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Neutrophil elastase (NE;' E .C.3 .4 .21 .37) is a 220 residue,' single chain glycopro-
tein that functions as a potent serine protease capable of destroying a broad spec-
trum of substrates in the extracellular milieu (1-5) . In addition to being one of the
few mammalian proteases capable of functioning at a neutral pH to cleave mature,
crosslinked elastin, NE can also attack the major forms ofcollagen, the protein com-
ponents ofproteoglycans, fibronectin, laminin, components of the complement and
coagulation cascades, and Escherichia coli cell walls (1, 2, 4, 6) . As such, NE is consid-
ered to be useful because ofits likely role in normal tissue turnover and host defense,
yet dangerous in its ability to destroy normal tissues . The latter concept is most dra-
matically illustrated by the hereditary disorder al-antitrypsin (cdAT) deficiency, in
which a deficiency of the major inhibitor of NE allows NE to attack alveolar walls
in an unfettered fashion, resulting in the clinical disorder, emphysema (6, 7) .

In the context of its broad and powerful spectrum of action, it is reasonable to
assume that the expression of the NE gene is tightly controlled . In this regard, as
the name suggests, NE is found in blood neutrophils, where it is stored in azurophilic
(primary) cytoplasmic granules (8-11) . When the neutrophil is activated by surface
stimuli, or lysed, NE is released into the extracellular milieu along with the other
contents of these granules (12). Consistent with its presence in mature neutrophils,
NE can be detected in the granulocytic lineage ofbone marrow cells as early as the
promyelocyte stage (13) . Interestingly, despite the fact the neutrophils contain large
amounts of NE, they do not have NE mRNA transcripts, i.e ., they are incapable
of producing the enzyme (14) . However, NE mRNA transcripts are found in bone
marrow cells and in the human bone marrow-derived tumor cell lines U937 and
HL60 (14) . Furthermore, when the myelomonocytic-like HL60 cell line is stimu-
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1 Abbreviations used in this paper: cdAT, al-antitrypsin ; LF, lactoferrin ; MPO, myeloperoxidase ; NE,
neutrophil elastase .

z The published literature states that the mature NE protein is composed of 218 residues, but recent
sequencing studies have identified two, previously unrecognized, COOH-terminal amino acid residues
(Travis, J., University of Georgia, Athens, GA, personal communication).
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lated with DMSO to differentiate toward the granulocytic lineage, NEmRNA levels
are increased, but when these cells are induced with phorbol esters to differentiate
toward the monocytic lineage, NE transcripts disappear (14) . Together, these obser-
vations are consistent with the hypothesis that the expression ofthe NE gene is limited
to a very short period in leukocyte differentiation, likely to the promyelocyte and
myelocyte stages .
To directly evaluate this hypothesis, the technique ofin situ hybridization has been

used to examine normal human bone marrow cells for the presence of NE mRNA
transcripts . For comparison, we have also evaluated the same cells for the presence
of transcripts of the genes for myeloperoxidase (MPO; a protein also stored in the
azurophilic granules of neutrophils) (11), lactoferrin (LF ; a protein stored in the sec-
ondary granules ofneutrophils) (11), and 0-globin (a protein expressed in the eryth-
rocyte series of cells) (15) .

Materials and Methods
Study Population .

	

Bone marrow cells were obtained from seven normal volunteers . "Nor-
malcy" of the marrow was confirmed by conventional cytologic analysis . After dilution with
an equal volume of DME, the marrow precursor cell population was enriched by Ficoll-
Hypaque density centrifugation (16) . Diploid human fetal lung fibroblasts (HFL1, ATCC
CCL153) were used as controls (17) .
RNA Extraction andNorthern Analysis.

	

RNA was extracted and evaluated by Northern analysis
using standard methods (18-20) . The filters were evaluated with a 32P-labeled DNA probe
produced by nick-translation of the neutrophil elastase cDNA pPB15 (14), myeloperoxidase
cDNA pMP062 (provided by G . Rovera, Wistar Institute, Philadelphia, PA [21]), lactoferrin
cDNA pHL41 (provided by E . Benz, Yale University, New Haven, CT [22]), and 0-globin
cDNA 18-6ha (provided by S. Karlsson, NHLBI; initially cloned by B . Forget, Yale University).
RNA Probes for In Situ Hybridization.

	

To generate high specific activity 35 S-labeled single-
stranded cRNA probes for in situ studies to detect NE, MPO, and LF mRNA transcripts,
cDNAs were subloned into the transcription vector pGEM-3Z (Promega Biotec, Madison,
WI), permitting in vitro transcription of sense and antisense mRNA from the SP6 and T7
promoters after appropriate linearization (23) . Transcription conditions were those of the
manufacturer (24) using [31S]UTP (800 Ci/mmol ; Amersham Corp., Arlington Heights, IL),
yielding 3 .5-4.5 x 10 8 dpm/jAg template DNA.

For NE mRNA, three different probes were initially evaluated, corresponding to the fol-
lowing regions ofthe NE gene (all derived from the NE cDNA clone pPB15 [14]) : (a) a 280-bp
Eco RI-Pst I fragment corresponding to exon III and the 5' portion of exon IV; (b) a 370-bp
Pst I-Eco RI fragment corresponding to the 3' portion of exon IV, the whole of exon V, in-
cluding a portion ofuntranslated region ; and (c) a 550-bp Eco RI-Ava I fragment (containing
sequences of exons III, IV, and the 5' portion of exon V) (25) . Preliminary studies using
the 370-bp and 550-bp NE antisense probes demonstrated results identical to those obtained
with the 280-bp probe . Thereafter, the 280-bp probe was used for all subsequent experi-
ments . The equivalent "S-labeled NE cRNA sense probe was used, as a control, as a mea-
sure of nonspecific hybridization .

For MPO mRNA, the transcription vector included a 460-bp Kpn I-Kpn I fragment of
plasmid pMP062 (21). For LF mRNA, the transcription vector included a 650-bp Eco RI-Pst
I fragment of plasmid pHL41 (22) . To evaluate 0-globin mRNA transcripts, antisense and
sense RNA probes covering exon III and a portion of the 5' and 3' flanking introns were
generated by inserting the 622-bp Dra I fragment of the human 0-globin gene into the tran-
scription vectors pTZ18R and pTZ19R (provided by S. Karlsson, NHLBI [26]) . The two
resulting transcription vectors were identical, except that the 0-globin DNA fragment was
inserted in the reverse orientation to generate the antisense and sense RNA probes.

In Situ Hybridization.

	

To prepare samples for in situ hybridization, cytocentrifuge prepa-
rations from bone marrow cells (1 .5 x 105 cells per slide ; 500 rpm, 7 min; Cytospin II,
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Shandon Southern Instruments, Inc ., Sewickley, PA) were fixed in 4% paraformaldehyde
in PBS, pH 7.4, for 3 min and kept in 70% ethanol at 4'C until used . Post-fixation in Kar-
novsky's fixative (27) was carried out before the in situ procedure . Hybridization was per-
formed as described by Harper et al . (28) with minor modifications as previously described
(29) . For autoradiography, slides were dipped in Kodak NTB-2 emulsion diluted 1 :1 with
distilled waterat 40-42°C, dried, exposed for 5 d at 4°C, developed in Kodak D-19 developer,
and fixed in Kodak rapid fixer.

In initial experiments after the development ofthe autoradiograms, the slides were stained
with Giemsa, Wright-Giemsa, or May-Grunwald-Giemsa. However, the cytoplasmic detail
with these stains was not optimal for cell identification, presumably because the in situ hy-
bridization procedures modified the staining characteristics . In contrast, with hematoxylin-
eosin, the staining characteristics were excellent, permitting accurate identification of the
cells at various stages ofmarrow differentiation . For comparative purposes, air dried cytospin
slides were stained with Giemsa or with hematoxylin-eosin, and the different cell stages were
determined in parallel, with the late promyelocyte stage identified as described by Ackerman
(30). The results were consistent with the standard values for differential cell counts of Giemsa-
stained smears from normal individuals (31) with the majority ofcells being of the neutrophil
lineage (62.5%), 27 .3% erythroid lineage and 1.7% blasts, 2.4% promyelocytes, and 1.8%
late promyelocytes . Using this approach, the hybridized preparations were evaluated using
a Zeiss microscope at a magnification of x 1,000 . For each preparation a minimum of 450
cells were counted and a minimum of 100 positive cells were identified .

Statistical Evaluation .

	

Data are presented as mean ± SEM. Comparisons between groups
were made using the two-tailed Student's t-test or Mann-Whitney U test where appropriate .

Results

mRNA Transcripts in RNA Isolatedfrom Bone Marrow Cells .

	

Using the NE cDNA
probes, Northern analysis of RNA isolated from bone marrow cells revealed 1.3-kb
NE mRNA transcripts, 3.5-kb MPO mRNA transcripts, 2.7-kb LF mRNA tran-
scripts, and 0.7-kb O-globin mRNA transcripts . In contrast to these observations,
RNA extracted from the HFL-1 cell line revealed no transcripts with the same NE,
MPO, LF, and fl-globin cDNA probes (Fig. 1), consistent with the knowledge that
human diploid fetal lung fibroblasts do not produce the proteins coded for by these
genes .

Identification ofBone Marrow Cells Containing Specific mRNA Transcripts .

	

Bone marrow
cells hybridized with the 35S-labeled antisense NE, MPO, LF, and 0-globin cRNA
probes were considered positive if they contained greater than six grains per cell .
This was based on results with all four sense probes demonstrating 99% ofthe cells

FIGURE 1.

	

Identification of neutrophil
elastase, myeloperoxidase, lactoferrin,
and fl-globin mRNA in bone marrow
cells . Shown are Northern analyses of
total cellular RNA (10 tcg/lane) isolated
from bone marrow cells from normal
volunteers, using the following 3sp-

labeled cDNA probes . (Lane 1) neu-
trophil elastase ; (lane 2) myeloperoA-
dase; (lane 3) lactoferrin; (lane 4)
f3-globin . As negative controls, lanes
5-8 are identical to lanes 1-4, but the
extracted RNA came from HFL-1 fi-
broblasts. The sizes of the mRNA tran-
scripts were determined using conven-
tional markers.
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containing less than five grains per cell . On the average, 5 .0 t 0.7 % of the marrow
cells were found to be positive for NE mRNA transcripts, with a range of 7 to 122
grains per cell . All of the positive cells belonged to early marrow precursors and
to cells in the early stages ofneutrophil differentiation (Fig. 2) . In this regard, blasts,
promyelocytes, late promyelocytes, and neutrophil myelocytes were observed to have
NE transcripts, while more mature cells (neutrophil metamyelocytes, bands, and
neutrophils) did not demonstrate hybridization with the antisense probe. No cells
ofthe eosinophil, or erythroid lineages showed hybridization . Because ofthe difficulty
in identifying monocyte precursors, it was not possible to definitively determine
whether transcripts were or were not present in this population .
Bone marrow cells hybridized with the 35S-labeled antisense MPO probe demon-

strated that, on average, 5.4 ± 1.4% of bone marrow cells were positive for MPO
mRNA transcripts, with a range of 8 to 83 grains per cell . Like NE, MPO+ cells
were confined to early precursors and cells in the early stages of neutrophil differen-
tiation (Fig . 3, A and B) .

For the LF cRNA antisense probe, on the average, 30.2 ± 5.2% ofthe bone marrow
cells were positive for LF mRNA transcripts, with a range of 7 to 58 grains per cell .
Quite different from NE' or MPO' cells, the LF+ cells were found only in the late
stages of neutrophil differentiation (Fig . 3, C and D) .

Cells of the erythroid lineage were uniformly negative after hybridization with
the NE, MPO, and LF cRNA probes . When evaluated with the 35S-labeled /3-globin
antisense probe, of the total population of bone marrow cells, 10 .5 ± 3.3% were
positive for (3-globin mRNA transcripts; all were of the erythroid lineage (Fig . 3,
E and F) . A range of 7 to 35 grains per positive cell was observed .

Quantitative Evaluation ofSpecific mRNA Transcripts at Different Cell Stages .

	

Evaluation
of cells positive for NE mRNA transcripts showed they were present during a very
limited period of neutrophil differentiation. In this regard, positive cells were found
predominantly in the promyelocyte (95 .8 ± 2.6%) and late promyelocyte (75 .0 t
9.2%) stages with a much smaller percentage of positive myelocytes (Fig . 4) . Addi-
tionally, a small percentage of blasts contained NE transcripts, but NE mRNA was
not detected in the more mature cells of the neutrophil series (neutrophil metamye-
locytes, bands, and neutrophils) or in cells from the eosinophil or erythroid lineages .
To assess whether the distribution of NE mRNA transcripts among cells of early
granulocytic lineage was specific for NE or was part of a generalized upregulation
of mRNA transcripts for granule proteins, the percentages of cells positive for NE
transcripts were contrasted with those for MPO and LF mRNA. Interestingly, the
proportion of NE' cells among all bone marrow cells was quite similar to that of
the MPO+ cells (Fig. 4) . In this context, the percentages of MPO+ blasts, pro-
myelocytes, and late promyelocytes were similar to the percentage of NE' blasts
(p = 0 .07), promyelocytes (p > 0 .1), and late promyelocytes (p > 0.05). However,
the proportions of neutrophil myelocytes containing NE were higher than those con-
taining MPO transcripts (NE 7 .8 ± 1.2% ; MPO 0.8 t 0.5% ; p < 0.02), suggesting
that NE transcripts persisted to a greater extent in granulocytic differentiation than
did MPO mRNA. In marked contrast, evaluation with the LF probe revealed no
transcripts until the neutrophil myelocyte stage . Furthermore, the LF mRNA was
present in almost halfthe total of neutrophil metamyelocytes andband forms, a time
in differentiation when NE and MPO transcripts were absent (Fig . 4) . As a final
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FIGURE 2 .

	

Examples of autoradiographs demonstrating in situ hybridization of"S-labeled neu-
trophil elastase (NE) cRNA probes to NE mRNA transcripts in cytocentrifuge preparations from
bone marrow cells ofnormal individuals (hematoxylin-eosin stain, x 630). (A-E) Bone marrow
cells hybridized with the 35S-labeled NE antisense probe. (A-D) Examples of bone marrow cells
exhibiting mRNA transcripts . (A) Blast (B). (B) Early promyelocyte (PM) . (C) Two promyelo-
cytes (PM) . (D) Two neutrophil myelocytes (NM) . (E) Metamyelocytes (N-Met) and a mature
neutrophil (N) are negative. (F) Similar to panels A-E, but using the 35 S-labeled NE sense cRNA
probe. Shown are a number of cells, all of which exhibit no hybridization signal .
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FIGURE 3.

	

Examples of autoradiographs demonstrating in situ hybridization of 35 S-labeled my-
eloperoxidase (MPO), lactoferrin (LF), and /i-globin cRNA probes to mRNA transcripts within
bone marrow cells ofnormal individuals (hematoxylin-eosin stain, x 630) . (A and B) Hybridiza-
tion with the 35 S-labeled MPOprobes. (C and D) Hybridization with the 35 S-labeled LF probes .
(E and F) Hybridization with the 35 S-labeled S-globin probes . (A) MPOantisense probe. Shown
is a promyelocyte (PM) exhibiting MPO mRNA transcripts . (B) Similar to panel A but hybrid-
ized to the MPOsense probe . All cells are negative . (C) LF antisense probe. Shown are a neutro-
phil myelocyte (NM) and two metamyelocytes (N-Met) demonstrating positive hybridization.
(D) Similar to A but with the LF sense probe. All cells are negative . (E) S globin antisense probe.
Shown are a number of erythroid lineage cells (E) showing positive hybridization. (F) Same as
E but with the S-globin sense probe . All cells are negative .
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FIGURE 4 .

	

Proportions ofbone marrow cells within each cell stage expressing transcripts ofthe
neutrophil elastase (NE; " ) gene, the myeloperoxidase (MPO ; A) gene, and the lactoferrin (LF;
/) gene . After hybridization with the appropriate 31 S-labeled sense and antisense probes, the
number of positive cells within each stage was evaluated for each gene and expressed as a per-
centage ofthe total number of cells in each stage. Each data point represents the mean ofmarrow
samples from at least four normal individuals (blasts, promyelocytes, late promyelocytes, NE
vs . MPO, NS; neutrophil myelocytes, NE vs. MPO, p < 0.02) .

control, using the /3-globin RNA probe, positive cells were found only within the
erythroid lineage .
The same distinctions in the distribution of cells containing NE, MPO, and LF

mRNA transcripts were observed when the data were expressed in terms of the dis-
tribution of positive cells among the different cell types in the total population of
marrow cells expressing each specific gene (Fig. 5) . In this context, the distribution
of the cells found to be positive for NE transcripts was quite similar to the distribu-
tion of cells expressing MPO transcripts, although a somewhat higher proportion
of promyelocytes expressed MPO than NE transcripts (p < 0.03) and a smaller
proportion of neutrophil myelocytes expressed MPO than NE (p < 0.03) . In con-
trast, the distribution of LF+ cells was completely different, with 22.3 ± 3.4% of
the cells that expressed the gene being neutrophil myelocytes and 77.7 ± 3 .4% being
neutrophil metamyelocytes and band forms.

Evaluation ofthe Relative Expression ofNE Gene Transcripts in the Neutrophil Lineage.

	

To
assess the relative differences in the number of mRNA transcripts among each of
the different transcripts, in cells at different stages of development, for each probe,
the average number of grains present over each of one hundred positive cells was
evaluated . For NE, the average number ofgrains per positive cell differed significantly
among the different cell types (Fig . 6) . The average number of grains per positive
cell was significantly higher in promyelocytes compared with blasts (p < 0.03), late
promyelocytes (p < 0.01), and neutrophil myelocytes (p < 0.005), but similar numbers
of grains were observed in blasts, late promyelocytes, and neutrophil myelocytes
(p > 0.05) .

In contrast to NE, assessment ofthe amount ofmessage present at different stages
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FIGURE 5 .

	

Distribution of bone marrow cells expressing mRNA transcripts for the neutrophil
elastase (NE; " ) myeloperoxidase (MPO ; A), and lactoferrin (LF; /) genes. After hybridiza-
tion with each probe, the number of positive cells in each stage was determined and expressed
as a percentage of the total number of cells positive for each gene . Each data point represents
the mean of marrow samples from at least four normal individuals (promyelocytes, NE vs . MPO,
p <0.03 ; neutrophil myelocytes, NE vs . MPO p <0.03) .
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FIGURE 6 .

	

Estimate of the relative number ofmRNA transcripts in different bone marrow cells
for the neutrophil elastase (NE; "), myeloperoxidase (MPO ; A), and lactoferrin (LF; /) genes.
The data are expressed as the average number of grains per positive cell for each gene at each
cell stage. Each data point represents the mean of marrow samples from at least four normal
individuals (NE; promyelocytes vs . blasts, p < 0.03 ; promyelocytes vs . late promyelocytes, p <
0.01 ; promyelocytes vs . neutrophil myelocytes, p < 0.005 ; other comparisons NS. MPO; promye-
locytes vs . neutrophil myelocytes, p < 0.02) .
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of development for the MPO gene showed that the average number of MPO tran-
scripts was comparable in blasts, promyelocytes, and late promyelocytes (p > 0.1,
all comparisons), but that promyelocytes contained a larger average number of grains
per cell than did neutrophil myelocytes (p < 0.02) .

For lactoferrin, the two cell types that contained LF transcripts had equivalent
amounts ofmRNA transcripts per cell (neutrophil myelocytes, 19 ± 1 average number
of grains per cell, neutrophil metamyelocytes and band forms, 18 ± 1, p > 0 .05) .
However, the total number ofgrains in the two cell populations differed significantly
(neutrophil myelocytes 427 ± 42, neutrophil metamyelocytes and band forms, 1,378
± 136 ; p < 0.04), due to the higher number of neutrophil metamyelocytes and band
forms present in 100 positive cells .

Discussion
Using in situ hybridization, this study demonstrates that there are specific stages

in bone marrow differentiation during which the neutrophil elastase gene is expressed
at the level of NE mRNA. Although first detected within blast cells, maximum NE
mRNA levels are present during the promyelocyte stage . Thereafter, NE mRNA
levels decline such that they are undetectable by the stage ofthe neutrophil metamye-
locyte and thereafter. Furthermore, NE mRNA is not detectable in any other cell
lineage in bone marrow . These observations are consistent with the observations
that : (a) using Northern analysis, NE mRNA transcripts are not present in mature
neutrophils or mynocytes, but are found in RNA extracted from bone marrow cells
(14) ; (b) in the HL60 myelomonocytic cell line, NEmRNA transcripts increase when
the cells are induced to differentiate toward the granulocytic lineage by DMSO, but
decrease when the cells are committed to the monocyte lineage by PMA (14) ; and
(c) at the protein level, NE is first detected by immunocytochemical and cytoen-
zymatic methods at the promyelocyte stage (13) . Interestingly, NE mRNA transcripts
appear in bone marrow differentiation in a relatively similar fashion as transcripts
for MPO, another neutrophil azurophilic granule component, although minor differ-
ences in the relative levels of NE and MPO transcripts during differentiation sug-
gests the two genes are not coordinately controlled at the mRNA level . In marked
contrast to the appearance of NE mRNA transcripts, transcripts for LF a neutro-
phil secondary granule component, appear much later in neutrophil myeloid differen-
tiation . Thus, the expression ofthe gene for NE appears to be very tightly controlled,
with the majority of expression at the promyelocyte stage of myeloid cell differentia-
tion, and the control of the NE gene at the level of mRNA transcripts appears to
be independent of that of other proteins in neutrophil granules .

Comparative Expression ofNE, MPO, andLF Genes at the mRNA Level.

	

Inthe mature
neutrophil, the azurophilic granules contain abundant amounts of NE and MPO
but no LF while the secondary granules contain LF but no NE or MPO (10, 11,
13, 32-38) . During neutrophil lineage differentiation, the azurophilic granules ap-
pear at the neutrophil promyelocyte stage (32-34) . The data at the MRNA level in
the present study are entirely consistent with these observations, and suggest there
are different "classes" of genes expressed at different times during granulocyte differen-
tiation . In this regard, the NE and MPO genes appear to represent a class that is
expressed early, initially at the blast stage, and then most intensely at the promyelo-
cyte stage . In contrast, the LF gene appears to represent a class of genes that is ex-
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pressed much later, initially at the neutrophil myelocyte stage, and most intensely
at the neutrophil metamyelocyte and band stages . Thus, taken together, the data
at the mRNA and protein levels suggest that different classes of granule genes are
expressed in different phases of neutrophil myeloid differentiation .
The expression of theNE gene at the mRNA level likely represents the expression

of a general class of neutrophil azurophilic granule genes; however, at least for the
NE and MPO genes, there are minor differences at the mRNA level that suggest
the two genes are not coordinately controlled in an exact fashion. Two lines of evi-
dence support this concept . First, at the neutrophil myelocyte stage, NE mRNA
transcripts are found in a higher proportion of the cells than are MPO transcripts.
Second, while the relative numbers of NE transcripts among cells of different stages
appear to increase between blasts and promyelocytes, the relative numbers of MPO
transcripts seem to remain constant among cells at the blast and promyelocyte stages.
Thus, the expression of these genes may have several levels of regulation, i.e., they
appear to be switched on in a coordinate fashion, but the minor relative differences
in mRNA levels of NE and MPO during myeloid differentiation suggest that there
are additional levels of control. Consistent with this concept, when the HL60 cell
line is induced to differentiate with DMSO into the granulocytic lineage, NEmRNA
transcripts are upregulated while MPO transcripts are reduced (14, 39) .

Implicationsfor Possible Therapeutic Modulation ofNE Gene Expression .

	

While the neu-
trophil contains abundant amounts of neutrophil elastase, the fact that the mature
neutrophil has no NE mRNA transcripts has important implications for how the
levels of this potent destructive enzyme can be controlled . From the observations
in the present study, NE clearly can be synthesized only at the early stages of my-
eloid differentiation, only in the bone marrow, i.e ., there is no possibility for regula-
tion at the DNA, RNA, or protein synthesis levels in the neutrophil itself. Thus,
in contrast to other mediators ofinflammation such as cytokines and growth factors,
which can be modulated at the site of inflammation at the DNA, RNA, or protein
synthesis levels, the control of NE gene expression occurs long before the neutrophil
reaches the site of action of this mediator. In this regard, for human disorders in
which a relative excess of NE may be playing a central role (e .g ., emphysema) (4,
6, 7, 40), therapeutic strategies to modulate the amount of neutrophil elastase in
the target organ will, by necessity, be directed at suppressing the numbers ofneutro-
phils that reach the site of inflammation, suppressing the ability of the neutrophil
to release NE, or suppressing the expression of the NE gene in the bone marrow
in the early stages of myeloid differentiation .

Summary
Neutrophil elastase, a potent serine protease carried and released by activated

neutrophils, is not synthesized by neutrophils, but by their bone marrow precursor
cells . Using in situ hybridization with 35S-labeled antisense and sense neutrophil
elastase cRNA probes, the present study demonstrates that expression of the neu-
trophil elastase gene is tightly controlled in bone marrow precursors and occurs during
a very limited stage of differentiation of the neutrophil myeloid series, almost en-
tirely at the promyelocyte stage. Neutrophil elastase mRNA transcript levels are de-
tectable to a limited extent in blasts, increase markedly in the promyelocyte stage,
and then disappear as promyelocytes further differentiate . Control probes specific
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for myeloperoxidase, lactoferrin, and a-globin mRNA transcripts, respectively, demon-
strated contrasting gene expression . Myeloperoxidase mRNA transcripts were also
found almost exclusively at the promyelocyte stage, but myeloperoxidase mRNA
levels disappeared earlier than do neutrophil elastase mRNA levels, suggesting that
expression of these genes may be differently controlled . In comparison, lactoferrin
mRNA transcripts were detected late in the neutrophil lineage, while 0-globin mRNA
was detected only in cells of the erythroid lineage . Together these observations sug-
gest that the expression of the neutrophil elastase gene is likely under very tight con-
trol, and is likely different than that for other constituents ofthe neutrophil granules .

We thank K . Satoh and C . Saltini for helpful discussion, B . Boronski, and D. States for help
in obtaining the bone marrow samples, and L. Sichert for editorial assistance .
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