.,
2004; Lee and Bachant, 2009; Samejima et al., 2012; Hengeveld
et al., 2015). Depletion of TopoII in Drosophila melanogaster
(Dm) S2 cells was shown to result in delocalization of the
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FIGURE 2 | Regulation of centromere/kinetochore proteins in (pro)metaphase. Cartoon depicting the localization and interactions of centromere- and kinetochore

proteins. Phosphorylation events are indicated. The activity of RNA polymerase II (RNA pol II) contributes to the translocation of Sgo1/2 from the kinetochore-proximal

centromere to the inner centromere. Besides the well-established pool of CPC at the inner centromere, putative pools of CPC at the kinetochore and

kinetochore-proximal centromere are shown (opaque). The CPC pool that mediates phosphorylation of outer kinetochore substrates such as Hec1 remains unclear,

and is indicated by question marks. Finally, although the CPC has been shown to interact with Sgo1/2, it is uncertain how and where this interaction takes place and

how this interaction contributes to inner centromere localization of the CPC, also depicted by a question mark.

CPC to kinetochore-proximal centromeres, reminiscent of the
residual pool of the CPC observed upon Haspin inhibition in
human cells (Coelho et al., 2008; Bekier et al., 2015). In line
with this, recent work in yeast and frogs has demonstrated that
the altered localization of the CPC upon TopoII depletion is
likely due to disruption of Haspin recruitment to chromatin.
Recruitment of Haspin does not require TopoII catalytic activity
but instead depends on the modification of the TopoII C-
terminal domain (CTD) with a Small Ubiquitin-like MOdifier
(SUMO) (Edgerton et al., 2016; Yoshida et al., 2016; Goto et al.,
2017). SUMOylation of TopoII is required for TopoII enrichment
at centromeres during mitosis (Azuma et al., 2003, 2005; Díaz-
Martínez et al., 2006; Dawlaty et al., 2008). Haspin contains
a SUMO interacting motif (SIM) that binds to SUMOylated
TopoII. Additionally, this interaction strongly depends on
phosphorylation of Haspin by Cdk1. It is unclear if TopoII also
contributes to Haspin recruitment in human cells. However,
the presence of a SIM is conserved in human Haspin and
SUMOylation is high at centromeres during mitosis (Zhang et al.,
2008).

So far the data indicate that cohesin-Pds5A/B and TopoII-
SUMO collaborate to control the localization of Haspin to the
inner centromere. This suggests that coincidence detection, the
requirement for simultaneous binding of Haspin to Pds5A/B

and SUMO-conjugated TopoII, may serve to restrict Haspin
localization to the inner centromere. At the same time the
prophase pathway likely contributes to this process through the
removal of cohesin from the chromosome arms.

While these data provide an explanation for the observed
enrichment of Haspin around the centromeres during mitosis, it
should be noted that both in and out of mitosis most of Haspin is
associated with chromatin along the entire chromosomal arms,
where the levels of cohesin and SUMO conjugated TopoII are
low. This argues that alternative factors may further contribute
to chromatin association of Haspin. Alternatively, chromatin
association of Pds5A/B may be differentially regulated from
cohesin. Pds5A/B do not belong to the core components of
the cohesin complex and several studies indeed indicate that
Pds5A/B behavior on chromatin differs from that of the cohesin
core. Analysis of conditional Scc1 knockout (KO) cells revealed
a strong concomitant decrease in chromatin associated SMC1,
SMC3, SA1 and SA2, the other core components of the cohesin
complex (Ohta et al., 2016). However, chromatin levels of
the cohesin associated regulatory factors Pds5A and Wapl did
not decrease to similar extents and Pds5B levels remained
unchanged. In line with these results, depletion of Scc1 results
in dispersion, but not loss, of H3T3ph over the length of the
chromosome arms (Yamagishi et al., 2010). Taken together, the
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FIGURE 3 | Regulation of histone H3T3 phosphorylation by Haspin and PP1Y-Repo-Man. (A) The prophase pathway removes cohesin from the chromosome arms.

Sororin binds to the cohesin complex and this interaction is required for maintaining stable cohesion. During mitosis, Plk1 phosphorylates the cohesin subunit SA2

while Cdk1 and Aurora B phosphorylate Sororin. This results in the release of Sororin from cohesin, leading to the Wapl dependent removal of cohesin from chromatin.

Centromeres are protected against the prophase pathway through recruitment of Sgo1/2-PP2A. The recruitment of Sgo1-PP2A results in de-phosphorylation of SA2

and Sororin, rendering the centromeric cohesin complexes resistant to Wapl activity. Effectively, this results in the concentration of cohesin/Pds5A/B and thus Haspin

at centromeres, thereby contributing to the defined localization of the CPC at the inner centromere. (B) The cohesin-associated protein Pds5A/B, in conjunction with

SUMOylated Topoisomerase II (TopoII), recruits Haspin to the inner centromere. Haspin phosphorylation by Aurora B (CPC), Cdk1, and Plk1 releases HBIS dependent

Haspin auto-inhibition. Phosphatase activity toward H3T3ph by PP1Y-Repo-Man is inhibited through phosphorylation of Repo-Man by the CPC, which prevents

Repo-Man recruitment to chromatin. (C) At the chromosome arms, Haspin levels are lower, most likely due to reduced levels of cohesin and SUMOylated TopoII. Low

levels of chromatin targeted PP1Y-Repo-Man are sufficient to maintain H3T3 in a dephosphorylated state. (D) Upon anaphase onset, loss of Cdk1 activity promotes

the PP1Y-Repo-Man interaction, resulting in high levels of the active complex associated with chromatin.

data suggest that while Pds5Bmay bind to the cohesin complex to
concentrate Pds5B at centromeres, its association with chromatin
does not depend on this interaction per se. Intriguingly, Pds5B

has been shown to directly bind to DNA via two C-terminal
AT hook domains (absent in Pds5A) (Couturier et al., 2016).
How these domains contribute to localization of Pds5B and
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Haspin during interphase and mitosis will require further
investigation.

Regulation of Haspin Activity
Apart from its localization, Haspin activity itself is subject to
further regulation, adding an extra layer of complexity. Haspin
is an atypical kinase and its activity is not controlled by
phosphorylation of the activation loop (Eswaran et al., 2009;
Villa et al., 2009). Instead, the unstructured N-terminal part of
the protein harbors a unique autoinhibitory motif termed the
Haspin Basic Inhibitory Segment or HBIS (Ghenoiu et al., 2013;
Zhou et al., 2014). During mitosis, Cdk1, Plk1, and Aurora
B phosphorylate multiple residues in the N-terminal region
of Haspin, thereby releasing the HBIS and thus resulting in
full Haspin activity (Wang et al., 2011; Ghenoiu et al., 2013;
Zhou et al., 2014). This highlights a key positive feedback
loop through which Aurora B activity contributes to its own
localization.

Despite the presence of the HBIS sequence, recombinant
Haspin isolated from E. coli or from interphase cell extracts
displayed robust activity toward H3 in vitro (Dai et al., 2005;
Ghenoiu et al., 2013). Furthermore, a Haspin mutant isolated
from mitotic cells, but lacking 11 putative Aurora B consensus
sites, was still able to phosphorylate H3 in vitro, despite
displaying a strong decrease in H3T3 phosphorylation in cells
(Wang et al., 2011). While a more detailed analysis has shown
that phosphorylation by Plk1 modestly stimulates the kinetics
of H3T3 phosphorylation by Haspin (Ghenoiu et al., 2013) the
discrepancy between in vitro and in vivo kinase activity of Haspin
mutants suggest that in cells the substrate H3T3 is regulated by
additional factors.

Regulation of H3T3 Phosphorylation
H3T3 phosphorylation is reversed by PP1γ. The activity of
PP1 typically relies on the association with a regulatory factor
that controls its targeting to its substrates. Activity toward
H3T3ph requires the PP1γ-interacting protein Repo-Man, which
recruits PP1γ to chromatin. Together they control H3T3ph levels
through an intricate circuit that further depends on the activity
of Cdk1 and Aurora B (Trinkle-Mulcahy et al., 2006; Qian et al.,
2011; Vagnarelli et al., 2011). During mitosis, Cdk1-mediated
phosphorylation of Repo-Man largely represses its interaction
with PP1γ and chromatin (Figures 3B,C). However, low levels of
chromatin bound PP1γ-Repo-Man appear sufficient for removal
of H3T3ph on the chromosome arms, while other mitotic
substrates remain below the threshold for dephosphorylation.
Centromeric H3T3ph is protected from PP1γ-Repo-Man activity
by Aurora B, which phosphorylates Repo-Man on serine 893
(S893). This results in a strong decrease in affinity for histones,
thus effectively reducing PP1γ activity at centromeres (Qian et al.,
2013). On the other hand, Cdk1 activity promotes the interaction
between Repo-Man and PP2A, which can dephosphorylate
Repo-Man S893, thereby controlling basal chromatin levels
of PP1γ-Repo-Man during mitosis (Qian et al., 2015). This
feedback between PP1γ/PP2A/Repo-Man and Cdk1 and Aurora
B contributes to restricting H3T3ph, and thus the CPC, to
centromeres. Furthermore, it facilitates the switch-like behavior

observed at mitotic exit: the drop in Cdk1 activity upon anaphase
onset results in full activity of PP1γ-Repo-Man on chromatin,
thereby allowing rapid and complete dephosphorylation of
mitotic substrates (Figure 3D).

Regulation of Haspin at the Substrate Level:

Epigenetic Context
Survivin is a “reader” of H3T3ph (Kelly et al., 2010; Wang
et al., 2010). However, Histone H3 tails are subject to many
more posttranslational modifications and their juxtaposition to
H3T3 makes it tempting to speculate they could contribute
to regulation of H3T3 accessibility to Haspin or to Survivin
binding. In fact, crosstalk between multiple histone marks
is commonly observed as a means for reversibly controlling
chromatin association of proteins. For example, heterochromatin
protein 1 (HP1) specifically interacts with H3 when lysine 9 is
trimethylated. However, phosphorylation of H3S10 by Aurora
B results in eviction of HP1, thereby creating a so-called
“methyl/phosphor” switch (Fischle et al., 2005; Hirota et al.,
2005). In case of H3T3, methylation of the adjacent residues
H3R2 and H3K4 has been shown to negatively influence Haspin
activity toward H3T3 in vitro (Figures 4A,D) (Eswaran et al.,
2009; Villa et al., 2009; Han et al., 2011; Karimi-Ashtiyani and
Houben, 2013).

This raises several questions: Do these marks occur during
mitosis and if so, where? Several observations suggest this
could be the case. First, despite the fact that H3K4Me3
suppresses H3T3 phosphorylation by Haspin in vitro, it has been
observed in mitotic cells in a combinatorial mark together with
H3T3ph and H3R8Me2 (Markaki et al., 2009). Moreover, this
mark was highly enriched at centromeres. Unfortunately, the
functional significance of this modification remains unresolved.
Intriguingly, H3T3ph has been shown to decrease the binding of
the transcription factor complex TFIID to H3K4Me3, suggesting
the presence of a “methyl/phosphor” switch that represses
transcription during mitosis (Varier et al., 2010). At the same
time, H3K4Me2 dependent transcription at centromeres does
occur and has been shown to play an important role in regulating
centromere function, including the regulation of Aurora B
activity (Figure 4C) (Sullivan and Karpen, 2004; Jambhekar
et al., 2014; Blower, 2016; Molina et al., 2016; McNulty et al.,
2017). This in turn raises the question if Haspin contributes to the
regulation of centromeric transcription. Perhaps the confinement
of Haspin and H3T3ph to the inner centromere restricts
transcriptional start sites to kinetochore-proximal centromeres,
suggesting the presence of multiple functional domains
within centromeres (Sullivan and Karpen, 2004). If and how
Haspin controls centromeric transcription will require further
analysis.

Of note, while modification of residues adjacent to H3T3
clearly influences H3T3 phosphorylation, it remains unclear
how modifications in the vicinity of H3T3ph would influence
binding to Survivin. Analysis of the structure of a complex
between Survivin and a H3 peptide reveals extensive interactions
between H3R2 and H3K4 with the BIR domain of Survivin
(Figures 4B,E) (Jeyaprakash et al., 2007; Kelly et al., 2010;
Niedzialkowska et al., 2012). However, while both H3R2 and
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FIGURE 4 | Model of how the epigenetic context of H3T3 might influence its phosphorylation by Haspin and its capacity to recruit the CPC. (A) Methylation and

phosphorylation of the histone tail of H3 impede H3T3 phosphorylation. H3T3ph impedes phosphorylation of H3S10. (B) Methylation of residues adjacent to H3T3ph

could hinder the interaction of H3T3ph with Survivin, thereby impeding CPC recruitment. (C) H3K4 di/trimethylation is associated with centromere transcription, which

is required for full Aurora B activity and CPC localization to the inner centromere. Centromeric transcription and/or the resulting transcript also regulate(s) Sgo1/2

translocation from the kinetochore-proximal centromere to the inner centromere, however it is unclear if this is related to the effect of transcription on the CPC.

(D) Close-up of the active site of Haspin (gray) bound to its substrate, Histone H3 (yellow) (PDB ID: 2WB8). The AMP moiety is modeled based on PDB ID 3DLZ. The

structure reveals extensive interaction between H3R2 and the Gly-rich loop, depicted in green, and H3K4 and the activation loop, depicted in red. As such,

modifications of residues adjacent to H3T3 could influence substrate binding. (E) Close-up of Survivin (light green), bound to a Histone H3 peptide (yellow) (PDB ID:

3UIG). The structure depicts the interactions between H3 and the BIR domain of Survivin.

H3K4 make multiple electrostatic interactions with Survivin
these side chains adopt an extended conformation over the
surface of Survivin, suggesting ample space to accommodate
additional modifications (Figures 4B,E). Ultimately, if and how
H3 modification beyond H3T3 phosphorylation affect Survivin
binding beyond H3T3 phosphorylation will need to be addressed
experimentally.

Interestingly, H3S10 phosphorylation by Aurora B was shown
to significantly impede H3T3 phosphorylation in vitro and vice
versa, suggesting that these “common” mitotic histone marks
may not coexist on the same histone tail (Han et al., 2011).
This type of crosstalk again suggests the possible presence of
multiple domains, each carrying unique combinatorial marks
within the 3D organization of centromeres. The presence of such
domains and how they may contribute to CPC localization and
chromosome segregation during mitosis remain unclear and will
require further analysis.

Bub1, H2AT120ph and the Inter-kinetochore Axis
Haspin activity controls CPC localization to the inter-sister
chromatid region by virtue of its association with cohesin
(Figures 1, 2, 3B). On the other hand, Bub1 kinase activity
concentrates the inter-sister pool of the CPC at centromeres.
Bub1 is thought to exert its control over CPC localization
through recruitment of Sgo1 and Sgo2 but how Bub1 and
Sgo1/2 collaborate to control CPC localization remains poorly
understood at the molecular level.

Bub1 is recruited to chromatin via its association with the
kinetochore protein Knl1 (Figure 5). Importantly, this restricts
Bub1 activity to the centromere region (Figures 1, 2) (Kiyomitsu
et al., 2007, 2011). Knl1 forms an important signaling platform
within the KMN network and its location at the microtubule-
kinetochore interface allows it to control mitotic checkpoint
signaling and chromosome congression (Caldas and DeLuca,
2014). Bub1 is recruited to Knl1 as part of a larger complex that

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 December 2017 | Volume 5 | Article 112

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Hindriksen et al. Aurora B Inner Centromere Localization

FIGURE 5 | Bub1 recruitment to kinetochores is regulated by phosphorylation of Knl1. Phosphorylation of MELT/SHT motifs in Knl1 by Mps1 mediates recruitment of

the Bub proteins. A negative feedback loop is created through the recruitment of PP2A/B56, which antagonizes phosphorylation of the SSILK/RVSF motifs by the

CPC. Dephosphorylation of the SSILK/RVSF motifs allows PP1γ binding, which in turn antagonizes MELT/SHT phosphorylation.

further consists of Bub3 and BubR1 (collectively referred to as the
Bubs) (Taylor et al., 1998). Recruitment of the Bubs depends on
the activity of the mitotic kinase Mps1, which phosphorylates an
array of so-calledMELT/SHTmotifs in Knl1 (London et al., 2012;
Shepperd et al., 2012; Yamagishi et al., 2012; Primorac et al., 2013;
Vleugel et al., 2013, 2015). Bub3 specifically recognizes these
motifs, resulting in recruitment of the Bubs to the kinetochore
(London et al., 2012; Shepperd et al., 2012; Yamagishi et al., 2012;
Primorac et al., 2013; Vleugel et al., 2013, 2015). The recruitment
of the Bubs is further enhanced through a direct interaction
between the TPR domains of Bub1 and BubR1 and two “KI”
motifs in Knl1 (Bolanos-Garcia et al., 2011; Kiyomitsu et al., 2011;
Krenn et al., 2012).

The level of Bub1 at kinetochores is tightly controlled through
an intricate regulatory circuit that couples the microtubule
attachment status of the kinetochore to Bub1 levels. Bub1 levels
are higher at unattached vs. microtubule attached kinetochores
(Jablonski et al., 1998; Hoffman et al., 2001; Skoufias et al.,
2001; Taylor et al., 2001; Ditchfield et al., 2003), but also
appears higher at attached kinetochores with reduced tension
across centromeres (Skoufias et al., 2001; Taylor et al., 2001).
PP1γ activity antagonizes Mps1 dependent recruitment of the
Bubs (Figure 5). Knl1 directly recruits PP1γ to kinetochores
where it binds to a conserved SSILK/RVSF motif. PP1γ levels
are in turn controlled by the activities of Aurora B and
PP2A. Aurora B directly phosphorylates the Knl1 SSILK/RVSF
motif, which inhibits PP1γ binding while PP2A antagonizes
Aurora B phosphorylation, thereby promoting PP1γ binding
to Knl1 (Figure 5) (Liu et al., 2010; Nijenhuis et al., 2014).
Interestingly, it is BubR1 that recruits PP2A to kinetochores
(Suijkerbuijk et al., 2012; Kruse et al., 2013; Xu et al., 2013).
As such, the association of the Bubs with Knl1 at the same
time primes their removal. This negative feedback ensures a
responsive mitotic checkpoint signal but likely also contributes
to controlling CPC levels at centromeres (Nijenhuis et al.,
2014). Indeed, both Sgo1 and Aurora B levels are higher
at unattached kinetochores (Salimian et al., 2011; Liu et al.,
2013a; Meppelink et al., 2015). This is in line with the role
of Aurora B in establishing bi-orientation. Early in mitosis
high Aurora B activity is required to destabilize potential
erroneous kinetochore-microtubule (KT-MT) interactions, while
Aurora B activity must later be down-regulated to support
formation of stable bi-oriented KT-MT interactions (see

discussion below) (Salimian et al., 2011; Krenn and Musacchio,
2015).

The Role of Sgo1 in CPC Localization
Bub1-mediated phosphorylation of H2AT120 directly recruits
Sgo1 and Sgo2 to centromeres (Tang et al., 2004; Kitajima et al.,
2005; Gómez et al., 2007; Kawashima et al., 2010; Tanno et al.,
2010; Liu et al., 2013b). How then does this contribute to the
(inner) centromere localization of the CPC? First, by recruiting
Sgo1/2 to centromeres Bub1 ensures centromeres are protected
from the cohesin removing activity of the prophase pathway
(McGuinness et al., 2005; Kitajima et al., 2006; Kawashima
et al., 2010; Tanno et al., 2010), which likely contributes to
restricting cohesin associated Haspin to centromeres (see above).
Depletion or inhibition of Bub1 results in so-called closed arm
chromosomes, as the prophase pathway no longer removes
cohesin from the chromosome arms. This effect depends on Sgo1
(Kitajima et al., 2005), which, along with Haspin and the CPC,
is redistributed along the inter-sister chromatid axis (Ricke et al.,
2012; Liu et al., 2013a; Baron et al., 2016).

The data so far suggest that the Bub1>H2AT120ph>Sgo1/2
pathway might simply act as a roadblock against cohesin
removal, and thereby Haspin removal, from centromeres. As
such this pathway would indirectly contribute to the enrichment
of H3T3ph at the inner centromere. Yet, yeast-2-hybrid
experiments suggest that Sgo1/2 directly interact with Borealin
(Tsukahara et al., 2010; Lee et al., 2014). This implies that
Sgo1/2 also play a direct role in CPC centromere localization,
but the exact mechanism remains poorly understood. In fission
yeast, Sgo2 is the main contributor to CPC localization during
mitosis, and while Sgo2 has been shown to contribute to
CPC localization in human cells its role remains understudied
(Table 1) (Yamagishi et al., 2010). We will therefore limit our
discussion to the role of Sgo1.

Recruitment of Sgo1 to the inner centromere is a two-step
process. First, Sgo1 is recruited to H2AT120ph, located at two
centromeric foci, proximal to the kinetochores (Figure 2) (Lee
et al., 2008; Liu et al., 2013a, 2015). Then, in a second step, Sgo1
moves to the inner centromere by binding to the cohesin complex
(Liu et al., 2013a). Sgo1 binds cohesin at the interface between
the SA2 and Scc1 subunits and this interaction further requires
phosphorylation of Sgo1T346 by Cdk1 (Liu et al., 2013b; Hara
et al., 2014). Sgo1 mutants that are unable to bind to H2AT120ph
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no longer accumulate at the (inner) centromere, while mutations
that prevent binding to cohesin result in accumulation of
Sgo1 at the centromere pools of H2AT120ph, proximal to the
kinetochores (McGuinness et al., 2005; Kawashima et al., 2010;
Liu et al., 2013a,b, 2015). This suggests that the association
of Sgo1 with H2AT120ph forms a crucial intermediate step
prior to translocating to the inner centromere (Liu et al., 2015).
Interestingly, Bub1 activity at kinetochores also contributes to the
localization of actively transcribing RNA polymerase II (Pol II)
(Chan et al., 2012; Liu et al., 2015). Moreover, Bub1-dependent
transcription at centromeres is required for translocation of Sgo1
to the inner centromere. Sgo1 was shown to bind to RNA and Pol
II, but how centromeric transcription results in inner centromere
localization remains unclear (Liu et al., 2015). Centromeric
transcription has been shown to generate multiple species of
lncRNAs that play important roles in kinetochore assembly and
regulation of CPC activity (Sullivan andKarpen, 2004; Jambhekar
et al., 2014; Blower, 2016; McNulty et al., 2017). Importantly,
since Aurora B activity also contributes to Sgo1 localization these
studies should be interpreted cautiously as indirect effects of
centromeric RNA on Sgo1 localization via Aurora B cannot be
excluded (van der Waal et al., 2012; Lee et al., 2014).

How then does Sgo1 contribute to CPC localization? Sgo1 has
been shown to interact with the CPC, specifically with Borealin
in a Cdk1 dependent fashion (Kawashima et al., 2007; Tsukahara
et al., 2010; Jeyaprakash et al., 2011; Liu et al., 2015). This makes
it tempting to speculate that the CPC tags along with Sgo1
toward the inner centromere. First, Sgo1 would recruit the CPC
toward H2AT120ph at the kinetochore-proximal centromere.
The subsequent association of Sgo1 with cohesin may drag the
CPC toward the inner centromere, aided by the interaction
between Survivin and H3T3ph (Figure 2). However, this model
raises several questions: if the CPC and Sgo1 translocate to the
inner centromere as a single unit then H3T3ph would also be
expected to contribute to inner centromere localization of Sgo1.
Indeed, knockout (KO) of Haspin in human cells was shown to
result in redistribution of Sgo1 from the inner centromere toward
the two kinetochore-proximal pools of H2AT120ph (Zhou et al.,
2017). However, these results must be interpreted cautiously
since Haspin was also shown to directly contribute to protection
of centromeric cohesion (Dai et al., 2006; Zhou et al., 2017). In
fact, depletion of Wapl from Haspin KO cells was sufficient to
restore inner centromere localization of Sgo1, suggesting that
H3T3ph is not required for inner centromere localization of
Sgo1. Since the localization of the CPC was not addressed in
these studies (Zhou et al., 2017), it remains to be seen if depletion
of Wapl in Haspin KO cells is able to rescue inner centromere
localization of the CPC.

Other observations argue against the “tag along” model. First,
mouse embryonic fibroblasts engineered to express kinase dead
Bub1 where shown to have closed arms with Aurora B localized
along the inter-sister chromatid axis (Ricke et al., 2012). This
may imply that delocalized Sgo1, caused by the lack of Bub1
activity, results in redistribution of the CPC, along the lines
of the “tag along” model. However, specific targeting of Sgo1
to centromeres, through ectopic expression of Sgo1 fused to
the centromere-targeting domain of CENP-B, was unable to

rescue (inner) centromere enrichment of the CPC (Ricke et al.,
2012). Furthermore, while depletion of Sgo1 reduces centromere
levels of the CPC, overexpression of Sgo1 does not result in a
concomitant increase of the CPC (Meppelink et al., 2015). This is
in contrast to PP2A, which binds directly to an N-terminal coiled
coil in Sgo1, and whose levels at the inner centromere strongly
correlate with Sgo1 (Meppelink et al., 2015). This suggests that
while Sgo1 contributes to CPC localization at centromeres, the
inner centromere pool of Sgo1 may not be associated with
the CPC. Of note, mapping of the Borealin binding site in
Sgo1 has pinpointed the N-terminal coiled coil that also binds
PP2A, raising the question if the interaction between Sgo1–PP2A
and Sgo1–CPC are perhaps mutually exclusive (Xu et al., 2009;
Tsukahara et al., 2010). For now, the interaction between the CPC
and Sgo1 remains poorly characterized. Future analysis should
allow for the identification of Sgo1 mutants that specifically
disrupt its interaction with the CPC, to shed light on the
molecular basis of how Sgo1 contributes to the localization of
the CPC.

Aurora B-Mediated Control of CPC
Localization
It is clear that complex signaling underlies the defined
localization of the CPC at the inner centromere. It is intriguing
that almost every pathway that contributes to confining the
CPC to the inner centromere is under control of Aurora B
activity itself. This includes the important roles of Aurora B
in the prophase pathway, in the maintenance of centromeric
cohesion, in Haspin activation, in the control of H3T3ph levels
and in the regulation of Bub1 and Sgo1 levels at the kinetochore
and (inner) centromere, respectively. Furthermore, Aurora B
phosphorylation of H2AXS121 at centromeres has been shown
to contribute to (inner) centromere localization of the CPC
(Shimada et al., 2016). As these various pathways converge
to concentrate the CPC at the inner centromere they further
contribute to the positive feedback cycle as clustering has been
shown to contribute to full activation of Aurora B by facilitating
the auto-phosphorylation, in trans, of its activation loop (Bishop
and Schumacher, 2002; Kelly et al., 2007).

At the same time these data highlight an important challenge
in studying the localization of the CPC. Extensive crosstalk
between cohesin, Haspin, Bub1, Sgo1, and the CPC make
it difficult to explain at the molecular level the phenotypic
observations following perturbation of the system. Loss of Sgo1
and Haspin both result in a loss of (centromere) cohesion and
thus in essence in the absence of an inner centromere. The
identification of separation of function alleles that uncouple the
multiple functions of these proteins will be required to further
unravel the underlying signaling that controls CPC localization.

IS INNER CENTROMERE LOCALIZATION
OF THE CPC REQUIRED FOR CPC
FUNCTION DURING MITOSIS?

As explained above, an intricate and evolutionary conserved
signaling network that is operational in our cells directs the
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CPC toward the inner centromere region of the duplicated
chromosomes. This typical localization of the CPC has
for long been considered crucial for the various mitotic
functions executed by its enzymatic subunit Aurora B. However,
several recent pieces of data challenge this view. Below we
will summarize the contribution of the CPC to error-free
chromosome segregation and discuss the various lines of
evidence that argue for or against the need for precise localization
of the CPC at the inner centromere for its activities contributing
to faithful chromosome segregation.

The CPC Is Essential to Achieve
Chromosome Bi-Orientation
Error-free chromosome segregation requires that all the
duplicated chromosomes become bi-oriented on the mitotic
spindle. This means that the kinetochores of the sister chromatids
need to become attached to microtubules derived from opposite
poles of the mitotic spindle prior to anaphase onset. Through
phosphorylation of outer kinetochore proteins that directly
bind to spindle microtubules, such as components of the KMN
network (particularly Ndc80/Hec1), Aurora B lowers their
microtubule binding affinity and as such creates a dynamic KT-
MT interface where individual microtubules continuously bind
the kinetochore and are rapidly released. This high kinetochore
microtubule (kMT) turnover helps to resolve “unwanted” non-
bipolar KT-MT interactions, such as syntelic (sister-kinetochores
are bound by microtubules from the same pole) and merotelic
(one of the sister kinetochores is bound by microtubules from
opposite spindle poles) attachments, that would otherwise give
rise to mis-segregating chromosomes in anaphase, resulting in
aneuploid daughter cells (Thompson et al., 2010). This process
is frequently referred to as “error correction.” A consequence
of kMT detachment is an unattached kinetochore that activates
the mitotic checkpoint, a surveillance mechanism that prevents
the onset of anaphase until all kinetochores have become stably
connected to microtubules of the mitotic spindle (Musacchio,
2015). Aurora B also contributes to the mitotic checkpoint
in a more direct manner by facilitating the rapid kinetochore
recruitment of the essential checkpoint kinase Mps1 at the onset
of mitosis (Santaguida et al., 2011; Saurin et al., 2011). This dual
activity of Aurora B ensures that bi-oriented attachments can
be established before anaphase onset. Obviously, kMT turnover
needs to eventually diminish to allow the stabilization of bi-
oriented attachments and silencing of the mitotic checkpoint.
The switch from dynamic to more stable kMT interactions on
bi-oriented chromosomes is accompanied by tension across and
within the sister-kinetochores (Nicklas and Koch, 1969; Ault
and Nicklas, 1989; Maresca and Salmon, 2009; Uchida et al.,
2009). Tension is generated by opposing microtubule pulling
forces that are counteracted by centromeric cohesin, which
holds the sister chromatids together, as well as by the inner
kinetochore proteins CENP-T, CENP-H/I/K/M, and CENP-C,
which act as linkers between the core centromere protein
CENP-A and the microtubule binding site of the kinetochore
Ndc80/Hec1 (Nicklas and Koch, 1969; Ault and Nicklas, 1989;
Suzuki et al., 2014; Musacchio and Desai, 2017). At least in

vitro, tension itself stabilizes KT-MT attachments through a
catch-bond like mechanism (Akiyoshi et al., 2010). Yet, tension
also increases the distance between the sister-kinetochores,
as well as between the inner centromere where Aurora B is
localized, and the outer kinetochore where its MT binding
substrates reside (Wan et al., 2009). This gave rise to the “spatial
separation model,” which explains the stability of KT-MT
attachments by the proximity of Aurora B to its kinetochore
substrates: mal-attachments are destabilized because Aurora B
can reach its outer kinetochore substrates and phosphorylate
them, while bi-oriented (amphitelic) attachments are stabilized
because the opposing microtubules pulling forces generated on
bi-oriented chromosomes pull the outer kinetochore substrates
out of the sphere of influence of Aurora B (Tanaka et al.,
2002; Andrews et al., 2004; Liu et al., 2009). Indeed, a FRET-
based biosensor for Aurora B activity is phosphorylated on
bi-oriented sister chromatids when placed at the centromere,
but not when it is positioned at the kinetochore (Liu et al.,
2009). Similarly, the level of phosphorylation of endogenous
Aurora B kinetochore substrates, such as Hec1, goes down upon
microtubule attachment and the generation of tension across
kinetochores (Welburn et al., 2010; DeLuca et al., 2011), while
hyperstretching of the kinetochore, which occurs in cells lacking
CENP-T or CENP-C, causes an even greater reduction in Hec1
phosphorylation (Suzuki et al., 2014). These data seem to be
in line with the view that the distance between Aurora B and
its substrate contributes to the level of phosphorylation of that
substrate after bi-orientation. This is further substantiated by
the observation that the central region of INCENP is a ∼32 nm
single alpha helix (SAH) that might stretch up to 80 nm under
physiological forces (Peckham and Knight, 2009; Samejima et al.,
2015). This extensible SAH connects the N-terminal centromere
binding domain of INCENP with its C-terminal Aurora B
binding domain, and may act as a “dog-leash” allowing Aurora
B to phosphorylate its outer kinetochore substrates, while being
tethered to the inner centromere (Santaguida and Musacchio,
2009; Samejima et al., 2015). In line with this idea, deletion of
the SAH affected Aurora B-mediated phosphorylation of outer
kinetochore substrates but not of inner centromere-proximal
substrates (Samejima et al., 2015; Wheelock et al., 2017).

A key condition for this tension-based spatial separation
model is the confined localization of Aurora B at the inner
centromere. The model predicts that placement of Aurora B
closer to the outer kinetochore would preclude stabilization
of bi-oriented kMTs. By replacing the N-terminal (Survivin
and Borealin binding) inner centromere-targeting domain of
INCENP with the centromere-binding domain of CENP-B
(CB-INCENP) or with the kinetochore protein Mis12 (Mis12-
INCENP), it is possible to target Aurora B close to or at
the kinetochore, respectively (Liu et al., 2009). In both cases,
chromosomes initially bi-orient but are not retained in the
metaphase plate. This phenotype was interpreted as ongoing
destabilization of amphitelically attached kMTs by kinetochore-
proximal Aurora B (Liu et al., 2009). However, it was recently
shown that the microtubule binding protein Hec1 can be
dephosphorylated and bi-oriented attachments can be stabilized
in cells with kinetochore-proximal Aurora B if cohesin removal
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is prevented via depletion of Wapl (Hengeveld et al., 2017).
The absence of the CEN module of the CPC, comprising the
INCENPN-terminus, Survivin and Borealin, appeared to weaken
centromere cohesion and to accelerate cohesion fatigue, causing
sister chromatids to separate before anaphase (Daum et al.,
2011; Hengeveld et al., 2017). These data suggested that inner
centromere localization of Aurora B is not a prerequisite for
the destabilization of erroneous KT-MT attachments nor for the
stabilization of correct KT-MT attachments, in line with earlier
observations in budding yeast. Here, deletion of the centromere-
targeting domain of the INCENP homolog Sli15 causes the
CPC to localize to the mitotic spindle and to kinetochores,
instead of to the inner centromere. Even though this alternative
localization would preclude spatial separation between the CPC
and kinetochores upon bi-orientation, these cells did not show
severe defects in chromosome segregation, suggesting that stable
kMT interactions could be formed (Campbell and Desai, 2013).
Of note, the relocation of Aurora B to the spindle and to
kinetochores by expression of an INCENP mutant lacking its
centromere-targeting domain (referred to as dCEN-INCENP)
is not observed in human cells or Xenopus laevis egg extracts
supplemented with sperm chromatin. This probably explains
why dCEN-INCENP fails to rescue any Aurora B function
in these experimental systems: it is most likely insufficiently
clustered to activate Aurora B (Vader et al., 2006; Kelly et al., 2007;
Haase et al., 2017; Hengeveld et al., 2017).

CPC Inner Centromere Localization, What
Is It Good For?
Based on the above, one could argue that the main function of
CPC (inner) centromere localization is to cluster and activate
Aurora B. If so, then all mitotic functions of the CPC should
be restored when INCENP and Aurora B are clustered in an
alternative manner or at an alternative location. This may be true
for budding yeast, but it does not seem to be the case in other
systems. In X. laevis egg extracts, antibody-mediated clustering
of dCEN-INCENP activates Aurora B outside the chromatin.
Interestingly, this unfocussed, or global Aurora B activity is
sufficient to rescue outer kinetochore assembly in CPC depleted
extracts, but does not support full chromosome bi-orientation
(Figure 6). Interestingly, Hec1 is phosphorylated but the levels
of phosphorylation are reduced on unattached kinetochores
compared to wild-type (WT)-CPC extracts and remain constant
after bi-orientation. Consequently, in metaphase the levels
of Hec1 phosphorylation are higher in the dCEN-INCENP
clustered extracts compared to WT-CPC extracts (Haase et al.,
2017). Therefore, it remains unclear if the defective bi-orientation
in the dCEN-INCENP clustered extracts is due to a failure in
destabilizing erroneous attachments during (pro)metaphase or
a failure in stabilizing bi-oriented attachments in metaphase.
Addition of the CEN module to extracts with unfocussed Aurora
B activity did not restore Hec1 phosphoregulation, suggesting
that centromere or at least chromatin-localized Aurora B is
required for Hec1 phosphoregulation in response to attachments
and tension (Haase et al., 2017). As mentioned, CEN module
independent clustering of Aurora B near or at kinetochores

in human cells, via expression of CB-INCENP or Mis12-
INCENP respectively, does not preclude the dephosphorylation
of Hec1 and the formation of stabile amphitelic attachments
if cohesion is stabilized (Figure 6) (Hengeveld et al., 2017).
This seems to support the X. laevis data, suggesting that
attachment and tension-dependent Hec1 phosphoregulation
requires chromosome-associated Aurora B activity, but not
precise inner centromere Aurora B localization. While stable
amphitelic attachments can be formed in cells with kinetochore-
proximal Aurora B, these cells do experience a substantial delay
in metaphase because they fail to silence the mitotic checkpoint
(Figure 6) (Hengeveld et al., 2017). In contrast to Hec1, the
kinetochore protein Knl1 remained phosphorylated by Aurora
B, thereby preventing the recruitment of PP1γ to Knl1, which
is required for silencing of the mitotic checkpoint (Caldas and
DeLuca, 2014; Nijenhuis et al., 2014; Hengeveld et al., 2017). It
is appealing to conclude that checkpoint silencing requires the
spatial separation of Aurora B and Knl1 and that this requires
inner centromere localization of Aurora B. However, due to the
nature of the experiments it cannot be excluded that mitotic
checkpoint silencing somehow requires the removal of a potential
kinetochore pool of Aurora B which is prevented in cells where
Aurora B is constitutively placed near or at the kinetochore
(DeLuca et al., 2011; Caldas et al., 2013).

An interesting picture emerging from these studies is that the
CPC CEN module can fulfill certain CPC activities separately
from the enzymatic Aurora B module, contrasting the idea that it
is simply a targeting module for Aurora B (Figure 6). In human
cells the CENmodule strengthens centromeric cohesion to avoid
premature sister chromatid separation after chromosome bi-
orientation (Hengeveld et al., 2017). Moreover, in contrast to
Aurora B kinase inhibition, depletion of both INCENP and
Survivin from HeLa cells impairs inner kinetochore assembly;
and in X. laevis egg extracts lacking the CPC, the CEN
module suffices to rescue inner kinetochore assembly (Haase
et al., 2017). It is currently unclear how the CEN module
stabilizes centromeric cohesion and controls inner kinetochore
assembly, but one can envision that these activities might
require its presence at the inner centromere (Figure 6). In
other words, maybe it is not Aurora B that needs to be at
the inner centromere, but the CEN module of the CPC. If so,
then perturbations that interfere with the accumulation of the
CPC at the inner centromere would also affect the robustness
of centromeric cohesion and/or inner kinetochore assembly.
Although Haspin knockdown and KO cells experience cohesion
fatigue due to weakened centromeric cohesin, this cannot be
attributed solely to impaired CPC CEN module localization
since Haspin itself directly controls centromeric cohesion by
counteracting Wapl activity (Dai et al., 2005; Zhou et al., 2017).
Evaluating centromeric cohesion and the inner kinetochore
status in Survivin knockdown cells reconstituted with a Survivin
BIR domain mutant that cannot bind H3T3ph (Lens et al., 2006;
Yue et al., 2008; Wang et al., 2010), would be a more suitable
way to test if the CENmodule needs to be precisely positioned to
execute these activities. Remarkably, cells expressing a Survivin
BIR mutant, or with kinetochore-proximal Aurora B display a
weakened mitotic checkpoint response when challenged with the
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FIGURE 6 | Schematic depiction of the vertebrate CPC. Different modules potentially execute different functions of the CPC: the activity module (Aurora B in

conjunction with the IN-box of INCENP) or the CEN module (the CEN-box of INCENP in conjunction with Borealin and Survivin). Note that Aurora B can indirectly

affect CEN module dependent functions due to the role of Aurora B in targeting the CPC to the inner centromere (as depicted by the top part of the cartoon). The

dependency of each of the functions on inner centromere localization of the CPC is indicated. (1) Not tested in conditions where the CEN module is present but does

not localize to the (inner) centromere (Hengeveld et al., 2017). (2) Not tested in conditions where the CEN module is present but does not localize to the (inner)

centromere (Haase et al., 2017). (3) Hengeveld et al. (2017). (4) Forcing Aurora B outwards toward the kinetochore-proximal centromere (by expression of

CB-INCENP) does not preclude stable KT-MT attachments in cells depleted of Wapl (to maintain cohesion), suggesting inner centromere localization does not

contribute to KT-MT stabilization by spatially separating Aurora B from its kinetochore substrates (Hengeveld et al., 2017). (5) Neither CB-INCENP nor Mis12-INCENP

can restore mitotic arrest in paclitaxel in the absence of endogenous INCENP (Wheelock et al., 2017). Moreover, mutation of the BIR-domain of Survivin, that prevents

inner centromere localization of the CPC, causes a defect in maintaining a paclitaxel-induced arrest (Lens et al., 2006; Yue et al., 2008). (6) MC silencing is disturbed in

cells expressing CB-INCENP, but it is unclear if this is due to the close proximity of the Aurora B to its kinetochore substrates or due to constitutive tethering of Aurora

B to the outer centromere in this situation (Hengeveld et al., 2017). (7) Haase et al. (2017).

microtubule stabilizing drug paclitaxel (Lens et al., 2006; Yue
et al., 2008; Wheelock et al., 2017). While in the latter cells
the CPC CEN module is absent, in the former cells the CEN
module is present but cannot properly localize, suggesting that
either an inner centromere-localized CEN module or Aurora
B kinase contributes to a robust mitotic checkpoint response
(Figure 6).

If inner centromere localization of the CPC is indeed
necessary for chromosome bi-orientation, mitotic checkpoint
signaling, centromeric cohesion protection and (inner)
kinetochore assembly (Carmena et al., 2012), one would
expect severe chromosome segregation defects in cells lacking
either Bub1 or Haspin kinase activity, as loss of one of these
activities causes a dramatic redistribution of the CPC (Tang et al.,
2004; Kelly et al., 2010; Wang et al., 2010; Yamagishi et al., 2010;
Ricke et al., 2012). Indeed, mouse embryonic fibroblasts (MEFs)
derived from mice deficient in Bub1 kinase activity frequently
enter anaphase with misaligned chromosomes, causing near-
diploid aneuploidies in approximately 25% of the cells. The
chromosome mis-alignment defects were rescued by expression
of CB-INCENP, which relocated the majority of Aurora B

to the kinetochore-proximal centromere, suggesting that the
pool of Aurora B that localizes at the inter sister chromatid
axis when Bub1 activity is impaired, is less efficient in error
correction (Tang et al., 2004; Ricke et al., 2012). Remarkably,
Haspin KO HeLa cell lines only display a moderate increase in
chromosome segregation errors during unperturbed mitosis.
However, when mitotic Haspin KO cells were released from a
transient monopolar arrest they did display profound mitotic
defects, which could be mainly explained by loss of centromeric
cohesion. When cohesion was restored by depletion of Wapl,
cells were delayed in establishing chromosome bi-orientation,
most likely due to mislocalization of the CPC (Zhou et al., 2017).
If so, it suggests that the consequences of mislocalized CPC for
chromosomal stability are quite mild.

Aneuploidy is a frequent cause of embryonic lethality and a
hallmark of cancer (Torres et al., 2008), however Bub1 kinase-
dead mice develop normally and do not develop tumors (Ricke
et al., 2012). Similarly, embryonic development in Haspin KO
mice also occurs normally. However, it remains to be determined
if MEFs derived from these mice experience chromosome
segregation problems, and if these mice eventually develop
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tumors (Shimada et al., 2016). Interestingly, male Bub1 mice
are subfertile and Haspin KO mice show testicular abnormalities
(Ricke et al., 2012; Shimada et al., 2016). This could mean that
both CPC recruitment arms and/or inner centromere localization
of the CPC are needed for proper spermatocyte meiosis and
fertility.

CONCLUDING REMARKS

Based on the data discussed in this review we propose that the
evolutionary conservation of two CPC centromere recruitment
arms ensures that sufficient amounts of active Aurora B
accumulate in the vicinity of kinetochores. We suggest that
it makes the KT-MT error correction system robust, thereby
making dividing cells more resilient to conditions that would
weaken the mitotic checkpoint or that would increase the chance
of acquiring erroneous KT-MT attachments, such as disturbances
in the geometry of the mitotic spindle (Ertych et al., 2014). In
other words, it may safeguard chromosome segregation fidelity in
anomalous situations. In addition, inner centromere localization
of Aurora B may still be relevant to control the phosphorylation

status of a number of outer kinetochore substrates, but not
all of them. This likely also depends on the regulation of
the phosphatase that dephosphorylates a particular substrate.
If the antagonizing phosphatase is present at the kinetochore
in relatively high amounts then even a slight change in the
kinase-substrate distance may have a dramatic effect on the
phosphorylation status of the substrate. Finally, the realization
that the CEN module of the CPC strengthens centromere
cohesion and is involved in inner kinetochore assembly opens
up the possibility that the “activity” of the CEN module requires
inner centromere localization.
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