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ABSTRACT Genetic material sequenced from ancient samples is revolutionizing our understanding of the recent evolutionary past.
However, ancient DNA is often degraded, resulting in low coverage, error-prone sequencing. Several solutions exist to this problem,
ranging from simple approach, such as selecting a read at random for each site, to more complicated approaches involving genotype
likelihoods. In this work, we present a novel method for assessing the relationship of an ancient sample with a modern population,
while accounting for sequencing error and postmortem damage by analyzing raw reads from multiple ancient individuals
simultaneously. We show that, when analyzing SNP data, it is better to sequence more ancient samples to low coverage: two
samples sequenced to 0.53 coverage provide better resolution than a single sample sequenced to 23 coverage. We also examined the
power to detect whether an ancient sample is directly ancestral to a modern population, finding that, with even a few high coverage
individuals, even ancient samples that are very slightly diverged from the modern population can be detected with ease. When we
applied our approach to European samples, we found that no ancient samples represent direct ancestors of modern Europeans. We
also found that, as shown previously, the most ancient Europeans appear to have had the smallest effective population sizes, indicating
a role for agriculture in modern population growth.
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ANCIENT DNA (aDNA) is now ubiquitous in population
genetics. Advances in DNA isolation (Dabney et al. 2013),

library preparation (Meyer et al. 2012), bone sampling (Pinhasi
et al. 2015), and sequence capture (Haak et al. 2015) make it
possible to obtain genome-wide data fromhundreds of samples
(Allentoft et al. 2015; Haak et al. 2015; Mathieson et al. 2015;
Fu et al. 2016). Analysis of these data can provide new insight
into recent evolutionary processes, which leave faint signatures
in modern genomes, including natural selection (Jewett et al.
2016; Schraiber et al. 2016) and population replacement
(Lazaridis et al. 2014; Sjödin et al. 2014).

One of the most powerful uses of aDNA is to assess the
continuity of ancient andmodern populations. Inmany cases,
it is unclear whether populations that occupied an area in the
past are the direct ancestors of the current inhabitants of that
area. However, this can be next to impossible to assess using
only modern genomes. Questions of population continuity
and replacement have particular relevance for the spread of
cultures and technology in humans (Lazaridis et al.2016). For
instance, recent work showed that modern South Americans
are descended from people associated with the Clovis culture
that inhabited North America over 10,000 years ago, further
enhancing our understanding of the peopling of the Americas
(Rasmussen et al. 2014).

Despite its utility in addressing difficult-to-answer ques-
tions in evolutionary biology, aDNA also has several limita-
tions.Most strikingly, DNA decays rapidly following the death
of an organism, resulting in highly fragmented, degraded
starting material when sequencing (Sawyer et al. 2012).
Thus, ancient data are frequently sequenced to low cov-
erage, and has a significantly higher rate of misleadingly
called nucleotides than modern samples. When working
with diploid data, as in aDNA extracted from plants and
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animals, the low coverage prevents genotypes from being
called with confidence.

Several strategies are commonly used to address the low-
coverage data. One of the most common approaches is to
sample a random read fromeach covered site, anduse that as
a haploid genotype call (Skoglund et al. 2012; Allentoft et al.
2015; Haak et al. 2015; Mathieson et al. 2015; Fu et al.
2016; Lazaridis et al. 2016). Many common approaches to
the analyses of aDNA, such as the usage of F-statistics
(Green et al. 2010; Patterson et al. 2012), are designed with
this kind of dataset in mind. F-statistics can be interpreted as
linear combinations of simpler summary statistics, and can
often be understood in terms of testing a tree-like structure
relating populations. Nonetheless, despite the simplicity
and appeal of this approach, it has several drawbacks. Pri-
marily, it throws away reads from sites that are covered
more than once, resulting in a potential loss of informa-
tion from expensive, difficult-to-acquire data. Moreover, as
shown by Peter (2016), F-statistics are fundamentally based
on heterozygosity, which is determined by samples of size 2,
and thus limited in power. Finally, these approaches are also
strongly impacted by sequencing error, postmortem damage
(PMD), and contamination.

On the other hand, several approaches exist to either work
with genotype likelihoods or the raw read data. Genotype
likelihoods are the probabilities of the read data at a site, given
each of the three possible diploid genotypes at that site. They
can be used in calculation of population genetic statistics, or
likelihood functions, to average over uncertainty in the geno-
type (Korneliussen et al. 2014). However, many such ap-
proaches assume that genotype likelihoods are fixed by the
SNP calling algorithm [although they may be recalibrated to
account for aDNA-specific errors, as in Jónsson et al. (2013)].
However, with low coverage data, an increase in accuracy is
expected if genotype likelihoods are coestimated with other
parameters of interest, due to the covariation between process-
es that influence read quality and genetic diversity, such as
contamination.

A recentmethod that coestimates demographic parameters,
along with error and contamination rates, by using genotype
likelihoods, showed that there can be significant power to
assess the relationship of a single ancient sample to a modern
population (Racimo et al. 2016). Nonetheless, they found that,
for very low coverage data, inferences were not reliable. Thus,
they were unable to apply their method to the large number of
extremely low coverage (, 13) genomes that are available.
Moreover, they were unable to explore the tradeoffs that come
with a limited budget: can we learn more by sequencing fewer
individuals to high coverage, or more individuals at lower
coverage?

Here, we develop a novel maximum likelihood approach
for analyzing low coverage aDNA in relation to a modern
population.Wework directly with raw read data and explicitly
model errors due to sequencing and portmortem damage.
Crucially, our approach incorporates data from multiple indi-
viduals that belong to the same ancient population, which we

show substantially increases power and reduces error in pa-
rameter estimates. We then apply our new methodology to
ancient human data, and show that we can perform accurate
demographic inference, even from very low coverage samples,
by analyzing them jointly.

Methods

Sampling alleles in ancient populations

We assume a scenario in which allele frequencies are known
with high accuracy in a modern population. Suppose that an
allele is known to be at frequency x 2 ð0; 1Þ in the modern
population, and we wish to compute the probability of
obtaining k copies of that allele in a sample of n (0# k# n)
chromosomes from an ancient population. As we show in the
Appendix, conditioning on the frequency of the allele in the
modern population minimizes the impact of ascertainment,
and allows this approach to be used for SNP capture data.

To calculate the sampling probability, we assume a simple
demographicmodel, inwhich the ancient individual belongs to
a population that split off from the modern population t1 gen-
erations ago, and subsequently existed as an isolated popula-
tion for t2 generations. Further, we assume that the modern
population has effective size Nð1Þ

e ; and that the ancient popu-
lation has effective size Nð2Þ

e ; and measure time in diffusion
units, ti ¼ ti=ð2NðiÞ

e Þ: If we know the conditional probability
that an allele is at frequency y in the ancient sample, given that
it is at frequency x in the modern population, denoted
f ðy; x; t1; t2Þ; then the sampling probability is simply an
integral,

Pn;kðxÞ ¼
Z 1

0

� n
k

�
ykð12yÞn2k f ð y; x; t1; t2Þdy

¼
�n
k

�
ExðYkð12YÞn2k; t1; t2Þ

[
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k

�
pn;kðt1; t2Þ

(1)

Thus, we must compute the binomial moments of the allele
frequency distribution in the ancient population. In the Appendix,
we show that this can be computed usingmatrix exponentiation,

pn;kðt1; t2Þ ¼
�
eQt2eQ

Yt1hn
�
i
; (2)

where ðvÞi indicates the ith element of the vector v;
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QY
ij ¼

1
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iði2 1Þ if   j ¼ i2 1

2iðn2 iþ 1Þ if   j ¼ i

1
2
ðn2 iþ 1Þðn2 iÞ if   j ¼ iþ 1

0 else:
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This result has an interesting interpretation: thematrixQY can
be thought of as evolving the allele frequencies back in time,
from the modern population to the common ancestor of the
ancient and modern populations, while Q evolves the allele
frequencies forward in time, from the common ancestor to
the ancient population (Figure 1).

Because of the fragmentation and degradation of DNA that
is inherent inobtainingsequencedata fromancient individuals,
it is difficult to obtain thehigh coveragedata necessary tomake
highqualitygenotypecalls fromancient individuals.Toaddress
this, we instead work directly with raw read data, and average
over all the possible genotypesweighted by their probability of
producing thedata. Specifically,we followNielsen et al. (2012)
in modeling the probability of the read data in the ancient
population, given the allele frequency at site l as

ℙðRljkÞ ¼
X2
g1;l¼0

. . .
X2
gn;l¼0

I

 Xm
i¼1

gi;l ¼ k

!Yn
i¼1

 
2

gi;l

!
ℙ
�
Ri;ljgi;l

�
;

where Ri;l ¼ ðai;l; di;lÞ are the counts of ancestral and derived
reads in individual i at site l, gi;l 2 f0; 1; 2g indicates the pos-
sible genotype of individual i at site l (i.e., 0 = homozygous
ancestral, 1 = heterozygous, 2 = homozygous derived), and
ℙðRi;ljgi;lÞ is the probability of the read data at site l for indi-
vidual i, assuming that the individual truly has genotype gi;l:
We use a binomial sampling with error model, in which the
probability that a truly derived site appears ancestral (and vice
versa) is given by e. We emphasize that the parameter e will
capture both sequencing error as well as PMD [cf. Racimo et al.
(2016), who found that adding an additional parameter to
specifically model PMD does not improve inferences]. Thus,

ℙðRjgÞ ¼
� aþ d

d

�
pdgð12pgÞa

with

p0 ¼ e

p1 ¼ 1
2

p2 ¼ 12 e

Combining these two aspects together by summing over
possible allele frequencies weighted by their probabilities,
we obtain our likelihood of the ancient data,

LðDÞ ¼
YL
l¼1

Xn
k¼0

ℙðRljkÞpn;kðxlÞ: (3)

Data availability

Themost recent Python implementations of the describedmeth-
ods are available at www.github.com/schraiber/continuity/. A
snapshot of the code used as of the publication of themanuscript
is available at https://zenodo.org/record/1054127.

Results

Impact of coverage and number of samples
on inferences

To explore the tradeoff of sequencing more individuals at
lower depth compared to fewer individuals at higher cover-
age, we performed simulations using msprime (Kelleher et al.
2016) combined with custom scripts to simulate error and
low coverage data. Briefly, we assumed a Poisson distribution
of reads at every site with mean given by the coverage, and
then simulated reads by drawing from the binomial distribu-
tion described in the Methods.

First, we examined the impact of coverage and number of
samples on the ability to recover the drift times in themodern

Figure 1 The generative model. Alleles are found at
frequency x in the modern population, and are at fre-
quency y in the ancient population. The modern popu-
lation has effective size Nð1Þ

e and has evolved for t1
generations since the common ancestor of the modern
and ancient populations, while the ancient population is
of size Nð2Þ

e and has evolved for t2 generations. Ancient
diploid samples are taken and sequenced to possibly low
coverage, with errors. Arrows indicate that the sampling
probability can be calculated by evolving alleles back-
ward in time from the modern population, and then for-
ward in time to the ancient population.
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and ancient populations. Figure 2 shows results for data sim-
ulated with t1 ¼ 0:02 and t2 ¼ 0:05; corresponding to an
ancient individual who died 300 generations ago from a pop-
ulation of effective size 1000. The populations split 400 gen-
erations ago, and the modern population has an effective size
of 10,000. We simulated �180,000 SNPs by simulating
100,000 500-bp fragments. Inferences of t1 can be relatively
accurate even with only one low coverage ancient sample

(Figure 2A). However, inferences of t2 benefit much more
from increasing the number of ancient samples, as opposed
to coverage (Figure 2B). Supplemental Material, Table S1
shows that there is very little change in the average estimated
parameter, indicating that most of the change in RMSE is due
to decreased sampling variance. Thus, two individuals se-
quenced to 0.53 coverage have a much lower error than a
single individual sequenced to 23 coverage, even though

Figure 2 Impact of sampling scheme on parameter estimation error. In each panel, the x-axis represents the number of simulated ancient samples,
while the y-axis shows the relative root mean square error for each parameter. Each different line corresponds to individuals sequenced to different
depth of coverage. (A) shows results for t1 while (B) shows results for t2: Simulated parameters are t1 ¼ 0:02 and t2 ¼ 0:05:

Figure 3 Impact of sampling
scheme on rejecting population
continuity. The x-axis represents
the age of the ancient sample in
generations, with 0 indicating a
modern sample and 400 indicat-
ing a sample from exactly at the
split time 400 generations ago.
The y-axis shows the proportion of
simulations in which we rejected
the null hypothesis of population
continuity. Each line shows different
sampling schemes, as explained in
the legend.
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there is very little bias in either case. To explore this effect
further, we derived the sampling probability of alleles cov-
ered by exactly one sequencing read (see Appendix). We
found that sites covered only once have no information about
t2; suggesting that evidence of heterozygosity is very impor-
tant for inferences about t2: Finally, though we showed
through simulation that there is sufficient power to disentan-
gle t1 from t2; estimates of these parameters are negatively
correlated, due to the necessity of fitting the total drift time
t1 þ t2 (Figure S1; all supplementary legends can be found in
File S1).

We next examined the impact of coverage and sampling on
the power to reject the hypothesis that the ancient individuals
came fromapopulation that isdirectlyancestral to themodern
population. We analyzed both low coverage (0.53) and
higher coverage (43) datasets consisting of one (for both
low and high coverage samples) or five individuals (only
for low coverage). We simulated data with parameters iden-
tical to the previous experiment, except we now examined
the impact of varying the age of the ancient sample from
0 generations ago through to the split time with the modern
population. We then performed a likelihood ratio test com-
paring the null model of continuity, in which t2 ¼ 0; to a
model in which the ancient population is not continuous.
Figure 3 shows the power of the likelihood ratio test. For a
single individual sequenced to low coverage, we see that the
test only has power for very recently sampled ancient indi-
viduals (i.e., samples that are highly diverged from the mod-
ern population). However, the power increases dramatically
as the number of individuals or the coverage per individual
is increased; sequencing five individuals to 0.53 coverage
results in essentially perfect power to reject continuity. None-
theless, for samples that are very close to the divergence
time, it will be difficult to determine if they are ancestral

to the modern population or not, because differentiation is
incomplete.

Impact of admixture

We examined two possible ways that admixture can result in
violations of the model to assess their impact on inference. In
many situations, there may have been secondary contact
between the population from which the ancient sample is
derived and the modern population used as a reference. We
performed simulations of this situation by modifying the
simulation corresponding to Figure 2 (300-generation-old
ancient sample from population of size 1000 split from a
population of size 10,000 400 generations ago) to include
subsequent admixture from the ancient population to the
modern population 200 generations ago (NB: this admixture
occurredmore recently than the ancient sample). In Figure 4,
we show the results for admixture proportions ranging from
0 to 50%: Counterintuitively, estimates of t1 initially decrease
before again increasing. This is likely a result of the increased
heterozygosity caused by admixture, which acts to artificially
inflate the effective size of the modern population, and, thus,
decrease t1: As expected, t2 is estimated to be smaller the
more admixture there is; indeed, for an admixture rate of
100%; the modern and ancient samples are continuous.
The impact on t2 appears to be linear, and is well approxi-
mated by ð12 f Þt2 if the admixture fraction is f.

In other situations, there may be admixture from an
unsampled “ghost” population into the modern population.
If the ghost admixture is of a high enough proportion, it is
likely to cause a sample that is, in fact, a member of a directly
ancestral population to appear not to be ancestral. We ex-
plored this situation by augmenting our simulations in which
the ancient sample is continuous with an outgroup popula-
tion diverged from the modern population 0.04 time units

Figure 4 Impact of admixture from the ancient population on inferred parameters. The x-axis shows the admixture proportion, and the y-axis shows the
average parameter estimate across simulations. Each line corresponds to a different sampling strategy, as indicated in the legend. (A) shows results for t1
and (B) shows results for t2: The true values of t1 ¼ 0:02 and t2 ¼ 0:05 are indicated by dashed lines.

Sampling Ancient Individuals 387

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.300448/-/DC1/FigureS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.300448/-/DC1/FileS1.pdf


ago (corresponding to 800 generations ago), and contributed
genes to the modern population 0.01 time units ago (corre-
sponding to 200 generations ago). We then assessed the im-
pact on rejecting continuity using the likelihood ratio test
(Figure 5). As expected, we see that low-power sampling
strategies (such as a single individual sequenced to low cov-
erage) are very minimally impacted by ghost admixture.
However, for more powerful sampling strategies, moder-
ate rates of ghost admixture (� 10%) result in rejection of
continuity.

Impact of contamination

Wealso explored the impact of foreignDNA contamination on
inferences made using this approach. Briefly, wemodified the
simulations to include a chance c of a read being from a
modern sample instead of the ancient sample when simulat-
ing reads. We again simulated data corresponding to Figure
2, with a 300-generation-old ancient sample from population
of size 1000 split from a population of size 10,000 400 gen-
erations ago. In Figure 6, we see that relatively modest

amounts of contamination can result in estimating zero, or
near-zero, drift times. Interestingly, for the same contamina-
tion fraction, higher coverage samples are impacted slightly
less. Together, this suggests that contamination will result in
samples to be falsely inferred to be directly continuous with
the modern population.

Application to ancient humans

We applied our approach to ancient human data from
Mathieson et al. (2015), which is primarily derived from a
SNP capture approach that targeted 1.2 million SNPs. Based
on sampling location and associated archeological materials,
the individuals were grouped into a priori panels, which we
used to specify population membership when analyzing indi-
viduals together. We analyzed all samples for their relation-
ship to the CEU individuals from the 1000 Genomes Project
Consortium (2015). Based on our results, which suggested
that extremely low coverage samples would yield unreliable
estimates, we excluded panels that are composed of only a
single individual sequenced to ,23 coverage.

Figure 5 Impact of ghost admixture on rejecting continuity. The x-axis shows the admixture proportion from the ghost population, and the y-axis shows
the fraction of simulations in which continuity was rejected. Each line corresponds to a different sampling strategy, as indicated in the legend.
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We computed maximum likelihood estimates of t1 and t2
for individuals as grouped into populations (Figure 7A and
Table 1). We observe that t2 is significantly greater than zero
for all populations according to the likelihood ratio test.
Thus, none of these populations are consistent with directly
making up a large proportion of the ancestry of modern CEU
individuals. Strikingly, we see that t2 � t1; despite the fact
these samples died in the past, and thus they belonged to a
lineage thatmust have existed for fewer generations since the
population split than the modern samples. This suggests that
all of the ancient populations are characterized by extremely
small effective population sizes.

We further explored the relationship between the dates of
the ancient samples and the parameters of the model by
plotting t1 and t2 against the mean sample date of all samples
in that population (Figure 7, B and C). We expected to find
that t1 correlatedwith sample age, under the assumption that
samples were members of relatively short-lived populations
that diverged from the “main-stem” of CEU ancestry. Instead,
we see no correlation between t1 and sample time, suggesting
that the relationship of these populations to the CEU is com-
plicated, and not summarized well by the age of the samples.
On the other hand, we see a strong positive correlation be-
tween t2 and sampling time (P, 13 1024). Because t2 is a
compound parameter, it is difficult to directly interpret this
relationship. However, it is consistent with the most ancient
samples belonging to populations with the smallest effective
sizes, consistent with previous observations (Skoglund et al.
2014).

Finally, we examined the impact of grouping individuals
into populations in real data. We see that estimates of t1 for
low coverage samples are typically lower when analyzed in-
dividually than when pooled with other individuals of the
same panel (Figure 8A); because Table S1 shows that there
is no downward bias in t1 for low coverage, this suggests that

there may be some heterogeneity in these panels. On the
other hand, there is substantial bias toward overestimating
t2 when analyzing samples individually, particularly for very
low coverage samples (Figure 8B). This again shows that, for
estimates that rely on heterozygosity in ancient populations,
pooling many low coverage individuals can significantly im-
prove estimates.

Discussion

aDNA presents unique opportunities to enhance our under-
standing of demography and selection in recent history. How-
ever, it also comes equipped with several challenges, due to
DNA PMD (Sawyer et al. 2012). Several strategies have been
developed to deal with the low quality of aDNA data, from
relatively simple options like sampling a read at random at
every site (Green et al. 2010) to more complicated methods
making use of genotype likelihoods (Racimo et al. 2016).
Here, we presented a novel maximum likelihood approach
for making inferences about how ancient populations are re-
lated to modern populations by analyzing read counts from
multiple ancient individuals, and explicitly modeling rela-
tionship between the two populations. We explicitly condi-
tion on the allele frequency in a modern population; as we
show in the Appendix, this renders our method robust to
ascertainment in modern samples. Thus, it can be used with
SNP capture data. Moreover, confidence intervals can be cal-
culated using a nonparametric bootstrap, although this will
be computational intensive for large ancient panels, such as
those considered in this manuscript. Using this approach, we
examined some aspects of sampling strategy for aDNA anal-
ysis, and we applied our approach to ancient humans.

We found that sequencing many individuals from an an-
cient population to low coverage (0.5–13) can be a signifi-
cantly more cost-effective strategy than sequencing fewer

Figure 6 Impact of contamination on parameter inference. The x-axis shows the contamination fraction, and the y-axis shows the average parameter
estimate from simulations. Each line corresponds to a different sampling strategy, as indicated in the legend. (A) shows t1; and (B) shows t2: Dashed lines
indicate the true values of t1 ¼ 0:02 and t2 ¼ 0:05:
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individuals to relatively high coverage. For instance, we saw
from simulations that far more accurate estimates of the drift
time in an ancient population can be obtained by pooling two

individuals at 0.53 coverage than by sequencing a single in-
dividual to 23 coverage (Figure 2). We saw this replicated in
our analysis of the real data: low coverage individuals

Figure 7 Parameters of the model inferred from ancient West Eurasian samples. (A) shows t1 on the x-axis and t2 on the y-axis, with each point
corresponding to a population as indicated in the legend. Numbers in the legend correspond to the mean date of all samples in the population. (B and
C) Scatterplots of the mean age of the samples in the population (x-axis) against t1 and t2; respectively. Points are described by the same legend as (A).
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showed a significant amount of variation and bias in estimat-
ing the model parameters that was substantially reduced
when individuals were analyzed jointly in a population (Fig-
ure 8). To explore this further, we showed that sites se-
quenced to 13 coverage in a single individual retain no
information about the drift time in the ancient population.
This can be intuitively understood because the drift time in
the ancient population is strongly related the amount of het-
erozygosity in the ancient population: an ancient population
with a longer drift timewill have lower heterozygosity at sites
shared with a modern population. When a site is only se-
quenced once in a single individual, there is no information
about the heterozygosity of that site. We also observed a pro-
nounced upward bias in estimates of the drift time in the
ancient population from low coverage samples. We speculate
that this is due to the presence of few sites covered more than
once being likely to be homozygous, thus deflating the esti-
mate of heterozygosity in the ancient population. Thus, for
analysis of SNP data, we recommend that aDNA sampling be
conduced to maximize the number of individuals from each
ancient population that can be sequenced to �13, rather
than attempting to sequence fewer individuals to high cov-
erage. This suggestion can be complicated when samples
have vastly different levels of endogenous DNA, where it
may be cost effective to sequence high quality samples to
higher coverage. In that case, we recommend sequencing
samples to at least 3–43 coverage; as evidenced by Figure

2 and Figure 3, single samples at , 43 coverage provide
extremely limited information about the drift time in the an-
cient population, and, thus, little power to reject continuity.

When we looked at the impact of model misspecification,
we saw several important patterns. First, the influence of
admixture from the ancient population on inferences of t2
is approximately linear, suggesting that if there are estimates
of the amount of admixture between the modern and ancient
population, a bias-corrected estimate of t2 could be produced
(Figure 4B). The impact on inference of t1 is more compli-
cated: admixture actually reduces estimates of t1 (Figure 4A).
This is likely because admixture increases the heterozygosity
in the modern population, thus causing the amount of drift
time to seem reduced. In both cases, the bias is not impacted
by details of sampling strategy, although the variance of es-
timates is highly in a way consistent with Figure 2.

Of particular interest in many studies of ancient popula-
tions is the question of direct ancestry: are the ancient samples
members of a population that contributed substantially to a
modern population? We emphasize that this does not mean
that the particular samples were direct ancestors of any
modern individuals; indeed, this is exceedingly unlikely for
old samples (Donnelly 1983; Chang 1999; Baird et al. 2003;
Rohde et al. 2004). Instead, we are askingwhether an ancient
sample was a member of a population that is directly contin-
uous with a modern population. Several methods have been
proposed to test this question, but thus far they have been

Table 1 Details of populations included in analysis

Pop Cov Date t1 t2 lnL t1 (Cont) lnL (Cont)

Alberstedt_LN 12.606 4417.000 0.005 0.013 2779,411.494 0.006 2779,440.143
Anatolia_Neolithic 3.551 8317.500 0.010 0.042 29,096,440.714 0.044 29,106,156.877
Baalberge_MN 0.244 5684.333 0.001 0.071 2201,575.306 0.007 2201,750.419
Bell_Beaker_Germany 1.161 4308.444 0.003 0.010 21,834,486.744 0.008 21,834,652.858
BenzigerodeHeimburg_LN 0.798 4209.750 0.003 0.032 2346,061.545 0.007 2346,134.356
Corded_Ware_Germany 2.250 4372.833 0.005 0.023 22,139,002.723 0.017 22,139,858.192
Esperstedt_MN 30.410 5238.000 0.005 0.029 2975,890.329 0.009 2976,047.889
Halberstadt_LBA 5.322 3082.000 0.003 0.015 2558,966.522 0.004 2558,993.078
Hungary_BA 3.401 3695.750 0.004 0.023 2789,754.969 0.010 2789,939.889
Hungary_CA 5.169 4869.500 0.005 0.037 2504,413.094 0.010 2504,549.603
Hungary_EN 4.033 7177.000 0.007 0.036 23,478,429.262 0.033 23,481,855.461
Hungary_HG 5.807 7763.000 0.000 0.147 2469,887.471 0.015 2471,652.083
Iberia_Chalcolithic 1.686 4630.625 0.005 0.037 22,351,769.869 0.028 22,354,249.543
Iberia_EN 4.875 7239.500 0.005 0.053 21,483,274.628 0.030 21,485,675.934
Iberia_MN 5.458 5765.000 0.004 0.039 21,491,407.962 0.023 21,492,793.179
Iberia_Mesolithic 21.838 7830.000 0.009 0.141 2720,759.133 0.030 2723,091.935
Karelia_HG 2.953 7265.000 0.008 0.125 2652,952.676 0.033 2655,352.439
LBK_EN 2.894 7123.429 0.007 0.039 23,656,617.954 0.033 23,660,838.639
Motala_HG 2.207 7729.500 0.003 0.126 21,477,338.076 0.068 21,489,573.895
Poltavka 2.211 4684.500 0.008 0.029 21,334,662.071 0.020 21,335,358.630
Potapovka 0.267 4076.500 0.004 0.063 2220,112.816 0.011 2220,251.379
Samara_Eneolithic 0.463 6615.000 0.007 0.078 2362,161.674 0.020 2362,689.209
Scythian_IA 3.217 2305.000 0.012 0.011 2492,961.306 0.013 2492,973.694
Srubnaya 1.662 3653.273 0.004 0.015 22,578,065.957 0.013 22,578,645.731
Srubnaya_Outlier 0.542 3704.500 0.006 0.019 2285,828.766 0.008 2285,851.523
Unetice_EBA 1.320 4024.786 0.002 0.012 21,676,798.610 0.008 21,677,026.310
Yamnaya_Samara 1.937 4990.500 0.008 0.033 22,440,183.354 0.028 22,442,192.801

Pop, population name; cov, mean coverage of individuals in the population; date, mean date of individuals in the population; t1;maximum likelihood estimate of t1 in the full
model; t2;maximum likelihood estimate of t2 in the full model; LnL, maximum likelihood value in the full model; t1 (cont), maximum likelihood estimate of t1 in the model
where t2 ¼ 0; LnL, maximum likelihood value in the model where t2 ¼ 0:
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limited to many individuals sequenced at a single locus
(Sjödin et al. 2014) or to a single individual with genome-
wide data (Rasmussen et al. 2014). Our approach provides a
rigorous, maximum-likelihood framework for testing ques-
tions of population continuity using multiple low coverage
ancient samples. We saw from simulations (Figure 3) that
data from single, low coverage individuals result in very little
power to reject the null hypothesis of continuity unless the
ancient sample is very recent (i.e., it has been diverged from
the modern population for a long time). Nonetheless, when
low coverage individuals are pooled together, or a single high
coverage individual is used, there is substantial power to re-
ject continuity for all but the most ancient samples (i.e., sam-
ples dating from very near the population split time).

Because many modern populations may have experienced
admixture from unsampled “ghost” populations, we also per-
formed simulations to test the impact of ghost admixture on
the probability of falsely rejecting continuity. We find that
single ancient samples do not provide sufficient power to re-
ject continuity, even for high levels of ghost admixture, while
increasingly powerful sampling schemes, adding more indi-
viduals or higher coverage per individual, reject continuity at
higher rates. However, in these situations, whether we regard
rejection of continuity as a false or true discovery is some-
what subjective: how much admixture from an outside pop-
ulation is required before considering a population to not be
directly ancestral? In future work it will be extremely impor-
tant to estimate the “maximum contribution” of the popula-
tion an ancient sample comes from (cf. Sjödin et al. 2014).

To gain new insights from empirical data, we applied our
approach to ancient samples throughout Europe. Notably, we
rejectedcontinuity forall populations thatweanalyzed.This is
unsurprising, given that European history is extremely com-
plicated, and has been shaped by many periods of admixture
(Lazaridis et al. 2014, 2016; Haak et al. 2015). Thus, modern
Europeans have experienced many periods of “ghost” admix-
ture (relative to any particular ancient sample). Nonetheless,
our results show that none of these populations are even
particularly close to directly ancestral, as our simulations
have shown that rejection of continuity will not occur with
low levels of ghost admixture.

Second, we observed that the drift time in the ancient
population was much larger than the drift time in themodern
population. Assuming that the ancient sample were a con-
temporary sample, the ratio t1=t2 is an estimator of the ratio
Nð2Þ
e =Nð1Þ

e ; in fact, because the ancient sample existed for
fewer generations since the common ancestor of the ancient
and modern populations, t1=t2 acts as an upper bound on
Nð2Þ
e =Nð1Þ

e : Moreover, this is unlikely to be due to unmodeled
error in the ancient samples: error would be expected in-
crease the heterozygosity in the ancient sample, and thus
decrease our estimates of t2: Another potential complication
is the fact that modern Europeans are a mixture of multiple
ancestral populations (Lazaridis et al. 2014; Haak et al.
2015). As shown through simulation, admixture increases
heterozygosity in the modern population and thus de-
creases estimates of t1: However, even very large amounts
of ghost admixture did not result in the order-of-magnitude

Figure 8 Impact of pooling individuals into populations when estimating model parameters from real data. In both panels, the x-axis indicates the
parameter estimate when individuals are analyzed separately, while the y-axis indicates the parameter estimate when individuals are grouped into
populations. Size of points is proportional to the coverage of each individual. (A) reports the impact on estimation of t1; while (B) reports the impact on
t2: Note that (B) has a broken x-axis. Solid lines in each figure indicate y ¼ x:
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differences we see in the real data, suggesting that ghost
admixture cannot account for all the discrepancy between
modern and ancient Ne: Thus, we find strong support for
the observation that ancient Europeans were often members
of small, isolated populations (Skoglund et al. 2014). We
interpret these two results together as suggestive that many
ancient samples found thus far in Europe were members of
small populations that ultimately went locally extinct. None-
theless, there may be many samples that belonged to larger
metapopulations, and further work is necessary to specifi-
cally examine those cases.

We further examined the effective sizes of ancient popu-
lations through time by looking for a correlation between the
age of the ancient populations and the drift time leading to
them (Figure 7C). We saw a strong positive correlation, and,
although this drift time is a compound parameter, which
complicates interpretations, it appears that the oldest Euro-
peans were members of the smallest populations, and that
effective population size has grown through time as agricul-
ture spread through Europe.

We anticipate the further development of methods that
explicitly account for differential drift times in ancient and
modern samples will become important as aDNA research
becomes evenmore integrated intopopulationgenomics. This
is because many common summary methods, such as the
use of Structure (Pritchard et al. 2000) and Admixture
(Alexander et al. 2009), are sensitive to differential amounts
of drift between populations (Falush et al. 2016). As we have
shown in ancient Europeans, ancient samples tend to come
from isolated subpopulations with a large amount of drift,
thus confounding such summary approaches. Moreover, stan-
dard population genetics theory shows that allele frequencies
are expected to be deterministically lower in ancient samples,
even if they are direct ancestors of a modern population. In-
tuitively, this arises because the alleles must have arisen at
some point from new mutations, and thus were at lower
frequencies in the past. A potentially fruitful avenue to com-
bine these approaches moving forward may be to separate
regions of the genome based on ancestry components, and
assess the ancestry of ancient samples relative to specific
ancestry components, rather than to genomes as a whole.

Our current approach leaves several avenues for improve-
ment. We use a relatively simple error model that wraps up
both PMDand sequencing error into a single parameter.While
Racimo et al. (2016) shows that adding an additional param-
eter for PMD-related error does not significantly change re-
sults, the recent work of Kousathanas et al. (2017) shows that
building robust error models is challenging and essential to
estimating heterozygosity properly. Although our method is
robust to nonconstant demography because we consider only
alleles that are segregating in both the modern and the an-
cient population, we are losing information by not modeling
newmutations that arise in the ancient population. Similarly,
we only consider a single ancient population at a time, albeit
with multiple samples. Ideally, ancient samples would be
embedded in complex demographic models that include ad-

mixture, detailing their relationships to each other and to
modern populations (Patterson et al. 2012; Lipson and Reich
2017). However, inference of such complex models is diffi-
cult, and, though there has been some progress in simplified
cases (Pickrell and Pritchard 2012; Lipson et al. 2014), it
remains an open problem due to the difficult of simulta-
neously inferring a nontree-like topology along with demo-
graphic parameters. Software such as momi (Kamm et al.
2017), which can compute the likelihood of SNP data in an
admixture graph, may be able to be used to integrate over
genotype uncertainty in larger settings than considered here.
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Appendix

Computing Allele Frequency Moments in the Ancient Population

We wish to compute moments of the form

Ex
�
gðYÞ; t1; t2

� ¼Z 1

0
gðyÞfðy; x; t1; t2Þdy (4)

To do so,wemake use of several results fromdiffusion theory. To ensure that this paper is self-contained,we briefly review those
results here. The interested reader may find much of this material covered in Karlin and Taylor (1981) and Ewens (2012).
Several similar calculations can be found in Griffiths (2003).

Let the probability of an allele going from frequency x to frequency y in t generations in a population of size Ne be f ðx; y; tÞ;
where t ¼ t=ð2NeÞ: Under a wide variety of models, the change in allele frequencies through time is well approximated by the
Wright-Fisher diffusion, which is characterized by its generator,

L ¼ 1
2
xð12 xÞ d2

dx2
:

The generator of a diffusion process is useful, because it can be used to define a differential equation for the moments of that
process,

d
dt
Ex
�
gðXtÞ

� ¼ Ex
�LgðXtÞ�: (5)

We will require the speed measure of the Wright-Fisher diffusion,mðxÞ ¼ x21ð12xÞ21; which essentially describes how slow a
diffusion at position x is “moving” compared to a Brownian motion at position x. Note that all diffusions are reversible with
respect to their speed measures, i.e.

mðxÞ f ðx; y; tÞ ¼ mðyÞ f ðy; x; tÞ:

We additionally require the probability of loss, i.e. the probability that the allele currently at frequency x is ultimately lost from
the population. This is

u0ðxÞ ¼ 12 x:

Note that it is possible to condition theWright-Fisher diffusion to eventually be lost. The transition density can be computed as

fYðx; y; tÞ ¼ f ðx; y; tÞ u0ðyÞ
u0ðxÞ

by using Bayes theorem. The diffusion conditioned on loss is characterized by its generator,

LY ¼ 2 x
d
dx

þ 1
2
xð12 xÞ d2

dx2
:

In an infinite sitesmodel, inwhichmutations occur at the times of a Poisson process with rate u=2; and then each drift according
to the Wright-Fisher diffusion, a quasi-equilibrium distribution will be reached, known as the frequency spectrum. The
frequency spectrum, fðxÞ; predicts the number of sites at frequency x, and can be written in terms of the speed measure
and the probability of loss,

fðxÞ ¼ umðxÞu0ðxÞ:
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To proceedwith calculating (4), note that the conditional probability of an allele being at frequency y in the ancient population,
given that it is at frequency x in the modern population, can be calculated as

f ðy; x; t1; t2Þ ¼ fðx; y; t1; t2Þ
fðxÞ

where f ðx; y; t1; t2Þ is the joint probability of the allele frequencies in the modern and ancient populations, and fðxÞ is the
frequency spectrum in the modern population.

Assuming that the ancestral population of themodern and ancient samples was at equilibrium, the joint distribution of allele
frequencies canbe computedby samplingalleles fromthe frequency spectrumof theancestor, andevolving themforward in time
via the Wright-Fisher diffusion. This can be written mathematically as

f ðx; y; t1; t2Þ ¼
Z 1

0
f ðz; x; t1Þ f ðz; y; t2ÞfðzÞdz:

We now expand the frequency spectrum in terms of the speed measure and the probability of loss and use reversibility with
respect to the speed measure to rewrite the equation,Z 1

0
f ðz; x; t1Þ f ðz; y; t2ÞfðzÞdz ¼ u

Z 1

0
f ðz; x; t1Þ f ðz; y; t2ÞmðzÞu0ðzÞdz

¼ u

Z 1

0

mðxÞ
mðzÞ f ðx; z; t1Þ f ðz; y; t2ÞmðzÞu0ðzÞdz

¼ umðxÞu0ðxÞ
Z 1

0
fðx; z; t1Þ u0ðzÞu0ðxÞ fðz; y; t2Þdz

¼ fðxÞ
Z 1

0
fYðx; z; t1Þ f ðz; y; t2Þdz:

The third line follows by multiplying by u0ðxÞ=u0ðxÞ ¼ 1: This equation has the interpretation of sampling an allele from the
frequency spectrum in the modern population, then evolving it backward in time to the common ancestor, before evolving it
forward in time to the ancient population. The interpretation of the diffusion conditioned on loss as evolving backward in time
arises by considering the fact that alleles arose from unique mutations at some point in the past; hence, looking backward,
alleles must eventually be lost at some point in the past.

To compute the expectation, we substitute this form for the joint probability into (4),Z 1

0
gðyÞf ðy; x; t1; t2Þdy ¼

Z 1

0
gðyÞ

 Z 1

0
fYðx; z; t1Þ f ðz; y; t2Þdz

!
dy

¼
Z 1

0

 Z 1

0
gðyÞf ðz; y; t2Þdy

!
fYðx; z; t1Þdz;

where the second line follows by rearranging terms and exchanging the order of integration. Note that this formula takes the
form of nested expectations. Specifically, Z 1

0
gðyÞ f ðz; y; t2Þdy ¼ EzðgðYt2ÞÞ

[hðzÞ

and Z 1

0
hðzÞ fYðx; z; t1Þdz ¼ E

Y
x ðhðZt1ÞÞ

¼ ExðgðYÞ; t1; t2Þ:

We now use (5) to note that
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d
dt

pn;k ¼
kðk2 1Þ

2
pn;k21 2 kðn2 kÞpn;k þ

ðn2 kÞðn2 k2 1Þ
2

pn;kþ1

and

d
dt

pYn;k ¼ kðk2 1Þ
2

pYn;k212 kðn2 kþ 1ÞpYn;k þ
ðn2 kþ 1Þðn2 kÞ

2
pYn;kþ1

with obvious boundary conditions pn;kð0; zÞ ¼ zkð12zÞn2k and pYn;kð0; xÞ ¼ xkð12xÞn2k:

These systems of differential equations can be rewritten as matrix differential equations with coefficient matrices Q and QY

respectively. Because they are linear, first order equations, they can be solved by matrix exponentiation. Because the expec-
tation of a polynomial in theWright-Fisher diffusion remains a polynomial, the nested expectations can be computed viamatrix
multiplication of the solutions to these differential equations, yielding the formula (2).

Robustness to Ascertainment in the Modern Population

By conditioning on the allele frequency in the modern population, we gain the power to make inferences that are robust to
ascertainment in the modern population. To see this, note from Equation 3 in Nielsen and Signorovitch (2003) that

f ðxjAÞ ¼ f ðx;AÞ
f ðAÞ

where A indicates the event that the allelewas ascertained in themodern population. A simple generalization of this shows that

fðx; yjAÞ ¼ f ðx; y;AÞ
fðAÞ :

So,

fðyjx;AÞ ¼ f ðx; yjAÞ
f ðxjAÞ

¼ f ðx; y;AÞ
fðx;AÞ

¼ f ðAjx; yÞf ðx; yÞ
fðAjxÞf ðxÞ

¼ f ðx; yÞ
f ðxÞ

where the final line follows by recognizing that f ðAjx; yÞ ¼ f ðAjxÞ since the allele was ascertained in the modern population.
Thus, we see that the ascertainment is removed by conditioning, and we recover the original formula. Note that the robustness
to ascertainment is only exact if the allele is ascertained in the modern population, but is expected to be very close to true, so
long as the allele is ascertained in a population closer to the modern population than to the ancient population.

Sites Covered Exactly Once Have no Information About Drift in the Ancient Population

Consider a simplified model in which each site has exactly one read. When we have sequence from only a single individual, we
have a set la of sites where the single read is an ancestral allele, and a set ld of sites where the single read is a derived allele.
Thus, we can rewrite (3) as

LðDÞ ¼
Y
l2la

 
ð12 eP2;0xlÞ þ

1
2
P2;1ðxlÞ þ eP2;2ðxlÞ

!Y
l2ld

 
eP2;0ðxlÞ þ

1
2
P2;1ðxlÞ þ ð12 eÞP2;2ðxlÞ

!
:
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We can use formulas from Racimo et al. (2016) to compute P2;kðxlÞ for k 2 f0; 1; 2g;
P2;0ðxlÞ ¼ 12 xle

2t1 2
1
2
xle

2ðt1þt2Þ þ xl
�
xl 2

1
2

�
e2ð3t1þt2Þ

P2;1ðxlÞ ¼ xle
2ðt1þt2Þ þ xlð12 2xlÞe2ð3t1þt2Þ

P2;2ðxlÞ ¼ xle
2t1 2

1
2
xle

2ðt1þt2Þ þ xl
�
xl2

1
2

�
e2ð3t12t2Þ:

Note then that

ð12 eÞP2;0ðxlÞ þ
1
2
P2;1ðxlÞ þ eP2;2ðxlÞ ¼ 12 e2 xð12 2eÞe2t1

and

eP2;0ðxlÞ þ
1
2
P2;1ðxlÞ þ ð12 eÞP2;2ðxlÞ ¼ eþ xð12 2eÞe2t1 :

Neither of these formulas depend on t2; hence, there is no information about the drift time in the ancient population from data
that is exactly 13 coverage.
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