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Abstract

In cancer tumors, lactate accumulation was initially attributed to high glucose consumption

associated with the Warburg Effect. Now it is evident that lactate can also serve as an

energy source in cancer cell metabolism. Additionally, lactate has been shown to promote

metastasis, generate gene expression patterns in cancer cells consistent with “cancer stem

cell” phenotypes, and result in treatment resistant tumors. Therefore, the goal of this work

was to quantify the impact of lactate on metabolism in three breast cell lines (one normal

and two breast cancer cell lines—MCF 10A, MCF7, and MDA-MB-231), in order to better

understand the role lactate may have in different disease cell types. Parallel labeling meta-

bolic flux analysis (13C-MFA) was used to quantify the intracellular fluxes under normal and

high extracellular lactate culture conditions. Additionally, high extracellular lactate cultures

were labelled in parallel with [U-13C] lactate, which provided qualitative information regard-

ing the lactate uptake and metabolism. The 13C-MFA model, which incorporated the mea-

sured extracellular fluxes and the parallel labeling mass isotopomer distributions (MIDs) for

five glycolysis, four tricarboxylic acid cycle (TCA), and three intracellular amino acid metabo-

lites, predicted lower glycolysis fluxes in the high lactate cultures. All three cell lines experi-

enced reductive carboxylation of glutamine to citrate in the TCA cycle as a result of high

extracellular lactate. Reductive carboxylation previously has been observed under hypoxia

and other mitochondrial stresses, whereas these cultures were grown aerobically. In addi-

tion, this is the first study to investigate the intracellular metabolic responses of different

stages of breast cancer progression to high lactate exposure. These results provide insight

into the role lactate accumulation has on metabolic reaction distributions in the different dis-

ease cell types while the cells are still proliferating in lactate concentrations that do not sig-

nificantly decrease exponential growth rates.
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Introduction

Since the 1920s, many types of cancers have been shown to rely heavily on glycolysis and lac-

tate fermentation to produce energy rather than the more energy efficient complete oxidation

of glucose in the mitochondria, even in the presence of sufficient oxygen. This metabolic state

is called the Warburg Effect [1–4]. In addition, lactate can be utilized by cancer cells in the

presence of glucose, a process known as the Reverse Warburg Effect [5–9]. Not only does this

capability to use lactate provide cancer cells a metabolic advantage in vivo, it seems to favor

cancer progression. For example, when lactate was injected into mice with xenografts of the

human breast cancer cell line MDA-MB-231, metastasis increased ten-fold [10]. When the

human breast cancer cell line MCF7 was exposed to lactate in vitro, genes associated with

“stemness” were upregulated and gene expression patterns consistent with the “cancer stem

cell” phenotype were observed [7]. In several other types of cancers, intratumoral lactate levels

—which can rise to as high as 40 mM—correlated with treatment resistance as well as poor

patient prognosis [5]. Further, it has been shown in xenotransplants and mouse cancer models

that inhibiting the ability of cancer cells to utilize lactate can force the cells to become glycolytic

and retard tumor growth through glucose starvation, while rendering the remaining cells more

susceptible to radiation treatments [9]. Since lactate accumulation and its subsequent utiliza-

tion by surrounding cancer cells appears to negatively affect cancer patient outcomes, deci-

phering the role of lactate at the metabolic level within central carbon metabolism is crucial.

Metabolic flux analysis (MFA) is a computational tool that is used to quantify the intracellu-

lar metabolic fluxes of individual metabolic pathways [11, 12]. MFA can be used to compare

changes in metabolic activity due to particular factors [13, 14]. Classical MFA uses extracellular

uptake and secretion rates of nutrients and waste products, and a discrete metabolic network

model of the relevant metabolic reactions [15, 16]. The use of stable isotopic tracers, typically
13C-labeled nutrients, and the resulting mass isotopomer distribution (MID) data increases

the resolution of individual fluxes within the defined metabolic reaction network [17–19]. Sev-

eral mammalian systems have been characterized including Chinese hamster ovary (CHO)

cells at both stationary and exponential growth phases [20–22], MDA-MB-231 cells under var-

ious nutrient conditions [23], and several other cancer cell lines under hypoxia [24, 25]. There

are several software tools available to assist researchers with resolving the intracellular fluxes

including Metran, OpenFLUX, 13CFlux2, INCA and FiatFlux [22, 26–29]. All of these soft-

ware tools rely upon regression analysis to solve the system of linear equations specified by the

metabolic network.

The aim of this study was to determine the role of extracellular lactate on the metabolism of

three different proliferating breast cell lines (one non-tumorigenic epithelial breast cell line

and two breast cancer cell lines). Each cell line was grown in a low glucose control (e.g., normal

or typical laboratory) media or in a high-lactate media, where sodium lactate was added to the

control medium to make the high-lactate medium. The high-lactate concentration was selected

for each cell line such that equivalent exponential growth rates for the control and high-lactate

cultures were maintained. These equivalent exponential growth rates were important for the

modeling assumptions for two reasons: 1) the quasi-steady state assumption was met equally

well by both conditions, and 2) it allowed for normalizations of fluxes between the conditions

for the same cell line based on biomass generation. Parallel labeling experiments were con-

ducted with [1,2-13C] glucose, [U-13C] L-glutamine, and [U-13C] sodium lactate, where the

control cultures were only labeled with [1,2-13C] glucose and [U-13C] L-glutamine. The lactate

labeling data for the high-lactate cultures provided uptake and direct intermediate tricarbox-

ylic acid (TCA) cycle labeling information. The intracellular metabolic fluxes were predicted

for each cell line and each condition from the glucose and glutamine labeling data.

High extracellular lactate causes reductive carboxylation

PLOS ONE | https://doi.org/10.1371/journal.pone.0213419 June 10, 2019 2 / 21

grant CBET-1218345. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0213419


Materials and methods

Cell lines and media formulations

MCF 10A (ATCC CRL-10317), MCF7 (ATCC HTB-22) and MDA-MB-231 (ATCC HTB-26)

cells were from the American Tissue Culture Collection (ATCC). MCF 10A cells are a non-

tumorigenic breast cell line, MCF7 cells are a tumorigenic, luminal breast cancer cell line, and

MDA-MB-231 cells are a metastatic, basal breast cancer cell line [30]. Dulbecco’s modified

Eagle medium (DMEM) without glucose, glutamine, sodium pyruvate, and phenol red (Life

Technologies) was used as the growth media. The growth media was supplemented to contain

5 mM glucose (Thermo Fisher), 3 mM glutamine (Life Technologies), 10% dialyzed fetal

bovine serum (dFBS, Life Technologies), 100 U/mL penicillin, and 100 μg/mL streptomycin

(100X Penicillin-Streptomycin solution, Life Technologies). High-lactate cultures were supple-

mented with 10 mM sodium L-lactate (Sigma) for the MCF 10A cultures and 20 mM for the

MCF7 and MDA-MB-231 cultures. The isotopic tracers were [1,2-13C] glucose, [U-13C] L-glu-

tamine, and [U-13C] sodium lactate, all purchased from Sigma-Aldrich.

Cell growth and parallel labeling experiments

All cell lines were seeded at 2 x 104 cells/cm2 into either 6-well plates or T-25 flasks in the con-

trol growth media. Cells were cultured at 37˚C in a 5% CO2 humidified incubator. After 24-h,

the media for the MDA-MB-231 cultures was exchanged and the experimental conditions

were introduced. The media exchange time is used to set time 0 for all cell lines. For MCF 10A

and MCF7 cell lines the lag phase was longer, so the media was replenished at 24-h post seed-

ing. The media was exchanged 48-h post seeding for MCF10A and MCF 7 to introduce the

experimental conditions. For clarity, the full experimental setup is shown in Fig 1. Cell num-

bers and extracellular metabolite concentrations were measured as shown in Fig 1, where all

times are relative to the isotope media exchange. Cell numbers and glucose and lactate concen-

trations were obtained from the six-well plates, while the amino acid concentrations were

obtained from the T-25 flasks. Cells for intracellular metabolite analysis were obtained from

the T-25 flasks 24-h after the media exchange, since 24-h has previously been shown to provide

sufficient amount of time for isotopic steady state to be achieved for intracellular glycolytic

metabolites in CHO cells [21]. Parallel cultures of glucose (95% molar enriched [1,2-13C] glu-

cose) and glutamine tracers (95% molar enriched [U-13C] L-glutamine) were performed for

the control cultures, whereas the high-lactate cultures also had parallel replicates for the lactate

tracer (50% molar enriched [U-13C] sodium L-lactate). Six-well plates (Nunc) were used to

obtain cell numbers and glucose and lactate concentrations with six replicates for each time

point. T-25 flasks were used to obtain extracellular amino acid concentrations and intracellular

MID measurements in triplicate.

Cell numbers, and glucose and lactate concentrations

Cell numbers were obtained using the Scepter 2.0 Handheld Automated Cell Counter (Milli-

pore). Glucose and lactate concentrations were measured using a YSI 2700 Bioanalyzer.

Preparation of samples for gas chromatography-mass spectrometry

analysis

Intracellular and extracellular metabolites and specific metabolite fragments used for identifi-

cation were extracted and derivatized according to the protocol outlined by Ahn and Antonie-

wicz [22], with a few minor changes. Samples were incubated and derivatized for 60 min, and

the final sample volumes were increased to 1 mL after derivatization by adding additional
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pyridine. The injection volumes were 3 μL and samples were injected in splitless mode. Amino

acid standards were used to calculate amino acid concentrations in the [U–13C] algal amino

acid solution, which were then used to quantify the amino acid concentrations in the extracel-

lular medium.

Extracellular amino acid concentrations and intracellular MID

measurements

GC-MS analysis was performed using a Hewlett Packard 7683 GC equipped with an HP-5 (30

m x 0.32 mm i.d. x 0.25 μm; J&W Scientific) capillary column, interfaced with a Hewlett Pack-

ard 5973 MS operating under ionization by electron impact as 70 eV and 200˚C ion source

temperature. The injection port and interface temperatures were both 250˚C while helium

flow was maintained at 1 mL/min. Mass spectra were recorded in full scan mode for amino

acid quantification and in single ion mode (SIM) for MIDs as well as internal standards and

standardization curves. MIDs were obtained by integration of single ion chromatograms and

corrected for natural isotope abundances using the Metran software [31, 32].

Determination of biomass specific consumption and production rates

Specific consumption and production rates for nutrients and waste metabolites in the extracel-

lular medium were determined based on cell growth rate and nutrient time profiles, where

the times are relative to media exchange and not to seeding [33]. For each sample calculation,

Fig 1. Experimental setup for the parallel labeling experiments for each of the three breast cell lines. The four or

five six-well plates and 15 T-25 flasks were seeded simultaneously for each cell line examined. The times shown

indicate when the plates or flasks were harvested for analysis relative to the isotope media exchange. Isotopic labeling is

graphically shown by shading (white—no isotope, black—glucose, dark grey—glutamine, and light grey—lactate). The

six-well plates did not contain isotopically-labeled media.

https://doi.org/10.1371/journal.pone.0213419.g001
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statistical analysis of the amino acid concentration data was conducted using JMP 10.0.0 (SAS

Institute, Inc.). The generalized linear model was used where cell line, condition, and time

were examined as effectors of the amino acid concentration (p� 0.05). All amino acid concen-

trations were determined to be significantly affected by time (p� 0.05). Several amino acid

concentrations were not significantly affected by cell line, condition, or both (p> 0.05). The

spontaneous glutamine degradation rate was accounted for in the glutamine flux calculation,

with a degradation rate of 0.0019 h-1 [33].

Metabolic network model

To model central carbon metabolism for the three breast cell lines, a general mammalian cell

model was used. This generalized mammalian cell model was adapted from the previously

developed framework by Ahn and Antoniewicz (2013). Major reactions for glycolysis, the

pentose phosphate pathway (PPP), the TCA cycle, amino acid metabolism, lactate metabolism,

and fatty acid metabolism were included in the mammalian cell model. Carbon flux to

cellular biomass was broken down into two separate compartments—the Biomass pool,

which included proteins, nucleotides, and carbohydrates, and the Lipid Biomass pool, which

included lipids and phospholipid [21, 24, 34]. The Biomass and Lipid Biomass fractions were

based on cell mass compositions from literature for hybridoma and MCF7 cells [33–35], and

the reported dry cell weight for hybridoma (470 pg per cell) [34]. These values were used for

all three cell lines. The dry cell weights were used to convert the measured growth rates to bio-

mass-specific fluxes [34]. In order to reduce the complexity of the model to align with the

number and detail of measurements taken, only citrate and acetyl-CoA were modeled with

both cytosolic and mitochondrial compartments [18, 21, 24]. A lactate exchange reaction was

included to account for dilution of the intracellular labeled lactate pool by uptake of exogenous

lactate (v38 in Table D in S1 Appendix). This type of exchange reaction has previously been

used to account for the dilution of carbon dioxide labeling and does not influence the intracel-

lular carbon balance [36]. Carbon dioxide was treated as an unbalanced metabolite and was

not measured. Oxygen uptake was excluded from the model and was also not measured.

Cofactor balances, such as NADH and NADPH were not included in the model, as different

isozymes have varying cofactor requirements and the inclusion of these assumptions can skew

subsequent analysis [22]. The breast cell metabolic flux model has 38 reactions. The full breast

cell metabolic flux model with atom transitions is included in Table D in S1 Appendix.

Metabolic flux analysis
13C-Metabolic flux analysis was performed using the software package Metran [32], which uti-

lizes the elementary metabolite unit (EMU) framework [37]. Metabolic fluxes were estimated

using experimentally measured-values for extracellular consumption and production rates and

from MIDs obtained for intracellular metabolites. In Metran, the intracellular and extracellular

metabolic flux predictions were based on quantities that minimized the variance-weighted

sum of squared residuals (SSRes) between the measured values input into the model and the

simulated values. Metran can process MID data from parallel labeling experiments to predict

the metabolic fluxes, a capability that has been validated using both E. coli and CHO cells

experimental data [21, 36]. In this study, random initial fluxes were used, and the MID error

was calculated from the biological replicates. Additionally, a minimum MID error threshold of

0.6 mol% was applied if the biological error was less than 0.6 mol%; this falls within the stan-

dard error range that has been used in previous MFA studies [18, 21]. Most of the standard

errors observed in this study for the biological replicates were higher than the 0.6 mol%

machine error used previously when replicates were not available [21]. The MIDs metabolites
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labeled by [1,2-13C] glucose included in the MFA simulations were 3-phosphoglycerate (3PG),

dihydroxyacetone phosphate (DHAP), pyruvate, lactate, and alanine. The MIDs metabolites

labeled by [U-13C] glutamine included in the MFA simulations were succinate, malate, α-keto-

glutarate (AKG), glutamate, citrate, glutamine, and pyruvate. The MIDs of metabolites labeled

by [U-13C] lactate were not included in the MFA simulations.

The extracellular flux for each metabolite was calculated as described in Meadows et al.

(2008) [33], and adapted to the media exchange time as:

Flux
nmol

106 cells � h

� �

¼
109mðC48 � C24Þ

X24ðemt � 1Þ
ð1Þ

where, μ is the growth rate (h−1). C48 and C24 are the individual metabolite concentrations

(mM) at 48 and 24 hours after the media exchange, respectively. X24 is the cell concentration

(cells/mL) at 24 hours after the media exchange. In Meadows et al. (2008) [33], only the term

X0 was used in the flux equation instead of X24, as their flux calculation included the initial

time, time 0. In the current study, the flux calculation only includes the time points 24-h and

48-h, thus the cell concentration uses the 24-h time point as the reference point for the cell

concentration. The value for the term t is 24 hours for all of the current flux calculations.

Statistical analysis

Statistical analysis was performed using the software JMP pro 10 (SAS Institute, Cary, NC).

The generalized linear model (GLM) procedure (p� 0.05) and least squares method (LS

mean) with Tukey HSD (honestly significant difference) were used to determine if growth

rates, cell numbers 24-h after the medium exchange, glucose, lactate, and amino acid concen-

trations were affected by the cell line and/or condition. To estimate the standard deviation for

each metabolite flux, Monte Carlo simulations were conducted using 1,000,000 iterations of

the flux equation, where the standard deviation for each input μ, (C48 − C24), and X24 was

applied. For Metran, metabolic flux simulations were determined to have converged when a

global solution was achieved that satisfied the accepted SSRes criteria, unless otherwise speci-

fied. This was determined from analyzing the simulated fit results via a chi-square statistical

test to measure goodness-of-fit [38, 39]. After convergence, 95% confidence intervals were

generated for all parameters based on the SSRes parameter [38].

Results

Cell growth

To determine the effects of high extracellular lactate on breast cancer metabolism, three

human breast cell lines, MCF 10A, MCF7, and MDA-MB-231, were grown under both control

and high-lactate conditions. MCF 10A is a non-tumorigenic epithelial cell line, and MCF7 and

MDA-MB-231 are two different stages of breast cancer (tumorigenic, luminal and metastatic,

basal respectively). Sodium lactate was used for the high-lactate conditions to reduce the initial

media pH shift and prevent shocking the cells due to the lactate addition. For MCF7 and

MDA-MB-231, the high-lactate culture media consisted of the control media supplemented

with 20 mM sodium lactate. For MCF 10A, the high-lactate culture media consisted of the con-

trol media supplemented with 10 mM sodium lactate. MCF 10A cells were unable to grow

under the 20 mM lactate stress; however, MCF 10A could grow at equal growth rates to the

control culture in 10 mM lactate-supplemented media. Both 10 mM and 20 mM lactate repre-

sent normal physiological concentration ranges [5–7]. Regrettably, the MCF 10A high-lactate

cultures had to be cultured at a lower lactate concentration than the MCF7 and MDA-MB-231
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high-lactate cultures, which prevented direct comparisons across all three cell lines. Yet, main-

taining equal growth rates between the control and high-lactate conditions within each cell

line was central to the experimental design. This allowed for any observed metabolic changes

to be attributed to media condition alone and not to a shift in growth rate.

The control media was composed of Dulbecco’s modified Eagle medium (DMEM) with a

lower initial glucose concentration (5 mM) than standard DMEM (25 mM), in order to be

more representative of physiological glucose concentrations, where 5 mM is equal to 0.90 g/L

or 90 mg/dL. To minimize the interference of other carbon sources on the labeling of the intra-

cellular metabolites, other potential carbon sources in the media were reduced or eliminated.

For example, sodium pyruvate was eliminated from the standard DMEM formulation, and

dialyzed fetal bovine serum (FBS) was used to eliminate glucose and glutamine carryover and

reduce the unquantified amino acids from FBS. These modifications to the media allowed for

the labeling studies to be conducted with 95% labeled glucose and glutamine.

To characterize cell growth, cell counts were taken every 24-h; growth profiles for the three

cell lines are shown in Fig 2. All three cell lines exhibited significant reproducible lag phases

when passaged in the control media, likely due to either the lower than normal glucose con-

centration and/or the lack of pyruvate in the media, despite previously being adapted to this

media formulation for over three passages. The lag phases were 48-h for MCF 10A and MCF7

and 24-h for MDA-MB-231. After the lag phases, the culture media was exchanged to either

fresh control media or the high-lactate media, as indicated at time 0 in Fig 2. For the labeling

studies, 13C isotopes replaced the unlabeled glucose, glutamine, or lactate in the parallel cul-

tures, at the same concentrations. After the lag phase and media exchange, cells from all cul-

ture conditions maintained exponential growth for 48-h, confirming that the high-lactate

media did not significantly affect the growth rates of any cell line (p> 0.05). The exponential

growth rates were 0.017 h-1, 0.018 h-1, and 0.021 h-1 for the MCF 10A, MCF7, and MDA-MB-

231 cell lines, respectively. Previously, 24-h was shown to be sufficient amount of time for iso-

topic steady-state to be reached for glycolysis and PPP metabolites from glucose labeling, while

TCA metabolites also approach isotopic steady state from glutamine labeling within 24-h for

mammalian cells [18, 21]. Therefore, in these studies, samples for intracellular MID analysis

were taken 24-h after 13C-labeled media addition, indicated by the black boxes. The experi-

ments were designed such that all cultures were in the mid-exponential phase at the time of

harvest for intracellular MID analysis (Fig 2); this represents a pseudo-steady state, a condition

consistent with the MFA assumptions [11].

Glucose, lactate, and amino acid metabolism

The control and high-lactate conditions exhibited equal growth rates within each cell line;

however, high extracellular lactate resulted in reduced glucose utilization and reduced lactate

accumulation for each cell line (p� 0.05). Fig 3 shows the glucose and lactate concentration

time profiles for each cell line and condition. The average glucose and lactate concentrations

for all the 24-h and 48-h samples are listed with the standard deviations in Tables A-C in S1

Appendix. Glucose and lactate fluxes were calculated using concentrations measured at 24-h

and 48-h with the cell number at 24-h and the growth rates as per Eq 1 and are listed with stan-

dard deviations in Table 1. The standard deviations for the glucose and lactate fluxes were

determine using Monte Carlo simulations due to sample independence [40]. The three control

cultures exhibited higher glycolytic efficiencies compared to the high lactate cultures. Specifi-

cally, the glycolytic efficiencies for the control conditions were 1.7, 1.5, and 1.8 moles lactate

produced per mole glucose consumed, respectively, for the MCF 10A, MCF7, and MDA-MB-

231 cell lines. The glycolytic efficiencies for the high-lactate conditions were 1.4, 0.8 and 1.3
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Fig 2. Growth profiles for MCF 10A, MCF7, and MDA-MB-231 cultures in control and high-lactate media. The

isotope media exchange occurred at 0-h and samples for MID analysis were taken at 24-h. Control media—shown by

red diamonds, blue circles, or green squares; high-lactate (HL) media—shown by red hollow diamonds, blue hollow

circles, or green hollow squares. MCF 10A—shown by filled or hollow red diamonds) B) MCF7—shown by filled or

hollow blue circles; and C) MDA-MB-231—shown by filled or hollow green squares. Error bars represent standard

deviations.

https://doi.org/10.1371/journal.pone.0213419.g002
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Fig 3. Glucose and lactate concentration and glucose, lactate, and glutamine flux profiles for the three breast cell

line cultures in the control and high-lactate media shown relative to the time of the media exchange. A) Glucose

concentrations; B) Change in lactate concentrations. Control media—shown by red diamonds, blue circles, or green

squares; high-lactate (HL) media—shown by red hollow diamonds, blue hollow circles, or green hollow squares. MCF

10A—shown by filled or hollow red diamonds) B) MCF7—shown by filled or hollow blue circles; and C) MDA-MB-
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moles lactate produced per mole glucose consumed, respectively, for MCF 10A, MCF7, and

MDA-MB-231 cell lines. In comparison, the theoretical maximum glycolytic efficiency is 2.0

moles lactate produced per mole glucose consumed [30].

Amino acid metabolism plays an important role in protein and nucleotide synthesis, and

anaplerosis for mammalian cells. Extracellular amino acid concentrations were measured at

24-h and 48-h after the media exchange to quantify amino acid fluxes. Prior to calculating the

amino acid fluxes, statistical analysis was conducted for the amino acid concentrations with

respect to culture condition, cell line, and time. All the amino acid concentrations were statisti-

cal different with respect to time (p� 0.05), such that fluxes could be calculated; however,

many of the amino acid concentrations were not statistically different between the cell lines or

culture condition (p> 0.05). For example, glutamine (Fig 3C), methionine, phenylalanine,

and tyrosine concentrations were not significantly different between cell lines or between the

culture conditions (p> 0.05). Whereas, aspartate, glutamate, glycine, and threonine concen-

trations were significantly different between cell lines (p� 0.05), but were not significantly dif-

ferent within the same cell line between the control and high-lactate conditions (p> 0.05). In

addition, leucine concentrations were not significantly different between cell lines (p> 0.05),

but were significantly different between the control and high-lactate conditions (p� 0.05).

Table 1 lists the calculated amino acid fluxes with the standard deviations determined

using Monte Carlo simulations due to sample independence [40]. The average amino acid

231—shown by filled or hollow green squares. C) Glucose, lactate, and glutamine fluxes. Control media—shown in

black; high-lactate media—shown in grey. All error bars represent standard deviations.

https://doi.org/10.1371/journal.pone.0213419.g003

Table 1. Measured extracellular fluxes for glucose, lactate, and amino acids for the MCF 10A MCF7, and MDA-MB-23 cell lines in the control and high-lactate

media. Standard deviations were determined using Monte Carlo simulations of the flux equation due to sample independence [30]. Negative values represent consump-

tion rates and positive values represent production rates.

Flux (nmol/106 cells�h)

Cell line MCF 10A MCF7 MDA-MB-231

Condition Control High-Lactate Control High-Lactate Control High-Lactate

Metabolite Flux SD Flux SD Flux SD Flux SD Flux SD Flux SD

Glucose (N = 6) -222 51 -182 48 -208 44 -158 42 -337 65 -267 67

Lactate (N = 6) 379 56 254 55 318 54 131 32 603 108 342 87

Glutamine (N = 3) -48 18 -55 19 -53 19 -63 18 -44 21 -55 21

Amino Acid (N = 3)

Alanine 11 1.5 11 1.9 14 2.3 12 2.3 10 1.8 8.2 2.0

Aspartate 4.9 0.8 3.7 0.7 6.5 1.3 5.4 1.1 3.5 0.7 4.5 1.1

Glutamate 12 1.9 10 1.8 11 2.0 12 2.3 8.5 1.6 10 2.5

Glycine 6.2 1.6 5.7 3.1 9.6 3.0 9.4 3.2 7.8 2.1 7.0 2.6

Isoleucine -8.3 2.3 -8.4 2.0 -9.5 2.0 -9.2 2.3 -4.7 1.6 -8.4 2.4

Leucine -6.6 2.1 -7.5 2.7 -8.3 2.7 -7.5 2.2 -4.7 2.1 -8.8 2.4

Methionine -2.6 1.0 -1.5 0.8 -3.1 1.1 -2.2 0.8 -1.4 0.5 -2.2 1.0

Phenylalanine -4.7 1.9 -4.4 1.5 -3.8 1.3 -3.8 1.5 -3.4 0.9 -4.0 2.0

Proline 1.5 0.3 1.3 0.3 2.8 0.5 2.3 0.5 0.8 0.2 1.3 0.3

Serine -19 2.9 -20 4.0 -20 4.0 -23 5.2 -16 3.4 -20 5.0

Threonine -1.9 1.1 -1.9 0.9 -1.2 0.5 -1.2 0.6 -1.2 0.6 -1.6 0.9

Tyrosine -3.6 1.5 -3.7 1.9 -4.0 1.2 -3.8 1.5 -3.5 1.6 -3.8 1.8

Valine -5.8 1.7 -6.2 1.6 -9.4 2.0 -10 3.3 -6.3 1.7 -9.1 2.3

https://doi.org/10.1371/journal.pone.0213419.t001
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concentrations for all the 24-h and 48-h samples with the standard deviations are shown in

Tables A-C in S1 Appendix.

Lactate tracer uptake

To further understand the role of lactate as a metabolic substrate, cells were grown with 13C-

labeled lactate for the high extracellular lactate conditions. This allowed for intracellular

metabolite labeling due to lactate uptake and metabolism. Labeled intracellular metabolites

measured included: lactate, pyruvate, alanine, citrate, AKG, glutamate, succinate, fumarate,

malate, and aspartate (Fig 4A). The intracellular lactate MIDs from [U-13C] lactate labeling of

the MCF 10A, MCF7, and MDA-MB-231 cultures exposed to 10 mM, 20 mM, and 20 mM

extracellular lactate, respectively, are shown in Fig 4B. MCF7 cells had the highest intracellular

lactate isotopomer labeling. The TCA metabolites had low levels of labeling, which was pri-

marily M1, for all cell lines. These results indicate that extracellular lactate was consumed by

the cells even in the presence of glucose. For completeness, Fig A in S1 Appendix illustrates the

intermediate TCA metabolite labeling from [U-13C] lactate, as the primary carbon source, as

well as the TCA carbon labeling from unlabeled pyruvate and dilution of the labeled metabo-

lite pools. All raw uncorrected lactate-derived MIDs for the three cell lines and for both condi-

tions are provided in Tables E and F in S1 Appendix.

Intracellular labeling from [1,2-13C] glucose and [U-13C] glutamine

[1,2-13C] glucose and [U-13C] glutamine isotopes were used for the parallel labeling studies to

characterize the relative metabolic contribution of each substrate and estimate intracellular

metabolic fluxes for glycolysis, the PPP, and the TCA cycle. These isotopes have previously

been shown to be suitable tracers for characterizing fluxes for mammalian cells through glycol-

ysis and the PPP ([1,2-13C] glucose) and the TCA cycle ([U-13C] glutamine) pathways [18].

The percent isotopomer labeling (100%—M0) was calculated for each metabolite using MIDs

corrected for natural abundance [21, 31]. Using [1,2-13C] glucose, the percent isotope labeling

for DHAP, 3PG, pyruvate, alanine, and lactate were 40% or higher for all three cell lines. No

significant differences were observed for MIDs from glycolytic metabolites (DHAP, 3PG,

pyruvate, alanine, and lactate) between the three cell lines and between the control and high-

lactate conditions. These results reflect the consistently high flux through glycolysis for each of

the three cell lines and the equivalent growth rates between conditions within a given cell line.

These results also confirm that the 24-h labeling time was sufficient to reach isotopic steady

state for [1,2-13C] glucose. The intracellular MID profiles for all three cell lines are included in

Fig B in S1 Appendix. All raw uncorrected MIDs for each cell line and condition are provided

in Tables E and F in S1 Appendix. Additionally, all the measured MIDs, corrected for natural

isotope abundance, are shown in Figs B and C in S1 Appendix.

For the three cell lines and both conditions, glutamine, AKG, and glutamate were highly

labeled from [U-13C] glutamine. Using [U-13C] glutamine, the observed isotopomer labeling

for intracellular glutamine, AKG and glutamate was over 70%. Fig 5 shows the control and

high lactate intracellular MID profiles for MDA-MB-231 from [U-13C] glutamine, as an exam-

ple, for the TCA metabolites. Pyruvate and lactate were minimally enriched from the gluta-

mine isotope across the cell lines and both conditions, where Fig 5 shows the MDA-MB-231

data. All the MID profiles for the three cells lines for both conditions are shown in Fig C in S1

Appendix. For MCF 10A and MDA-MB-231, the high-lactate condition resulted in a higher

percent isotope labeling of pyruvate and lactate as compared to the control condition. For

MCF7, the trend was reversed—the percent isotope labeling of pyruvate and lactate were lower

in high-lactate condition compared to the control condition.
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Fig 4. Uptake of U-13C lactate by the three breast cell lines. A) Percent carbon labeling for intracellular metabolites

due to extracellular [U-13C] lactate in the media. MCF 10A—shown in black; MCF7—shown in medium grey; and

MDA-MB-231—shown in light grey. B) Lactate intracellular mass isotopomer distributions (MIDs) due to

extracellular [U-13C] lactate. M1—shown in black; M2—shown in medium grey, and M3 shown in light grey. Error

bars represent standard deviations.

https://doi.org/10.1371/journal.pone.0213419.g004

High extracellular lactate causes reductive carboxylation

PLOS ONE | https://doi.org/10.1371/journal.pone.0213419 June 10, 2019 12 / 21

https://doi.org/10.1371/journal.pone.0213419.g004
https://doi.org/10.1371/journal.pone.0213419


The TCA metabolites succinate, fumarate, malate, and citrate were all significantly labeled

by the [U-13C] glutamine tracer. The MID profiles for these metabolites were similar for all

three cell lines; however, citrate MIDs were significantly different between the control and

high-lactate cultures within a cell line, indicating the effect of lactate was significant. More

specifically, a significant increase in M5 citrate labeling was observed in the high-lactate

conditions for all three cell lines (Fig 6A). Increased M5 labeling also corresponded with

decreased unlabeled citrate and increased percent isotopomer labeling. Succinate, fumarate,

and malate were mostly M2 and M4 labeled from 13C-glutamine labeling, as shown in Fig 5

for MDA-MB-23. Fig C in S1 Appendix shows the labeling for the other two cell lines.

Metabolic flux analysis

To quantify the metabolic activity, Metran was used to predict the intracellular metabolite

fluxes for each of the three cell lines under both conditions, six simulations in total. The experi-

mental procedure section describes in detail the intracellular MIDs and extracellular fluxes

used for the simulations. Each of the Metran model simulations converged to acceptable SSRes

except for the MCF7 control condition, which slightly overfit. This overfitting was traced back

to the high standard error for the glutamine MIDs from the biological replicates, where Tables

E and F in S1 Appendix contain all the raw MID values for the three cell lines. This particular

MID had a higher standard error than typically observed. Review of the data could not identify

an experimental error, nor did this point meet outlier exclusion test criteria. Thus, this data

point could not be discarded. Nevertheless, the effect of excluding this point on the model was

examined to determine the effect this one data point had on the simulated flux values. When

the Metran model simulation was conducted for the MCF7 control condition with only this

metabolite MID standard error value replaced with the 0.6 mol% minimum machine error,

Fig 5. Mass isotope distributions (MIDs) for the TCA metabolites from the [U-13C] glutamine labeling of the MDA-MB-231 cells cultured in the control

and high-lactate media. A) Control media; B) High-lactate media.

https://doi.org/10.1371/journal.pone.0213419.g005
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Fig 6. Evidence of reductive carboxylation of α-ketoglutarate (AKG) to citrate from [U-13C] glutamine labeling.

A) Fractional abundance of M5 labeled citrate for MCF 10A, MCF7, and MDA-MB-231 cells from the control (shown

in black) and high-lactate media (shown in medium grey). Error bars represent standard deviations. The astrick (�)

indicates the fractional abundances were significantly different between the control and high-lactate media per cell line

(p� 0.01). B) Carbon atom transition for TCA metabolites from [U-13C] glutamine. The black lines depict oxidative

glutamine metabolism that results in M4 citrate. The dashed red lines depict reductive glutamine metabolism that

results in M5 citrate. For clarity, some reaction pathways were condensed.

https://doi.org/10.1371/journal.pone.0213419.g006
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the Metran simulation converged to an acceptable SSRes value. More importantly, there was

no significant difference obtained for the simulated flux values. As the flux values are the criti-

cal outcome, the Metran simulations were conducted using the biological replicate MIDs (with

the slight overfit SSRes) for the comparisons. The metabolic flux maps were generated for the

three cell lines under each of the culture conditions, six in total using the actual biological rep-

licates, as the flux outcomes were not significantly effected, even though the SSRes was overfit

for MCF7. The flux maps are shown with standard deviations for the cell lines and conditions

in Figs D-F in S1 Appendix. The list of metabolic fluxes for all Metran simulations are pro-

vided in Tables H-N in S1 Appendix, including the MCF7 simulation with the 0.6 mol% stan-

dard error for the single biological replicate.

As a part of the validation step, measured MIDs from the parallel glucose and glutamine

tracer labeling experiments and extracellular flux measurements were compared to the simu-

lated results from the model to further investigate the effects of lactate on metabolism and to

determine cell line specific effects [21, 36]. The simulated fluxes for major pathway reactions

for each cell line and condition are shown in Fig 7. As expected, glycolytic reactions exhibited

the highest fluxes in both the control and high-lactate cultures. In all three cell lines, the glu-

cose consumption and lactate production rates decreased due to high-lactate exposure. In

addition, MFA simulations predicted slightly decreased PPP fluxes for all three cell lines due to

high-lactate. As mentioned previously, increased M3 labeling of pyruvate and lactate from glu-

tamine was observed for MCF 10A and MDA-MB-231 under high lactate, while MCF7 under

high lactate resulted in a slight decrease in M3 labeling. This was reflected in the MFA simula-

tions as increased malic enzyme fluxes, conversion of malate to pyruvate, for the MCF 10A

and MDA-MB-231 cell lines under high lactate and a decreased malic enzyme flux for the

MCF7 under high lactate. Furthermore, MDA-MB-231 cells exhibited elevated anaplerotic

and TCA cycle fluxes—pyruvate carboxylase (PC), glutamate dehydrogenase (GDH), pyruvate

dehydrogenase (PDH), and citrate synthase (CS)–under high lactate, while MCF 10A and

MCF7 cells exhibited similar anaplerotic and TCA cycle fluxes between conditions (Fig 7).

Discussion

In this study, the metabolic responses of three breast cell lines—MCF 10A, MCF7, and

MDA-MB-231—to high-lactate were examined using 13C-MFA. MCF 10A is a non-tumorous

epithelial breast cell line, MCF7 is a tumorigenic, luminal breast cancer cell line, and

MDA-MB-231 is a metastatic, basal breast cancer cell line. 13C-glucose, 13C-glutamine, and
13C-lactate tracers were used in parallel experiments to determine the relative contribution of

each substrate to intracellular metabolism. [1,2-13C] glucose and [U-13C] glutamine were

selected as tracers, since both have previously been shown to be suitable for characterizing

fluxes through glycolysis, the PPP, and TCA cycle pathways for mammalian cells [18, 21, 41,

42]. In addition, the [U-13C] lactate tracer was used to determine the metabolic contribution

of lactate to breast cancer cell metabolism. For metabolic flux analysis, a detailed metabolic

network model was constructed for breast cancer cells based a CHO cell metabolic network

model [21]. The intracellular MIDs from parallel labeling experiments and extracellular flux

measurements were paired with a mammalian metabolic network model to develop intracellu-

lar metabolic flux maps for each cell line under the control and high-lactate conditions.

As expected, the high-lactate condition caused a reduction in glucose consumption and

lactate production for all cell lines examined (Fig 3). This is consistent with previous findings

that accumulated lactate acts as a glycolytic signaling molecule and can down-regulate phos-

phofructokinase activity, a key glycolytic regulatory enzyme, resulting in decreased rates of

glucose consumption [43]. In addition, lactate consumption was observed in the high-lactate
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Fig 7. Comparison of key metabolic fluxes for MCF 10A (A), MCF7 (B), and MDA-MB-231 (C). Control (shown in black) and high-lactate media (shown in

medium grey). Abbreviations: PPP, pentose phosphate pathway; PDH, pyruvate dehydrogenase; CS, citrate synthase; PC, pyruvate carboxylase; GDH/AT,

glutamate dehydrogenase/aminotransferase; ME, malic enzyme. Error bars represent standard deviations. The astrick (�) indicates the simulated fluxes were

significantly different between the control and high-lactate conditions (p� 0.05).

https://doi.org/10.1371/journal.pone.0213419.g007
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condition, as illustrated by the [U-13C] lactate tracer uptake in each cell line (Fig 4). Metabolic

flexibility appears to play an important role in enabling cancer to thrive and survive in harsh

environments, including inflammation, oxidative stress, and extreme nutrient and oxygen

fluctuations [8, 44, 45]. As a result, the ability to metabolize higher levels of lactate offers poten-

tial advantages to cancer cells. The higher fractional abundance of intracellular M3 lactate

labeling for MCF7 compared to MCF 10A and MDA-MB-231 in this study (Fig 4B) is consis-

tent with previous finding that MCF7 display higher expression of monocarboxylate trans-

porter 1 (MCT1), the lactate transporter associated with increased transport of lactate into

the cell [6, 9]. Furthermore, since TCA metabolites were only observed to be minimally labeled

by lactate, this suggests that lactate was not a major source of acetyl-CoA. Also, labeled TCA

metabolite pools were diluted by the metabolism of unlabeled pyruvate. Nevertheless, the

intracellular MIDs from the high-lactate cultures demonstrated that each cell line consumed

and metabolized a significant amount of labeled lactate, most likely to compensate for the

decreased carbon flux through glycolysis due to decreased glucose consumption.

Intracellular metabolite labeling from [U-13C] glutamine was similar for the control and

high lactate conditions for each cell line, with over 50% isotope labeling of all TCA cycle

metabolites. Fig 5 shows the labeling for the MDA-MB-231 cells, where Fig C in S1 Appendix

shows the labeling for all three cell lines. Conversely, a slight increase in pyruvate and lactate

labeling from glutamine was observed in MCF 10A and MDA-MB-231 due to high-lactate.

This suggests that glutamine anaplerosis was enhanced to provide energy via oxidative phos-

phorylation, and then secreted as alanine and lactate in response to decreased glucose con-

sumption and decreased energy generation via glycolysis. Interestingly, high-lactate also

caused an increase in M5 citrate labeling for each cell line (Fig 6). The increased M5 citrate

labeling in the high-lactate conditions suggests the presence of reductive carboxylation of glu-

tamine via the isocitrate dehydrogenase (IDH) reaction, as shown as a dashed red line in Fig

6B. Also, the decrease in M0 citrate indicates an increase in glutamine catabolism through the

TCA cycle. Fig 5 shows the labeling for the MDA-MB-231 cells, where Fig C in S1 Appendix

shows the labeling for all three cell lines. Furthermore, production of citrate from AKG via the

IDH reaction—characterized by the exchange flux between AKG and citrate—increased for

each cell line due to high-lactate. These results suggest that the IDH reaction is highly revers-

ible for each breast cell line examined. The MFA simulations also suggested cell line specific

TCA cycle metabolic responses due to high-lactate, with major anaplerotic and TCA fluxes

remaining relatively unchanged for MCF 10A cells and MCF7 cells, while increasing for

MDA-MB-231 cells (Fig 7). In particular, the MFA model predicted increased fluxes through

pyruvate dehydrogenase (PDH) and citrate synthase (CS) for MDA-MB-231 in high lactate;

this suggests a more active oxidative mitochondrial metabolism for MDA-MB-231 cells under

high lactate, and is consistent with previous work showing that lactate promotes a metastatic

phenotype [7, 10].

Increases in fumarate, malate, and aspartate M3 labeling have also previously been observed

with increased reductive carboxylation to support lipid synthesis in cancer cells grown under

hypoxic conditions [18, 24, 25, 46–49]. This would result from [U-13C] glutamine serving as

the main source of citrate via reductive carboxylation. Yet, M3 labeling of fumarate, malate,

and aspartate did not significantly increase in this study. In this study, however, fumarate,

malate, and aspartate were primarily M2 and M4 labeled, as shown in Fig 5 for the MDA-MB-

231 cell line and shown in Fig C in S1 Appendix for all three cell lines. This indicates that the

TCA metabolites were mainly derived from the glucose-derived pyruvate via oxidative metab-

olism rather than reductive glutamine metabolism. This implies that glutamine via reductive

carboxylation was not the major carbon source for citrate synthesis in either condition. These

observations agree with previous studies in which reductive carboxylation was observed for
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cancer cells without shifting the net IDH flux from oxidative to reductive glutamine metabo-

lism in the TCA cycle [25, 48]. Jiang et al. 2016 also previously showed that increases in M5 cit-

rate labeling without accompanied changes to M3 fumarate and malate labeling is indicative of

reductive carboxylation for citrate and AKG shuttling rather than for lipid synthesis. By shut-

tling AKG and citrate from the mitochondria to the cytosol and back, cells can shuffle redox

equivalents to maintain a net-oxidative TCA metabolism [25]. This might suggest that in high-

lactate conditions, cancer cells utilize the reversible NADPH-depended IDH reactions (1 and

2) rather than the NAD+-dependent reaction (IDH3) to compensate for the loss in NAD+ gen-

eration as a result of decreased lactate production [25]. Recall, the two more aggressive breast

cancer cell lines examined in this study maintained equivalent exponential growth rates to the

control cultures at 20 mM lactate, while the MCF 10A cell line (a non-tumorigenic epithelial

cell line) failed to grow in the 20 mM lactate condition, but could maintain equivalent expo-

nential growth rates with the control cultures at 10 mM lactate.

Mammalian cells, including several cancer cell lines, have been observed to rely on reductive

carboxylation of glutamine for lipid synthesis under hypoxia [18, 46]. Reductive carboxylation

has also been suggested to be a cellular response to environmental stresses, such as reactive oxy-

gen species (ROS) regulation [25, 47]. These previous studies differ with the current work in

several ways. Mainly, the breast cell lines in this work were cultured in normoxia and in an

experimental setup which maintained similar growth rates even under stress. This meant that

the high-lactate MCF 10A cultures contained 10 mM lactate initially, whereas the high-lactate

MCF7 and MDA-MB-231 contained 20 mM lactate initially. In contrast to our results, Fendt

et al. 2013 observed a net consumption of lactate for a lung carcinoma cell line (A549) grown

under normoxia in 25 mM supplemented media [47]. In addition, Fendt et al. 2013 observed a

decreased contribution of reductive glutamine metabolism to citrate synthesis; however, there

was no mention if the growth rates were matched between the control and lactate stress condi-

tions [47]. Different growth rates could alter the observed metabolic fluxes as there is not a

standardized normalization method for fluxes. The non-growth inhibitory lactate concentra-

tions used in this study may very well have different effects on metabolism than lactate

concentrations that have inhibitory growth effects. This work is the first to observe reductive

glutamine metabolism due to high extracellular lactate in normoxia, but it may be a common

phenomenon, as there are many non-inhibitory levels of waste products within an organism.

While cancer cells have long been known to produce high levels of lactate, especially in hyp-

oxic tumor regions, cancer cells can also consume and metabolize lactate as a substrate [6, 9,

50]. The findings in this study highlight that high extracellular lactate induces a response

mechanism in both non-cancer and cancer cells, which is similar to hypoxia or other mito-

chondrial stresses, even in the presence of sufficient oxygen. In addition, lactate supplementa-

tion resulted in elevated oxidative mitochondrial metabolism activity for MDA-MB-231 cells,

as shown from the 13C-MFA simulations, and is consistent with previous work showing that

lactate promotes a metastatic phenotype [7, 10]. These results suggest that modulation of mito-

chondrial metabolism and reductive carboxylation are cellular metabolic responses to stress,

including high extracellular lactate and hypoxia. The observed response could also contribute

to the metabolic flexibility of cancer cells and allow for adaptation to high-lactate exposure.

Additionally, the response observed is lactate dependent and cell line independent, under

growth conditions where the cells can maintain exponential growth under the lactate stress.
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