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SUMMARY

Tissue-specific mRNA stability is important for cell fate and physiology, but the mechanisms 

involved are not fully understood. We found that zygotic mRNA stability in Drosophila correlates 

with codon content: optimal codons are enriched in stable transcripts associated with metabolic 

functions like translation, while non-optimal codons are enriched in unstable transcripts, including 

those associated with neural development. Bioinformatic analyses and reporter assays revealed 

that similar codons stabilize or destabilize mRNAs in the nervous system and other tissues, but the 

link between codon content and stability is attenuated in the nervous system. We confirmed that 

optimal codons are decoded by abundant tRNAs while non-optimal codons are decoded by less 

abundant tRNAs in embryos and in the nervous system. We conclude that codon optimality is a 

general determinant of zygotic mRNA stability, and attenuation of codon optimality allows trans-

acting factors to exert greater influence over mRNA decay in the nervous system.

In Brief

Burow et al. report that codon optimality is a general determinant of zygotic mRNA stability in 

Drosophila embryos, but the link between codons and stability is weak in the nervous system. 
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Bioinformatics, reporter transcript assays, and tRNA quantitation show that the attenuation of 

codon optimality establishes neuralspecific mRNA decay.

Graphical Abstract

INTRODUCTION

Messenger RNA decay is important for precise temporal and spatial regulation of gene 

expression during development (Alonso, 2012). Studies in multiple systems have revealed a 

broad range of mRNA half-lives and coordinate decay of transcripts encoding functionally 

related proteins (Neff et al., 2012; Munchel et al., 2011; Thomsen et al., 2010). While RNA 

binding proteins and microRNAs regulate the stability of many mRNAs, these mechanisms 

are unlikely to account for the full range of half-lives in a cell (Radhakrishnan and Green, 

2016). In contrast, codon usage has recently been shown to be a robust determinant of global 

mRNA half-lives. Pioneering work in budding yeast found that distinct codons are enriched 

in stable versus unstable mRNAs (Presnyak et al., 2015). This effect can be explained by the 

concept of codon optimality: codons with abundant cognate tRNAs (optimal codons) support 

rapid ribosome translocation and mRNA stability, while codons with less abundant cognate 

tRNAs (non-optimal codons) slow ribosome translocation and favor mRNA decay. The 

mechanism linking codon optimality and mRNA decay in yeast depends on the RNA 

helicase Dhh1p (Radhakrishnan et al., 2016). Dhh1p associates with slow ribosomes at 

nonoptimal codons and triggers mRNA decapping followed by co-translational 5’−3’ decay.

Codon optimality also affects mRNA stability in metazoans. Rapidly decayed maternal 

mRNAs in zebrafish contain a high frequency of non-optimal codons (Mishima and Tomari, 

2016) and the role of codon optimality during the maternal to zygotic transition (MZT) is 

conserved across multiple vertebrate species and Drosophila (Bazzini et al., 2016). The 

extent to which codon optimality influences mRNA decay at developmental stages beyond 

the MZT is not known, although codon usage correlates with steady-state mRNA levels in 
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vertebrate tissues (Bazzini et al., 2016). A potential role for codon optimality in tissue-

specific programs of mRNA decay is also suggested by studies of differential tRNA 

expression. For example, analysis of tRNA abundance across multiple human tissues 

revealed that tRNA levels vary widely and correlate with codon usage in highly expressed 

tissue-specific mRNAs (Dittmar et al., 2006). While correlations between tRNA levels and 

codon usage suggest a role for codon optimality in tissue-specific mRNA decay, direct 

evidence is lacking.

Given the importance of codon usage in post-transcriptional regulation of gene expression, 

we hypothesized that codon optimality may influence zygotic mRNA stability in Drosophila 
embryos. We previously obtained transcriptome-wide mRNA decay measurements for late 

stage Drosophila embryos, including neural-specific measurements (Burow et al., 2015). 

This work showed that ~25% of broadly expressed mRNAs have altered stability in the 

nervous system. Here, we report that codon optimality explains much of the neural-specific 

changes in mRNA stability. While codon optimality is a strong determinant of mRNA 

stability when measured across all embryonic tissues, the link between codon usage and 

mRNA stability is attenuated in the nervous system. Our work provides a framework to 

understand how mRNA metabolism may be altered to establish tissue-specific programs of 

mRNA decay.

RESULTS

Codon Usage Correlates with Zygotic mRNA Stability in Drosophila Embryos

Our previous work focused on the identification of cis-regulatory elements and trans-acting 

factors that determine mRNA stability in the nervous system and did not address the 

mechanisms underlying differential stability in the nervous system versus other tissues. For 

this study, we searched for enrichment or depletion of potential cis-regulatory elements 

(RNA-binding protein [RBP] motifs, microRNA seed sequences, and any hexameric 

sequences) that might explain differential transcript stability in the nervous system compared 

to whole embryos. These analyses failed to identify any sequence features that were 

significantly enriched or depleted among 1,038 transcripts with ≥ 1.5-fold altered stability in 

the nervous system. For example, out of 49 previously defined RBP motifs in Drosophila 
(Paz et al., 2014), none were significantly enriched or depleted in the 3’ UTR of transcripts 

with decreased stability in the nervous system (Figure S1A). Based on the absence of strong 

candidate cis-regulatory elements, we next asked if codon usage may explain half-life 

differences in the whole embryo versus neural-specific data. To test for correlations between 

codon usage and mRNA stability, we clustered 3,312 mRNAs (those with whole embryo and 

neural-specific half-life measurements), according to codon usage. We also identified 

potential preferred codons based on codon frequency in abundant mRNAs (Akashi, 1994; 

Duret and Mouchiroud, 1999), codon bias across all coding sequences (Powell and 

Moriyama, 1997), and tRNA gene copy number (Vicario et al., 2007). This clustering 

revealed two classes of mRNAs with nearly opposite codon usage (Figure 1A; Table S1). 

Class 1 mRNAs have an enrichment of preferred codons (blue codons in Figure 1A), while 

class 2 mRNAs are depleted of preferred codons. We next asked if there is any difference in 

the half-life distribution of class 1 versus class 2 transcripts. Analysis of whole embryo 
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mRNA decay data revealed that class 1 mRNAs are significantly more stable than class 2 

mRNAs (Figure 1B). In contrast, analysis of neural-specific mRNA decay data revealed no 

significant difference in the half-life distributions of class 1 and class 2 transcripts (Figure 

1B). These observations provided an initial clue that relationships between codon usage and 

mRNA stability are distinct in our neural-specific data.

Codon Content Is Not a Strong Predictor of mRNA Stability in the Nervous System

To define codon optimality for each dataset (whole embryo dataset [7,995 mRNAs] and 

neural-specific dataset [9,699 mRNAs], as opposed to only the 3,312 overlapping mRNAs 

clustered in Figure 1A), we calculated whole embryo and neural-specific codon stabilization 

coefficients (CSCs). CSC is a measure of the Pearson correlation between codon usage and 

transcript stability (Presnyak et al., 2015). The distribution of CSCs based on whole embryo 

measurements revealed strong correlations between certain codons and mRNA stability 

(Figure 1C). In addition, 15 of the 22 predicted preferred codons have positive CSCs. As 

expected, mRNAs with similar optimal codon content have similar decay rates and codon 

content is a significant predictor of half-life (Figure 1C; Table S2). We also found that CSCs 

correlate well with a standard measure of codon preference, the tRNA adaptive index (tAI), 

and the correlation with tAI is lost when CSCs are calculated using +1 frameshifted coding 

sequences (Figure S2A). The range of CSCs and proportion of optimal versus non-optimal 

codons we observed is similar to that seen in Saccharomyces cerevisiae (Presnyak et al., 

2015) (22 optimal and 39 non-optimal in Drosophila versus 23 optimal and 38 non-optimal 

in yeast), although the optimal and nonoptimal sets of codons are distinct for each organism. 

Next, we calculated CSCs based on neural-specific mRNA decay measurements. As 

predicted by the similar half-life distributions of class 1 and class 2 transcripts in the nervous 

system (Figure 1B), correlations between codons and transcript stability were much weaker 

than those obtained for whole embryos (Figure 1D; Table S3). However, 18 of the 22 

predicted preferred codons have positive CSC values, similar codons are optimal (positive 

CSC) and non-optimal (negative CSC) in the whole embryo and neural-specific datasets 

(Figure 1D), and there is a positive correlation between CSC values in whole embryos and 

the nervous system (Figure S2B). As expected, given the low magnitude of neural-specific 

CSCs, neural-specific optimal codon content is a less significant predictor of mRNA half-

life compared to whole embryo optimal codon content (compare violin plots and statistics in 

Figures 1C and 1D). The relationship between percent optimal codons and neural mRNA 

half-life was similar when whole embryo CSCs were used to calculate optimal codon 

content (Figure S2D). There is a weak correlation between neural CSCs and tRNA adaptive 

index, and this correlation is lost using +1 frameshifted coding sequences (Figure S2C). 

Taken together, these CSC calculations suggest that codon optimality is a general 

determinant of zygotic mRNA stability throughout embryonic tissues, but codon content 

alone is less likely to explain neural-specific mRNA decay rates.

Given that similar codons are optimal and non-optimal based on whole embryo and neural-

specific measurements but correlations with stability are much stronger for whole embryo 

CSCs, we used whole embryo CSCs to define optimal codons (positive CSC) and non-

optimal codons (negative CSC) for subsequent analyses. These codon optimality 

assignments largely explain the properties of class 1 and class 2 transcripts in the 
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overlapping mRNA dataset (the 3,312 transcripts with whole embryo half-life measurements 

and neural-specific measurements). Transcripts within the 90th percentile of optimal codon 

content (≥55% of codons have a positive CSC) are primarily class 1 mRNAs (82% are class 

1 mRNAs, 2% are class 2 mRNAs) (Table S1). Transcripts in this high optimality group 

have a significant trend toward decreased stability in the nervous system (Figure 2A). 

Similarly, ≥ 55% optimal codon content as a sequence feature is significantly enriched in 

transcripts with decreased stability in the nervous system (Figure S1B). Gene ontology 

analysis revealed that transcripts in this high optimality group encode proteins associated 

with metabolic functions, particularly cytoplasmic translation (Figure 2B). For example, 

transcripts encoding the ribosomal protein RpL4, the chaperone Hsp83, and the disulfide 

isomerase Pdi all have ≥65% optimal codon content and are very stable in embryos but have 

shorter half-lives based on neural-specific measurements (Figure 2C). Transcripts within the 

10th percentile of optimal codon content (≤39% of codons have a positive CSC) are 

primarily class 2 mRNAs (54% are class 2 mRNAs, 6% are class 1 mRNAs) (Table S1). 

Transcripts in this low optimality group have a weak but significant trend toward increased 

stability in the nervous system (Figure 2A). Gene ontology analysis revealed that low 

optimality transcripts encode proteins associated with cell fate determination and neural-

specific functions (Figure 2B). For example, transcripts encoding the cell adhesion protein 

CadN, the transcription factor Ems, and the scaffold protein CASK have low optimal codon 

content and low stability when measured across all tissues but above average half-lives in the 

nervous system (Figure 2D). We also tested if transcript length differed between the ≥55% 

and ≤39% optimal codon content mRNAs. The ≤39% optimal codon content mRNAs have 

slightly longer 5’and 3’UTRs, but the most significant difference is increased coding 

sequence length in the ≤39% optimal codon content mRNAs (Figure S2E). This agrees with 

the previous finding that non-optimal codon frequency increases with coding sequence 

length in Drosophila mRNAs (Duret and Mouchiroud, 1999).

Tests of Potential Influence from trans-Acting Factors Suggest that Codon Optimality Is 
Intrinsically Weakened in Neural mRNAs

One potential explanation for the weak correlations between codon content and mRNA 

stability in our neural-specific data is that neural-specific factors that promote mRNA decay 

may override the effects of codon optimality. In contrast, any influence of tissue-specific 

trans-acting factors is less likely to be observed in the whole embryo dataset because decay 

measurements were obtained from a mixture of all tissues. We tested if trans-acting factors 

may “mask” codon optimality in the neural-specific dataset by calculating neural-specific 

CSCs for transcripts that are not predicted to be targets of the RBPs Pumilio, Fmrp, and 

Orb2B or the microRNAs miR-124 and miR-315. These factors were selected because good 

target datasets are available (Gerber et al., 2006; McMahon et al., 2016; Stepien et al., 2016; 

Schnall-Levin et al., 2010), they are known to induce decay of their targets, and they are 

largely neural-specific at the stages we investigated. These calculations resulted in modest 

changes in CSCs, both for individual trans-acting factors (data not shown) and for the set of 

mRNAs that are not predicted to be targets of any of these factors (Figure S3). CSC 

directionality was largely maintained (optimal codon CSCs became more positive and non-

optimal codon CSCs became more negative) and agreed with optimal and non-optimal 

assignments based on the complete neural-specific dataset. However, the magnitude of the 
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non-target CSCs was small compared to whole embryo CSCs and similar changes in CSC 

magnitude were obtained using a randomly selected set of genes (Figure S3), suggesting that 

non-target CSC changes are not significant. We conclude that, at least for this set of RBPs 

and microRNAs, the activity of neural-specific decay-promoting factors does not mask 

otherwise strong correlations between codon content and mRNA stability in the nervous 

system.

We next predicted that if codon optimality is attenuated in the nervous system, correlations 

between targeting by decay factors and mRNA stability should be largely insensitive to 

codon content. Conversely, in embryos we expect antagonism between high optimal codon 

content and destabilization by trans-acting factors. To test this relationship using whole 

embryo data, we focused on mRNAs that contain an AU-richelement(ARE) intheir 3′ 

UTR(Cairrao et al., 2009). Tis11 is a RNA-binding protein that promotes mRNA decay via 

ARE binding (Choi et al., 2014) and is broadly expressed in embryos (Ma et al., 1994). We 

therefore considered ARE-containingmRNAsaslikelytargetsofTis11-mediateddecay. ARE-

containing mRNAs are significantly less stable than mRNAs that lack this element (Figure 

S4A). As predicted, when ARE-containing mRNAs are grouped according to percent 

optimal codons, high optimal codon content mRNAs are significantly more stable than 

intermediate and low optimal codon content mRNAs. This suggests there is competition 

between the destabilizing effect of Tis11 and the stabilizing effect of optimal codons.

The stability of ARE-containing mRNAs is not significantly different from non-ARE 

mRNAs in the neural-specific dataset. Therefore, to test the relationship between codon 

content and trans-acting factors in the nervous system we focused on targets of Pumilio and 

miR-315. These are the only factors from the list above whose targets are significantly less 

stable than non-targets (Figures S4B and S4C). In both cases, when target mRNAs were 

grouped according to codon content (defined by either neural-specific data or whole embryo 

data) there were no significant differences in the half-lives of high, intermediate and low 

optimal codon content mRNAs. This suggests that Pumilio and miR-315 are the primary 

determinants of target mRNA half-life and that codon content has little or no influence. 

These analyses provided an additional clue that codon optimality is intrinsically weakened in 

the nervous system.

The Stabilizing Effects of Optimal Codons Are Attenuated in the Nervous System

To test our hypothesis that optimal codons are intrinsically less stabilizing in the nervous 

system (independent of any effects of trans-acting factors), we used synonymous codon 

substitutions to make reporter constructs with varying optimal codon content. All reporters 

contained hsp70Bb 5’ and 3’ UTRs to normalize effects of UTR length or sequence and to 

rule out targeting by trans-acting factors because these UTRs lack any predicted microRNA 

or RBP binding sites. The reporters were expressed ubiquitously or in specific tissues using 

the Gal4/UAS system (Brand and Perrimon, 1993) and reporter mRNA decay was measured 

by TU-tagging (Burow et al., 2015). First, we made a wild-type RpS15Aa reporter (63% 

optimal codons) and a nonoptimal RpS15Aa reporter (0% optimal codons) (Figure 3A). As 

predicted, wild-type RpS15Aa was stable while non-optimal RpS15Aa was strongly 

destabilized in whole embryos (Figure 3A). In contrast, codon content had little effect on 
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RpS15Aa stability in the nervous system: both the optimal and non-optimal versions of 

RpS15Aa were unstable.

We next asked if re-coding a low stability transcript to contain an exceptionally high 

frequency of optimal codons could increase mRNA stability in whole embryos, the nervous 

system, and an additional tissue: the developing muscular system (mesoderm and muscle). 

We focused on the clathrin light chain (Clc) transcript, which normally contains 53% 

optimal codons and has intermediate stability according to whole embryo (t1/2 = 75 min) and 

neural-specific (t1/2 = 62 min) measurements. We made a highly optimized Clc reporter 

containing 85% optimal codons (Figure 3B). Optimized Clc was strongly stabilized in whole 

embryos and the muscular system but this stabilizing effect was significantly weaker in the 

nervous system (Figure 3B). These results suggest that a core set of optimal codons have a 

general stabilizing effect in embryos but the strength of this stabilization is attenuated in the 

nervous system.

The Relative Abundance of tRNAs that Decode Codons Enriched in Ribosomal Protein 
mRNAs Is Conserved in the Nervous System

A majority (63%) of functionally annotated mRNAs with high optimal codon content and 

strong destabilization in the nervous system (neural/whole embryo half-life ≤0.33) encode 

ribosomal proteins (Table S1). This suggests that codon optimality outside the nervous 

system may largely be shaped by selection for stabilization of transcripts supporting 

ribosome production. To test this hypothesis, we compared codon usage frequency and CSC 

for ribosomal protein transcripts (Rp mRNAs). This analysis revealed a strong correlation 

between codon usage in Rp mRNAs and CSCs (Figure 4A). No such correlation exists for 

Rp mRNA codon usage and neural-specific CSCs (data not shown). We interpret these 

results as evidence that ribosomal protein mRNA stability is a strong selector for codon 

optimality, and attenuation of codon optimality contributes to the decreased stability of Rp 
mRNAs in the nervous system.

Based on the standard model of codon optimality, tRNAs that decode codons enriched in Rp 
mRNAs should be more abundant in Rp mRNAs. Wetested these predictions by measuring 

the charged tRNA abundance of three isoacceptor pairs: tRNA-ArgACG (positive CSC, 

enriched in Rp mRNA) and tRNA-ArgTCG (negative CSC, depleted in Rp mRNA), tRNA-

AlaAGC (positive CSC, enriched in Rp mRNA) and tRNA-AlaCGC (negative CSC, 

depleted in Rp mRNA), and tRNA-LeuTAA (positive CSC, highly depleted in Rp mRNA) 

and tRNA-LeuTAG (negative CSC, depleted but more frequent than tRNA-LeuTAA in Rp 
mRNA) (Figure 4B). For the Arg and Ala tRNAs, abundance closely corresponded to codon 

frequency and optimality: tRNA-ArgACG and tRNA-AlaAGC were significantly more 

abundant than tRNA-ArgTCG and tRNA-AlaCGC. For the Leu tRNAs, codon frequency in 

Rp mRNAs was a stronger predictor of relative tRNA abundance than CSC: tRNA-LeuTAG 

was more abundant than tRNA-LeuTAA. These results suggest that codon frequency in Rp 
mRNAs is shaped by tRNA abundance and that codon stabilization coefficients, as indicated 

by the Leu isoacceptor results, may be influenced by factors other than tRNA abundance.

One explanation for the decreased stability of Rp mRNAs in the nervous system could be 

neural-specific changes in the abundance of tRNAs that decode codons enriched in Rp 
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mRNAs. We tested this possibility by quantifying tRNA levels in the CNS dissected from 

newly hatched larvae (the early larval CNS closely resembles the late embryonic CNS used 

for mRNA decay measurements). We found that tRNA levels in the CNS are very similar to 

tRNA levels in whole embryos (Figure 4B). The only significant difference was a decrease 

in the total abundance of tRNA-AlaAGC, but the relative abundance of the Ala isoacceptors 

is the same (tRNA-AlaAGC is more abundant than tRNA-AlaCGC). While the decreased 

abundance of tRNAAlaAGC in the nervous system may weaken the stabilizing effect of the 

corresponding GCT codon (GCT has a weak negative CSC value based on neural-specific 

measurements), these tRNA abundance data suggest that decreased stability of Rp mRNAs 

in the nervous system is not solely due to changes in the abundance of tRNAs that decode 

optimal codons.

DISCUSSION

Implications of the Relationship between Codon Content and mRNA Decay in Drosophila

We discovered a role for codon optimality in determining Drosophila zygotic mRNA 

stability, plus a surprising additional level of regulation: the attenuation of codon optimality 

in the nervous system. This work was motivated by our interest in identifying stability 

determinants that explain half-life differences in whole embryo and neural-specific mRNA 

decay measurements. Our bioinformatic analyses and reporter assays all point to tissue-

specific differences in codon optimality as a major determinant of differential stability and 

explain why we were unable to find any strong candidate cis-regulatory features that, on 

their own, explain differential stability.

One of the most dramatic examples of differential stability in the nervous system is the 

destabilization of Rp mRNAs. Previous work has shown that Rp mRNA stability decreases 

in differentiated human fibroblasts compared to mitotic progenitors (Johnson et al., 2017), 

and maturing neurons undergo a sharp decrease in ribosome biogenesis (Slomnicki et al., 

2016). Destabilization of Rp mRNAs might be particularly important in neurons, where 

protein metabolism needs are distinct from those of mitotic cells and localized translation 

occurs in axon growth cones and dendrites (Holt and Schuman, 2013). Our reporter 

transcript assays support a model in which the stability of Rp mRNAs and other high 

optimal codon content transcripts is decreased in the nervous system due to the attenuation, 

not the absence, of stabilizing effects of optimal codons. Transcripts like RpS15Aa that have 

~60% optimal codons are generally stabilized, but this level of codon optimality does not 

have a strong stabilizing effect in the nervous system. The Clc results show that increasing 

optimal codon content to exceptionally high levels dramatically increases stability 

throughout embryos, but this stabilizing effect is weaker in the nervous system. We consider 

85% optimal codon content to be exceptionally high because only 2 genes in our datasets 

have optimal codon content >80%, and only 74 genes have optimal codon content >70%. 

Importantly, the optimized Clc reporter was highly stabilized in another tissue type, the 

mesoderm and muscle, arguing that the attenuation of the stabilizing effects of optimal 

codons may be unique to the nervous system. We do not propose that attenuation of codon 

optimality is the sole determinant of differential mRNA stability in the nervous system but 
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rather that attenuated codon optimality synergizes with the translation dampening and decay 

promoting activity of trans-acting factors.

Relationships between codon content and trans-acting stability determinants were recently 

described in Drosophila S2 cells using reporter transcripts containing microRNA binding 

sites and varying optimal codon content (Cottrell et al., 2017). This work showed that 

transcripts with high or low optimal codon content (defined by tAI) were weakly repressed 

by microRNAs, while transcripts with intermediate optimal codon content were strongly 

repressed by microRNAs. We observed a similar relationship for ARE-containing mRNAs 

based on whole embryo data: ARE-containing mRNAs with high optimal codon content are 

more stable than those with intermediate or low optimal codon content. The absence of such 

relationships for Pumilio and miR-315 targets in our neural-specific data suggests that the 

intersection of trans-acting factors and codon optimality is distinct in the nervous system. 

Multiple lines of evidence suggest that post-transcriptional regulation of gene expression is 

particularly important in the nervous system (Loya et al., 2010; Pilaz and Silver, 2015). We 

propose that attenuation of the link between translation rates and mRNA decay evolved to 

enable RBPs and microRNAs to exert a stronger influence on mRNA half-life in the nervous 

system than they would in other tissues.

Potential Mechanisms of Attenuated Codon Optimality in the Nervous System

Our measurements of charged tRNA abundance support two conclusions. First, these data 

confirm the predicted link between codon usage and tRNA availability in embryos: codons 

decoded by abundant charged tRNAs are enriched in highly stable Rp mRNAs. Second, 

these data rule out differential charged tRNA abundance as the primary cause of attenuated 

codon optimality in the nervous system. While it is possible that the abundance of other 

charged tRNAs might differ in the nervous system or that neural-specific post-transcriptional 

modifications of tRNAs could affect the link between translation and decay, such effects 

would likely be revealed by our neural-specific CSC analyses. Instead, there are no codons 

that strongly correlate with increased or decreased stability in the nervous system and those 

that have modest correlations largely agree with the optimal/ non-optimal assignments in 

whole embryos.

If altered availability of charged tRNAs is unlikely to explain attenuated codon optimality in 

the nervous system, what is the likely mechanism? One possibility is that the molecular 

machinery linking codon usage, ribosome translocation, and mRNA decay is altered in the 

nervous system. The Drosophila ortholog of Dhh1p, Me31b, is broadly expressed in 

embryos (data not shown) and co-purifies with ribosome complexes (Antic et al., 2015). 

Me31b-mediated mRNA decay may be altered in the nervous system due to differential 

expression of co-factors that affect Me31b activity, similar to the changes in Me31b-

mediated translation repression and mRNA decay that occur during the maternal to zygotic 

transition in Drosophila embryos (Wang et al., 2017). Weak correlations between codon 

usage and mRNA stability could also be caused by the uncoupling of translation repression 

and decay for transcripts that are localized to axon growth cones or dendrites (Holt and 

Schuman, 2013). Regardless of the underlying mechanisms, altered codon optimality in the 

nervous system likely serves two functions. First, it allows neural-specific mRNA decay 
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mechanisms, such as targeting by RNA binding proteins, to function in the absence of strong 

competition with the codon optimality pathway. Second, it helps shape neural-specific 

mRNA decay rates to meet the unique biological needs of neurons.

EXPERIMENTAL PROCEDURES

Computational Analysis

RNA-binding protein motif searches were performed using RBPMap (Paz et al., 2014). 

MicroRNA seed sequences and enriched or depleted hexameric sequences were sought using 

FIRE (Elemento et al., 2007). Codon clustering and CSC calculations were performed as 

previously described (Presnyak et al., 2015). For codon clustering, the relative frequency of 

occurrence of the 61 codons was computed within each mRNA. These values were then 

ranked (using RANK.AVG function in Excel). The obtained matrix was then clustered using 

Cluster3 (Spearman distance metric and k-means clustering) and visualized by Java 

Treeview. The CSC values were determined for each codon as the Pearson correlation 

coefficient between the frequency of occurrence of the codon in the transcripts and the half-

lives of these transcripts. Drosophila melanogaster tRNA gene copy number is based on the 

Genomic tRNA database (GtRNAdb 2.0) (Chan and Lowe, 2016) and the Berkeley 

Drosophila Genome Project release 6 (dm6). tRNA adaptive index (tAI) values were 

calculated using CUA, an open-source program available on CPAN (Zhang, 2015). Gene 

ontology analysis was performed using GO-Term Finder (Boyle et al., 2004).

Fly Lines and Reporter Assays

Chemically synthesized RpS15Aa-RD wild-type, RpS15Aa-RD non-optimal, Clc-RA wild-

type, or Clc-RA optimal DNA (Integrated DNA Technologies) was ligated into the pUAST-

emGFP-hsp70BbUTR-attB backbone and injected into P{nos-phi-C31int.NLS}X, 

P{CaryP}attP40 embryos as previously described (Burow et al., 2015). Reporter lines were 

crossed to either the neural-specific prospero-GAL4 (Burow et al., 2015) that labels neural 

progenitors, post-mitotic neurons and glia, the ubiquitous R45H06-Gal4 (Bloomington 

Drosophila Stock Center), or the mesoderm and muscle-specific how24B-Gal4 

(Bloomington Drosophila Stock Center). TU-tagging-based decay measurements and 

realtime qPCR were performed as previously described (Burow et al., 2015) with 

normalization to 5S rRNA. All experiments were performed in stage 12–15 embryos in 

order to match the developmental timing used in Burow et al. (2015).

Charged tRNA Quantitation

RNA from Canton-S stage 12–15 embryos and dissected newly hatched larval central 

nervous system tissues (0–4 hr after larval hatching) was size selected (<200 bp) using 

RNeasy Mini spin columns. Charged tRNAs were selected via oxidation with 10 mM NaIO4 

on ice for 40 min, precipitation and re-suspension in 20 mM TrisHCl (pH 9.0) for 40 min at 

37C to remove amino acids, then final precipitation with ethanol and linear polyacrylamide. 

Charged tRNAs were used in “four leaf clover” real-time qPCR reactions (Honda et al., 

2015) with Ct values normalized to 5S rRNA.
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Statistical Analysis

Statistical tests and random gene sampling were performed using the computing 

environment R (R Core Team, 2017). Relevant tests are named in the figure legends or text. 

For reporter assays and tRNA quantitation, duplicate qPCR measurements were taken from 

cDNA prepared from two or three independent biological replicates: input RNA from 

independent TU-taggings for reporter decay measurements, input RNA from independent 

embryo and larval CNS preparations for tRNA quantitation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Codon content is a general determinant of mRNA stability in Drosophila 
embryos

• Codon content is a weak determinant of mRNA stability in the nervous 

system

• The relative abundance of tRNAs is conserved in embryos and neural tissue

• Attenuation may augment regulation of neural mRNA stability by trans-acting 

factors
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Figure 1. Codon Usage Correlates with Embryo mRNA Stability but Not Neural mRNA Stability
(A) 3,312 mRNAs clustered according to codon usage. Each row is a different mRNA and 

each column represents the frequency of the codon listed on top.Codons in blue type are 

predicted preferred codons.

(B) Distribution of mRNA half-lives for class 1 versus class 2 mRNAs based on whole 

embryo decay measurements (top panel) and neural-specific decay measurements (bottom 

panel). p value determined by Kolmogorov-Smirnov test, n.s., no significant difference 

between classes.
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(C) Codon stabilization coefficients (left) and mRNA half-lives categorized by percent 

optimal codon content (right) based on whole embryo measurements(7,995 mRNAs).

(D) Codon stabilization coefficients for all codons (left) and mRNA half-lives categorized by 

optimal codon content (right) based on neural-specific measurements (9,699 mRNAs). 

Codons with the same CSC direction (positive or negative) in the whole embryo and neural-

specific datasets are indicted with an asterisk. Significant differences among categories in 

the violin plots of (C) and (D) were detected by Kruskal-Wallis test and p values (***p < 1 × 

1010, **p < 0.001, or no significant difference [n.s.]) for the indicated pairwise comparisons 

are based on Dunn’s test. See also Table S1.
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Figure 2. Codon Optimality Establishes Decay of Functionally Related Transcripts
(A) Relative stability of mRNAs based on neural-specific versus whole embryo 

measurements. x axis is the neural-specific half-life divided by whole embryohalf-life. p 

values are based on Kolmogorov-Smirnov test comparing all mRNAs to high optimality or 

low optimality mRNAs.

(B) Gene ontology categories enriched in high optimality versus low optimality mRNAs.

(C) Codon content and differential stability of representative high optimality mRNAs. The 

codon content of each gene is plotted in order of optimality (high to low) as defined by 

whole embryo CSCs.

(D) Codon content and differential stability of representative low optimality mRNAs. Codon 

content is plotted as in (C). See also Table S1.
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Figure 3. The Stabilizing Effects of Optimal Codons Are Attenuated in the Nervous System
(A) RpS15Aa wild-type or RpS15Aa non-optimal coding sequences are illustrated in order 

of their codon optimality. Reporter transcript abundance after a 2-hr chase is plotted for 

RpS15Aa wild-type (blue) and RpS15Aa non-optimal (salmon) as measured in whole 

embryos or in the nervous system.

(B) Clc wild-type (salmon) or Clc optimized (blue) reporter transcript decay is plotted as 

described for (A), with the addition of mesoderm/muscle-specific measurements. Data in 

(A) and (B) are mean ± SEM. Significant differences in reporter construct decay were 

identified by t tests, **p value < 0.001.
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Figure 4. The Relative Abundance of Charged tRNAs that Decode Codons Enriched in 
Ribosomal Protein mRNAs Is Conserved in Embryos and the Nervous System
(A) Codon enrichment or depletion in Rp genes is plotted as bars, embryo CSC is plotted as 

dots. Codons are arranged from left to right in order of their optimality in embryos (optimal 

CSC in blue and non-optimal CSC in salmon). Codons corresponding to tRNAs analyzed in 

(B) are shown in blue (optimal CSC) or salmon (non-optimal CSC).

(B) Whole embryo and CNS charged tRNA levels are plotted relative to tRNA-MetCAT, 

with optimal codons blue and non-optimal codons salmon. Data are represented as mean ± 

SD. **p < 0.001 for AlaAGC embryo versus AlaAGC neural based on t test with Bonferroni 

multiple testing correction.
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