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Abstract: Carbapenem-resistant Enterobacteriaceae (CRE) is listed as an urgent threat by the World
Health Organization because of the limited therapeutic options, rapid evolution of resistance
mechanisms, and worldwide dissemination. Colistin is a common backbone agent among the
“last-resort” antibiotics for CRE; however, its emerging resistance among CRE has taken the
present dilemma to the next level. Azidothymidine (AZT), a thymidine analog used to treat
human immunodeficiency virus/acquired immunodeficiency syndrome, has been known to possess
antibacterial effects against Enterobacteriaceae. In this study, we investigated the combined effects
of AZT and colistin in 40 clinical isolates of colistin-resistant, carbapenem-resistant K. pneumoniae
(CCRKP). Eleven of the 40 isolates harbored Klebsiella pneumoniae carbapenemase. The in vitro
checkerboard method and in vivo nematode killing assay both revealed synergistic activity between
the two agents, with fractional inhibitory concentration indexes of ≤0.5 in every strain. Additionally,
a significantly lower hazard ratio was observed for the nematodes treated with combination therapy
(0.288; p < 0.0001) compared with either AZT or colistin treatment. Toxicity testing indicated
potentially low toxicity of the combination therapy. Thus, the AZT–colistin combination could be a
potentially favorable therapeutic option for treating CCRKP.
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1. Introduction

Antimicrobial resistance (AMR) has been one of the most challenging public health problems
during this era of expeditious medical advances. Multidrug-resistant organisms (MDROs) are
recognized as an imminent global threat that impose substantial medical burdens and economic
costs [1]. Various carbapenem-resistant Gram-negative bacteria (GNB) are listed as being critical and
urgent MDRO threats by the World Health Organization and the US Centers for Disease Control and
Prevention (CDC) [2,3] because of the rapid evolution of their resistance mechanisms and worldwide
dissemination. Globally, the prevalence rates of carbapenem-resistant Enterobacteriaceae (CRE) have
been increasing, especially those of Klebsiella pneumoniae and Escherichia coli [4]. Because of the limited
antimicrobial options and an increased risk for horizontal transmission due to the presence of resistance
genes in mobile genetic elements, the treatment and containment of CRE infections have become
serious dilemmas in daily practice and in terms of infection control [5].

The phenotypic resistance to carbapenems in CRE typically originates from two main mechanisms:
(1) the combined effects of β-lactamase(s) and structural mutations, and (2) the production of
carbapenemases [6]. Therefore, CRE is frequently categorized into carbapenemase-producing (CP)
CRE (CP-CRE) and non-CP CRE (non-CP-CRE). CP-CRE exhibits higher carbapenem minimum
inhibitory concentrations (MICs), results in higher mortality, and has an increased risk for resistance
transmission [7,8]. CP-K. pneumoniae (CPKP) is the most widely reported CRE species, with a much
higher and increasing prevalence compared with E. coli [9]. Therefore, CPKP is the most extensively
studied CRE regarding treatment response to various new and old antibiotics.

Among the list of “old antibiotics” for emerging MDROs, polymyxin B and E (colistin) are
frequently used as the backbone of combination therapy for CRE [10]. In countries or regions
where new β-lactam/β-lactamase inhibitors (BLBLIs) are unavailable, colistin resistance in CRE
has a significant impact on patient survival [11]. In such a difficult situation, combining colistin
with a synergistic agent would be a potential option and feasible approach. Azidothymidine (AZT;
3′-azido-3′-deoxythymidine), and also known as zidovudine, is a thymidine analog used as an
antiretroviral agent to treat human immunodeficiency virus/acquired immunodeficiency syndrome
(HIV/AIDS). It has been found to possess antibacterial effects against GNB [12–14]. Several studies that
were conducted to repurpose screens among FDA-approved drugs showed that AZT is a potential
candidate for combination therapy of multidrug-resistant GNB, including CRE [14–16].

In this study, we performed synergistic analyses between AZT and colistin on 40 isolates of
colistin-resistant, carbapenem-resistant K. pneumoniae (CCRKP) by using the checkerboard method.
Meanwhile, an animal model using Caenorhabditis elegans was applied to evaluate the in vivo efficacy
and safety of combination therapy. To the best of our knowledge, this study is the first to examine
AZT–colistin synergism for concomitant colistin- and carbapenem-resistant K. pneumoniae isolates.

2. Materials and Methods

2.1. Bacterial Isolates

As a part of Taiwan’s nationwide surveillance, 40 isolates of CCRKP were collected between
2013 and 2015 from 11 hospitals in Taiwan [9,17]. Carbapenem resistance was defined as resistance
to either imipenem or meropenem, according to the Clinical and Laboratory Standards Institute
(CLSI) guidelines [18]. Colistin resistance was defined as MIC > 2 µg/mL, according to the European
Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria [19]. Among the 40 isolates,
urine was the main source (11/40, 27.5%), followed by sputum (10/40, 25%), stool (4/40, 10%), pus/wound
(3/40, 7.5%), abscess (3/40, 7.5%), blood (2/40, 5%), endotracheal aspirate (2/40, 5%), ascites (2/40, 5%),
bile (2/40, 5%), and drainage (1/40, 2.5%) (Table 1).
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Table 1. Sources of the 40 isolates.

Source No. of Isolates

Urine 11
Sputum 10

Stool 4
Pus/wound 3

Abscess 3
Blood 2

Endotracheal 2
Ascites 2

Bile 2
Drainage 1

2.2. Antimicrobial Susceptibility

The broth microdilution method (Sensititre, Trek Diagnostic Systems, Cleveland, OH, USA) was
used to determine the isolates’ susceptibility profiles against 18 antimicrobial agents, according to
the CLSI guidelines [18], including β-lactams (ampicillin, ceftazidime, cefazolin, cefepime, cefoxitin,
ceftriaxone, imipenem, meropenem, doripenem, ertapenem, cefotaxime, and piperacillin-tazobactam),
monobactams (aztreonam), aminoglycosides (amikacin and gentamicin), quinolones (ciprofloxacin
and levofloxacin), and folate inhibitors (trimethoprim/sulfamethoxazole). For tigecycline and colistin,
the Enterobacteriaceae breakpoints were adopted, according to the Food and Drug Administration
(FDA) and EUCAST guidelines, respectively. Furthermore, a standard broth microdilution method
was applied in accordance with CLSI guidelines to evaluate the MICs for colistin and AZT.

2.3. Synergistic Analysis

The synergism between AZT and colistin was investigated through the checkerboard method,
as described previously [20]. In brief, the bacterial suspension of each strain was prepared in
cation-adjusted Mueller–Hinton broth (CAMHB) and was added to wells at a final concentration of
5 × 105 CFU/mL. Two-fold serial dilutions of AZT and colistin were prepared and added to the wells
containing bacteria. The synergistic effects were determined according to the fractional inhibitory
concentration (FIC) index, which was calculated as follows:

(MIC of drug A tested in combination)/(MIC of drug A tested alone) +

(MIC of drug B tested in combination)/(MIC of drug B tested alone).

Synergy is defined as an FIC index ≤ 0.5. An FIC index between 0.5 and 4.0 is interpreted as there
being no interaction, and antagonism is defined as an FIC index of >4.

2.4. In Vivo Study

C. elegans, strain N2, was used for both in vivo toxicity and nematode-killing assays.
Nematode growth medium (NGM) agar plates with bacterial lawns of E. coli, laboratory strain
OP50, were used as food sources for the maintenance of nematodes at 20 ◦C. The procedures were
carried out as described in our previous study [21]. NGM agar plates were prepared with the following
antibiotic concentrations: colistin, 1 µg/mL; AZT, 0.15 µg/mL; a combination of colistin and AZT, 1 and
0.15 µg/mL, respectively. Clinical isolates of CCRKP strain 1336 or E. coli OP50 were spread onto the
plates. Growth-synchronized L4-stage nematodes (40 for each group) were transferred onto the plates
containing different antimicrobial agents and bacterial lawns. All plates were maintained at 25 ◦C,
and the survival of nematodes was recorded daily. For the toxicity assay, treatment plates that were
supplemented with a vehicle served as the controls. For the killing assay, the plates containing only a
lawn of E coli OP50 served as the negative control.
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2.5. Polymerase Chain Reaction Detection

Polymerase chain reactions were used to detect the presence of extended-spectrum β-lactamase
(ESBL) genes (blaSHV, blaTEM, blaOXA, blaCTX-M-G1, blaCTX-M-G2, and blaCTX-M-G9), plasmid-mediated
AmpC genes (blaDHA and blaCMY), carbapenemase genes (blaKPC, blaNDM, blaIMP, blaNMC, blaSME, blaVIM,
blaSPM-1, blaGIM-1, blaSIM-1, blaIMI, blaGES, and blaOXA-48), mcr-1 gene and outer membrane porin genes
(ompK35 and ompK36) (Table S1) [21]. Reactions were performed using TaKaRa Taq™ (Cat. R001A,
Takara Shuzo Co., Ltd., Tokyo, Japan) and prepared in a total volume of 25 µL, in accordance with the
instruction manual. All analyses were performed with corresponding positive controls.

2.6. Statistical Analyses

The MIC distributions of colistin and AZT, in combination or alone, were constructed with
GraphPad Prism software (v.7.0) and analyzed using paired Student’s t-tests.

3. Results

3.1. Distribution of Resistance Mechanisms and In Vitro Susceptibilities

Among the 40 isolates of CCRKP, Klebsiella pneumoniae carbapenemase (KPC) was identified in 11 of
them and was the only carbapenemase. None of the strains harbored the mcr1 gene. For non-CP-CCRKP,
51.7% (15/29) had more than three types of resistance mechanisms, which most commonly involved
DHA AmpC β-lactamase gene (20 isolates) and ESBL genes (TEM, 17 isolates; CTX-M, 15 isolates)
(Figure 1a). It was determined that all except one isolate of CP-CCRKP had lost OmpK36 (Figure 1b).
The antimicrobial susceptibilities to 19 common antimicrobial agents are listed in Table 2; tigecycline and
amikacin demonstrated higher susceptibilities of 87.5% and 70%, respectively, compared with the
other antimicrobials tested. The MICs for colistin ranged from 4 to 12 µg/mL, with the MIC50 being
64 µg/mL and MIC90 being 128 µg/mL. The MICs for AZT ranged from 0.125 to 16 µg/mL, with the
MIC50 being 1 µg/mL and MIC90 being 2 µg/mL (Table 3). Table 3 also shows the changes to MICs
after the two drugs were combined. MICs for both AZT and colistin decreased significantly after
combining with the respective drug, ranging from 1 to 2 µg/mL for AZT and 0.03125 to 1 µg/mL
for colistin. Figure 2 presents a comparison of the MICs of AZT and colistin as single agents and in
combination. After combination, the MIC values of colistin fell below the breakpoint for resistance
(MIC ≤ 2 µg/mL) in all strains. Moreover, the mean MIC value of AZT attained an average steady-state
serum concentration of 0.19 µg/mL after combination with colistin [22].
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Figure 1. Distribution of the examined resistance mechanisms among the 40 isolates. (a) non-KPC
producers; #, number of simultaneous resistance mechanisms (number of isolates) (b) KPC producers,
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Table 2. Antimicrobial susceptibilities against 19 common antimicrobial agents.

Antimicrobial Agents
Antibiotic Susceptibility

S I R

Ampicillin 0.0% 0.0% 100.0%
Ceftazidime 0.0% 2.5% 97.5%

Cefazolin 0.0% 0.0% 100.0%
Cefepime 5.0% 7.5% 87.5%
Cefoxitin 2.5% 2.5% 95.0%

Ceftriaxone 0.0% 0.0% 100.0%
Cefotaxime 2.5% 0.0% 97.5%
Imipenem 2.5% 10.0% 87.5%

Meropenem 7.5% 0.0% 92.5%
Doripenem 7.5% 2.5% 90.0%
Ertapenem 0.0% 2.5% 97.5%
Aztreonam 7.5% 2.5% 90.0%

Piperacillin/Tazobactam 5.0% 0.0% 95.0%
Tigecycline 87.5% 10.0% 2.5%

Ciprofloxacin 2.5% 0.0% 97.5%
Levofloxacin 2.5% 0.0% 97.5%
Gentamicin 32.5% 0.0% 67.5%
Amikacin 70.0% 0.0% 30.0%

Sulfamethoxazole-Trimethoprim 12.5% 0.0% 87.5%

Table 3. MIC range, MIC50, MIC75, and MIC90 for colistin, AZT, and colistin/AZT combination.

Agents
MIC (µg/mL) MIC in Combination (µg/mL)

Range MIC50 MIC75 MIC90 Range MIC50 MIC75 MIC90

Colistin 4–512 64 64 128 1–2 1 1 2
AZT 0.125–16 1 2 2 0.03125–1 0.125 0.125 0.25

MIC, minimum inhibitory concentration; AZT, azidothymidine.

Microorganisms 2020, 8, x FOR PEER REVIEW 5 of 12 

 

Ciprofloxacin  2.5% 0.0% 97.5% 
Levofloxacin  2.5% 0.0% 97.5% 
Gentamicin 32.5% 0.0% 67.5% 
Amikacin 70.0% 0.0% 30.0% 

Sulfamethoxazole-Trimethoprim 12.5% 0.0% 87.5% 

Table 3. MIC range, MIC50, MIC75, and MIC90 for colistin, AZT, and colistin/AZT combination. 

Agents 
MIC (μg/mL) MIC in Combination (μg/mL) 

Range MIC50 MIC75 MIC90 Range MIC50 MIC75 MIC90 
Colistin 4–512 64 64 128 1–2 1 1 2 

AZT  0.125–16 1 2 2 0.03125–1 0.125 0.125 0.25 
MIC, minimum inhibitory concentration; AZT, azidothymidine. 

  

(a) (b) 

Figure 1. Distribution of the examined resistance mechanisms among the 40 isolates. (a) non-KPC 
producers; #, number of simultaneous resistance mechanisms (number of isolates) (b) KPC producers, 
with one isolate lacking data for outer membrane proteins. 

  
(a) (b) 

Figure 2. MIC distributions of colistin (COL, hollow circles), azidothymidine (AZT, hollow circles), 
and their combination (filled circles). (a) Dotted line indicates the breakpoint for colistin resistance 
according to the EUCAST guidelines. (b) Dotted line represents the average steady-state 
concentration of AZT in plasma (0.19 μg/mL). ****, p < 0.0001 with the paired t-test. 

Figure 2. MIC distributions of colistin (COL, hollow circles), azidothymidine (AZT, hollow circles),
and their combination (filled circles). (a) Dotted line indicates the breakpoint for colistin resistance
according to the EUCAST guidelines. (b) Dotted line represents the average steady-state concentration
of AZT in plasma (0.19 µg/mL). ****, p < 0.0001 with the paired t-test.
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3.2. Checkerboard Analysis and In Vivo C. elegans Toxicity and Killing Assay

To determine the combined effects of colistin and AZT, the checkerboard method was utilized
and demonstrated synergistic activity (Table 4). The FIC indexes were ≤0.5 for 100% of both KPC
producers and nonproducers, clearly showing synergism in the 40 strains of CCRKP, regardless of
carbapenemase production (all KPC in this study).

Table 4. In vitro synergistic analysis using the checkerboard method.

Group Activity of the
Combination FICI Criteria Total No. (%) of Isolates

CCRKP (n = 40)

KPC-producer
(n = 11)

synergy ≤0.5 11 (100.0%)
No interaction >0.5–4 0
Antagonism >4 0

non-KPC-producer
(n = 29)

synergy ≤0.5 29 (100.0%)
No interaction >0.5–1 0
Antagonism >4 0

FICI, fractional inhibitory concentration index; KPC, Klebsiella pneumoniae carbapenemase.

For the toxicity testing of colistin, AZT, and their combination, C. elegans were fed with E. coli
OP50 and treated with different regimens. As shown in Figure 3 and Table 5, no differences were
observed between the groups of nematodes treated with colistin, AZT, or a combination thereof
compared with the E. coli OP50 control group. This result suggests that the combination of AZT and
colistin is safe. In addition, the synergistic activity between AZT and colistin was confirmed using the
nematode killing assay. C. elegans fed with nontoxic E. coli OP50 (OP50-control) had a significantly
longer median survival time (9 days; p < 0.0001) compared with C. elegans infected with a clinical
strain of K. pneumoniae 1336 (1336-control) (Figure 4 and Table 5). There were no significant differences
found between the 1336-control and the nematodes treated with either colistin at 1 µg/mL or AZT at
0.15 µg/mL, implying that neither of the antimicrobial agents could rescue the nematodes infected with
a CCRKP. By contrast, the infected nematodes that were treated with a combination of colistin and
AZT had a medium survival time that was significantly extended, from 6 days to 8.5 days (p < 0.0001).
A significantly lower hazard ratio (HR) was observed for the nematodes treated with combination
therapy (HR, 0.288; 95% confidence interval 0.17 to 0.50; p < 0.0001).
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Figure 3. In vivo toxicity testing of colistin, AZT, or colistin/AZT combination using a C. elegans
model. Nematodes (n = 40, each group) were fed with nontoxic E. coli laboratory strain OP50 and
supplemented with a vehicle (control), colistin (COL, at 1 µg/mL), azidothymidine (AZT, at 0.15 µg/mL),
or a combination (AZT + COL, at 0.15/1 µg/mL). ns, no significance.
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Table 5. Statistical analyses of in vivo C. elegans toxicity testing and killing assays.

Test Group Median Survival
(Days)

p Value Risk Ratio
95% CI

Lower Upper

In vivo
toxicity assay

OP50-Control 9 - 1 - -
OP50-AZT 9 0.7901 0.934 0.57 1.54
OP50-COL 8 0.4573 0.827 0.50 1.36

OP50-AZT + COL 9 0.6177 1.13 0.69 1.87

In vivo
killing assay

OP50-Control 9 <0.0001 0.27 0.16 0.47
1336-Control 6 - 1 - -

1336-AZT 6 0.7254 1.097 0.65 1.84
1336-COL 6 0.8561 0.953 0.56 1.61

1336-AZT + COL 8.5 <0.0001 0.288 0.17 0.50

OP50, laboratory strain of nontoxic Escherichia coli OP50 as a food source for nematodes (representing the negative
control); COL, colistin (concentration of 1 µg/mL); AZT, azidothymidine (concentration of 0.15 µg/mL); AZT + COL,
combination (concentration of 0.15/1 µg/mL); 1336, clinical isolate of CCRKP; CI, confidence interval.Microorganisms 2020, 8, x FOR PEER REVIEW 7 of 12 
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(AZT + COL, at 0.15/1 µg/mL). ns, no significance; ****, p < 0.0001.

4. Discussion

CRE has become an imminent global hazard with increasing prevalence worldwide, leading to increased
healthcare costs and higher mortality [23]. Among the carbapenemases with a high risk for transmission,
KPC is the most prevalent and widely spread [24]. Despite the introduction of novel BLBLIs on the
market in recent years, such as ceftazidime/avibactam, imipenem/relebactam, and meropenem/vaborbactam,
polymyxins remain an important agent for the treatment of CRE, especially in regions where the
new BLBLIs are unavailable or prevalent with metallo-β-lactamases-producing CRE. Nevertheless,
the emerging resistance of CRE against “last-resort” antibiotics, such as colistin, tigecycline,
and fosfomycin, has been increasingly reported [11,25–27]. The emergence of the colistin resistance
gene mcr1 in CRE is of great concern, especially with its potential to spread into geographical areas
beyond China and Southeast Asia, where it is most frequently reported, and into Enterobacteriaceae
species other than E. coli and K. pneumoniae [28,29].

In this study, the mcr1 gene was not detected in any of the 40 clinical isolates of CCRKP.
The extensive resistance primarily comes from the combination of multiple extensive-spectrum
β-lactamases or carbapenemase (all KPC), predominantly combined with outer membrane protein
deficiency (all Omp36K). AZT alone demonstrated relatively low MICs for the CCRKP (Table 3), and a
similar observation was reported by Peyclit et al. for one strain of colistin-resistant, carbapenem-resistant
K. pneumoniae, with AZT being highly effective at an MIC of 0.104 µg/mL [14]. Among the 12 strains
of isolates with relatively higher AZT MICs, ranging from 2 to 16 µg/mL (nine isolates at 2 µg/mL,
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two isolates at 8 µg/mL, one isolate at 16 µg/mL; data not shown), only two strains harbored
KPC, both with MICs at 2 µg/mL. Notably, all KPC-producing strains had lower MICs for AZT
(0.25–2 µg/mL). Among the three isolates that exhibited the highest MICs for AZT, two had only one
resistance gene (SHV (MIC = 8) and DHA (MIC = 16)), and one had multiple β-lactamase genes
(TEM, DHA, and CTX-M (MIC = 8)). This observation is reasonable considering that the resistance
mechanisms of AZT appear to involve the loss of thymidine kinase activity and/or poor cell membrane
permeation [30,31] instead of the more commonly known mechanisms of β-lactamases. This suggests
that AZT could be a favorable therapeutic candidate, even for carbapenemase-producing organisms.

We demonstrated the evident synergy between AZT and colistin using the checkerboard method
(Table 4) and nematode killing assay (Table 5). The synergistic activity of polymyxins and AZT among
E. coli and K. pneumoniae carrying various resistance mechanisms (Table 6) has been reported in several
previous studies [32–35]. The most commonly investigated resistance genotypes are mcr1 and blaNDM-1.
This study is the first to examine the combined effects of AZT and colistin in Enterobacteriaceae with
concomitant colistin and carbapenem resistance. It also bears the important clinical implication that the
colistin MIC in these 40 isolates decreased dramatically to a range of 1–2 µg/mL after combination with
AZT, which is defined as susceptible by the EUCAST guidelines. AZT is a thymidine analog that acts
as an inhibitor of HIV reverse transcriptase. Before being adopted as the first antiretroviral drug for
HIV/AIDS, it had been noted to exhibit potent in vitro bactericidal activity against various bacteria of
the family Enterobacteriaceae [36]. In Enterobacteriaceae, AZT is phosphorylated by thymidine kinase
(when present) to its triphosphate metabolites, which are then incorporated into the bacterial DNA
chain as a replication terminator [36]. Nonfermenters, such as Pseudomonas and Acinetobacter species,
are unaffected by AZT because they naturally lack thymidine kinase [37]. In addition to the thymidine
kinase levels of the bacteria, AZT susceptibility also correlates to cell permeability. Given that colistin
lyses GNB by permeabilizing the outer membrane, it is hypothesized that this mechanism allows AZT
to enter the cell at increased intracellular drug concentrations [38]. Lin et al. demonstrated that higher
polymyxin B concentrations could increase outer membrane permeability, with simultaneous decreases
in AZT MIC [33]. In addition, AZT can synergize with colistin by exerting a shared outer membrane
disrupting effect [38].

Table 6. Combination therapy against Enterobacteriaceae in different countries.

Species Country No.
Resistance
Phenotype

Resistance
Mechanism(s)

MIC of AZT (mg/L) MIC of Colistin (mg/L) Ref.

Alone Combination Alone Combination

K. pneumoniae Greece 100 Colistin NA 0.125–4 0.0625–1 4–128 0.25–16 [34]

E. coli China 9
Colistin

and
tigecycline

tet(X) and
mcr-1 0.5–4 0.3–1.5 4–8 <0.13–4 [32]

K. pneumoniae,
E. coli, E. cloacae UK 7 Carbapenem blaNDM-1 2–4

0.25–16
0.125–1 Reduced

32–256 fold [35]

E. coli UK 13 Colistin mcr-1 8–64 2–8 Reduced
4–256 fold [35]

K. pneumoniae Taiwan 40
Colistin

and
carbapenem

multiple,
blaKPC

0.125–16 0.03125–1 4–512 1–2 Present
study

NA: not available; tet(X), a unique mobile tigecycline resistance gene [32].

The peak plasma AZT concentration (Cmax) of 1–5 µg/mL is achieved approximately 1 h after
ingestion of 200–300 mg of AZT [39–42]. The pharmacokinetics (PK) of AZT has been most extensively
investigated among HIV-infected individuals. In the works of Drew et al. [41] and Burger et al. [40],
among HIV-infected patients, a Cmax of 0.73–1.3 and 0.8–1.1 µg/mL could be attained at 0.76 and 0.77 h,
respectively. Wattanagoon et al. reported a Cmax of 17.98 µM (4.8 µg/mL) in healthy volunteers in
Thailand after a single ingested dose of 300 mg AZT [39]. In agreement with a recent study [34], we found
relatively low AZT MICs (0.03125–1 µg/mL) for colistin-resistant K. pneumoniae after combination
with colistin, indicating that AZT could be a practical therapeutic candidate because of its clinically
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achievable concentrations. Loose et al. [37] investigated the serum bactericidal activity of combined
intravenous (IV) colistin methanesulfonate (CMS) and AZT in colistin-resistant GNB (five isolates of
mcr1-harboring E. coli). The trial was part of a phase 1 randomized, double-blinded study in healthy
volunteers receiving multiple doses of IV CMS coadministrated with AZT. Seven volunteers received
three IV infusions consisting of the following: first infusion, 4 million international units (MIU) of CMS
and 200 mg of AZT; second and third infusions, 2 MIU of CMS and 100 mg of AZT. The study found
the combination to be well tolerated, with only transient and manageable gastrointestinal side effects.
It also revealed bactericidal, or at least bacteriostatic, activities for all strains tested. The results obtained
with our in vivo C. elegans toxicity testing model are consistent with those reported by Loose et al. [37].
Although AZT appears to be important in the combined treatment of MDROs, the rapid emergence of
stable high-level AZT resistance in Enterobacteriaceae has been well documented, which appears to be
related to the loss of thymidine kinase activity [30,43]. Lin et al. demonstrated that the combination of
polymyxin B and AZT has superior antimicrobial efficacy and minimizes the emergence of resistance
to polymyxins [33]. The two-drug combination significantly increased bacterial killing and remained
synergistic for up to 48 h in their study. It also significantly delayed bacterial regrowth compared with
either monotherapy.

5. Conclusions

This study demonstrates the evident synergy between colistin and AZT in 40 clinical CCRKP
isolates, regardless of the presence of carbapenemase. In vivo toxicity testing indicated low toxicity
of the two-drug combination. The combined treatment also significantly increased the lifespan of
C. elegans in the nematode killing assay. According to our findings, AZT could serve as a promising
component in a combination regimen for CRE treatment. AZT has many beneficial characteristics,
such as intravenous formulation, attainable clinical plasma concentration with effective central nervous
system penetration, and known safety profiles for a wide range of populations, such as neonates or
children and pregnant women. The AZT/colistin combination could be a potential therapeutic option
for the treatment of CCRKP. Future investigation into the optimal dosage and frequency is necessary to
achieve clinical efficacy and prevent the rapid emergence of resistance.
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