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Abstract

Biological named entity recognition, the identification of biological terms in text, is essential for biomedical information
extraction. Machine learning-based approaches have been widely applied in this area. However, the recognition
performance of current approaches could still be improved. Our novel approach is to combine support vector machines
(SVMs) and conditional random fields (CRFs), which can complement and facilitate each other. During the hybrid process,
we use SVM to separate biological terms from non-biological terms, before we use CRFs to determine the types of biological
terms, which makes full use of the power of SVM as a binary-class classifier and the data-labeling capacity of CRFs. We then
merge the results of SVM and CRFs. To remove any inconsistencies that might result from the merging, we develop a useful
algorithm and apply two rules. To ensure biological terms with a maximum length are identified, we propose a maximal
bidirectional squeezing approach that finds the longest term. We also add a positive gain to rare events to reinforce their
probability and avoid bias. Our approach will also gradually extend the context so more contextual information can be
included. We examined the performance of four approaches with GENIA corpus and JNLPBA04 data. The combination of
SVM and CRFs improved performance. The macro-precision, macro-recall, and macro-F1 of the SVM-CRFs hybrid approach
surpassed conventional SVM and CRFs. After applying the new algorithms, the macro-F1 reached 91.67% with the GENIA
corpus and 84.04% with the JNLPBA04 data.
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Introduction

The development of biotechnology is contributing to the rapid

growth of the biological literature. For example, PubMed (http://

www.ncbi.nlm.nih.gov/pubmed/.), a free resource that is devel-

oped and maintained by National Center for Biotechnology

Information (NCBI), contains more than 20 million citations of

biomedical literature from MEDLINE, life science journals, and

online books. The enormous volume of biological literature

available provide a massive data resource for researchers, but it

also a challenge for mining new information and discovering new

knowledge, which has become a very important research subject.

Biological named entity recognition can be regarded as a

sequence segmentation problem where each token in a sequence is

assigned a biological name label (e.g. PROTEIN, DNA, RNA,

CELL-LINE, CELL-TYPE,), which can be used to identify

specified biological terms in text [1–2], or label OTHER which

represents the term isn’t a predefined type of biological one.

Biological named entity recognition has a key role in biological

text mining. It is fundamental for biological information extraction

and mining techniques [2–6], such as biological relation extraction

[7–8].

However, it is difficult to correctly identify biological terms in

text because they use alphabets, digits, hyphens, and other

characters [6,9–12]. Arbitrarily referring to biological terms makes

it even harder to conduct automatic recognition using computers.

In biological text, biological named entities are usually multi-word

phrases and some have prefixes and/or suffixes, which makes it

harder to determine the boundaries of terms. Biological terms are

also affected by their context. In some cases, a biological term has

different meaning among species. As a result, it is difficult for

computers to recognize biological terms automatically.

Identifying biological terms from text is very important in

bioinformatics. In this study, we propose a novel approach for

biological named entity recognition.

Related Work
Biological term recognition is one of the hottest research areas.

Many researchers are interesting in mining biomedical terms from

text, which is a key step in extracting of knowledge with an overall

aim of identifying specific terms, such as genes, proteins, diseases

and drugs [1–2].

In general, several methods are used for biological named entity

recognition [9,11], i.e., dictionary-based approaches [12], rule-

based approaches, and machine learning-based approaches.

However, dictionary-based approaches tend to miss undefined

terms that are not mentioned in the dictionary [12]. The overall

results of dictionary-based approaches rely heavily on a predefined
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dictionary. There is an enormous number of biological terms and

new terms are constantly emerging, so it is impossible to produce a

complete dictionary containing all biomedical terms. Therefore, the

use of a dictionary can provide the highest precision, but we can also

miss many terms. In rule-based biological term recognition systems,

the rules used for identifying terms are critical, but there are

generally no recognition rules that cover all cases [12]. Machine

learning-based approaches train models using a training data set

and the models can identify predefined types of terms.

Machine learning approaches are now a mainstream method of

named entity recognition. Many algorithms are widely used, such as

Bayesian approaches, Hidden Markov Model (HMM) [10],

Support Vector Machines (SVM) [13–14], Conditional Random

Fields (CRFs) [15–16], and Maximum Entropy (ME) [17–18]. For

example, AbGene developed by Tanabe et al. [19] has an 85.7%

precision rate, 66.7% recall rate, and 76.2% F1 rate when using the

Bayesian method with manual post-processing. An HMM-based

system designed and implemented by Zhou et al. [20] can recognize

protein, DNA, RNA, cell-type, and cell-lines from text. Their

system has a 72.55% F1 rate. Kazama et al. [21] used SVMs to

identify protein, DNA, cell-type, cell-line, and lipid, with a 73.6%

F1 rate. Tsai et al. [22] developed a CRF system to find protein

mentions, achieving a 78.4% F1 rate. Lin et al. [23] used ME to

recognize 23 categories of biological terms with a 72% F1 rate.

However, many methods that perform well in general text do

not work as well as expected [20,24–28] because there are many

obstacles in biological term recognition. First, a biomedical term

may have several different written forms, e.g., epilepsy and falling

sickness refer to the same disease, which is a disorder of the central

nervous system that is characterized by loss of consciousness and

convulsions [29]. Second, an entity can be represented using

different types, e.g., cancer can be used to represent a disease as

well as a genus of crabs in the family Cancridae. Third,

abbreviations of terms, especially arbitrarily referred abbrevia-

tions, cause even more ambiguity problems. For example, PC may

refer to prostate cancer, phosphatidyl choline, or even a personal

computer. Fourth, many biomedical terms are phrases or

compound words, or they may have a suffix or prefix. All of

these factors make it more difficult for computers to identify

biomedical terms automatically [9].

Researchers have applied many methods to improve the

performance of machine learning approaches, such as combining

different approaches and proposing a hybrid approach, conduct-

ing post-processing after machine learning, and adding biomedical

domain knowledge to machine leaning-based term identification

systems. In this paper, we combined all these methods to raise the

precision and recall rate.

Results

We used SVM [6], Stanford CRFs [4] and two SVM-CRF

hybrid approaches to identify biological terms from text. One

SVM-CRF hybrid approach used SVM to separate biological

terms from non-biological terms before using Stanford CRFs to

identify the type of the biological term, while the other used SVM-

CRFs to recognize biological terms before applying our proposed

algorithms to improve the prediction results. The parameters for

the SVM [6] and Stanford CRFs [4] used in the tests are listed in

Table 1 and Table 2.

In the first round, we tested four approaches using data from the

GENIA corpus [5]. The F1 score for the SVM-CRFs combined

approach with amendment was better than the other three

approaches in five classes and it was close to the best in the

remaining classes. Its macro-F1 score was greater than those of the

other three approaches. The detailed testing results are shown in

Table 3. The macro-precision, macro-recall, and macro-F1 rates

for the results are shown in Figure 1.

In the second round, we tested four approaches using data from

JNLPBA04 [7]. The F1 scores for the two SVM-CRF approaches

were better than those of the other approaches. The SVM-CRFs

combined approach with amendment had the highest macro-F1

score. The detailed results are shown in Table 4. The macro-precision,

macro-recall, and macro-F1 rate results are shown in Figure 2.

Discussion

The results showed that the SVM-CRFs hybrid approach could

identify biological terms from text well and they performed better

than conventional SVM and CRFs approaches. We found in some

cases, that SVM had higher precision but it tended to miss terms

and unstable when trained with a small-sized data set. If the

positive data are much less than the negative one, its optimal hyper

plane will be biased to negative. Moreover, when the number of

feature dimensions is much higher than the size of training set,

over-fitting is very likely to happen. For example, monocyte

macrophage lineage associated surface antigen is a protein term.

However, the result by SVM is not correct

monocyte BG#protein

macrophage IG#protein

lineage IG#protein

associated O

surface IG#protein

antigen IG#protein

Table 1. Parameters for SVM in training and testing.

Parameter Value Parameter Value

degree in kernel function 3 C cost of C-SVC 1

gamma in kernel function 1 tolerance of termination
criterion

0.001

coef0 in kernel function 0 class weight 1

We use LIB SVM with the following settings in the experiment. The basis
function is exp(-gamma*|u-v|2).
doi:10.1371/journal.pone.0039230.t001

Table 2. Parameters for CRFs in training and testing.

Parameter Value Parameter Value

maxLeft 1 useDisjunctive true

useClassFeature True useSequences true

useWord True usePrevSequences true

useNGrams True useTypeSeqs true

noMidNGrams True useTypeSeqs2 true

maxNGramLeng 6 useTypeySequences true

usePrev True wordShape chris2useLC

useNext True

We use Stanford CRFs with the following settings in the experiment.
doi:10.1371/journal.pone.0039230.t002
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where the word associated should be tagged as IG#protein. This

error is caused because the number of positive samples of the word

‘‘associated’’ as IG#protein is much less than that of negative

ones.

The results showed that although the performance of CRFs was

medium, they maintained a balance between precision and recall

rate, indicating that this was a stable approach. All the results

suggested that combining SVM and CRFs can provide better

performance because this hybrid technique was complementary.

The basic idea of our approach was to make full use of the power

of SVMs as a binary-class classifier, which facilitates data labeling

with CRFs. However, SVM and CRFs are the two very different

algorithms, so simply combining them could cause inconsistencies.

The proposed amendment algorithms were designed to correct

any inconsistencies and promote their performance.

Materials and Methods

Materials
There are many benchmark corpuses for biological named

entity recognition, such as the GENIA [5] data set, JNLPBA04

shared task data set [7], GENETAG data set [8], and

MEDSTRACT data set [8]. The GENIA corpus was developed

for applying natural language processing technology to biological

text mining. It contains 2,000 MEDLINE abstracts with more

than 400,000 words and almost 100,000 annotations of biological

terms [5]. JNLPBA04 [7] has several shared tasks for natural

language processing in biomedicine and its application. Bio-entity

recognition is one of the tasks of JNLPBA04. The JNLPBA04

data set is often used as a benchmark data set for evaluation

methods.

In the first round of testing, we divided data from the GENIA

corpus into two parts, i.e., one part for training and the other for

testing. We randomly picked 2000 DNA terms, 683 RNA terms,

2000 protein terms, 2000 cell line terms, 2000 cell type terms, and

2000 other types of terms for training. We then selected 400 DNA

terms, 166 RNA terms, 400 protein terms, 400 cell line terms, 400

cell type terms, and 400 other types of terms for testing.

In the second round of testing, we randomly selected

2000 DNA terms, 950 RNA terms, 2000 protein terms, 2000 cell

line terms, 2000 cell type terms, and 2000 other types of terms

from JNLPBA04. We then picked 400 DNA terms, 118 RNA

terms, 400 protein terms, 400 cell line terms, 400 cell type terms,

and 400 other types of terms for testing.

SVM Terms Identifier
SVM performs well in solving small sample size, nonlinear, and

high-dimensional pattern recognition problems and other machine

learning problems [30]. Assume that we are given data

Table 3. Testing results on GENIA data by four approaches.

Result SVM CRFs SVM-CRFs1 SVM-CRFs2

DNA P 100 83.67 87.2 91.52

R 23.39 74.57 84.83 87.43

F1 37.91 78.86 86 89.43

RNA P 100 90.87 89.93 95.02

R 14.51 97.65 84.52 88.98

F1 25.34 94.14 87.14 89.43

Cell line P 100 82.31 91.13 93.24

R 28.76 77.39 88.91 90.7

F1 44.76 79.78 90.01 91.95

Cell type P 35.46 79.61 91.95 93.24

R 71 81.55 88.91 90.7

F1 47.3 80.57 90.01 91.95

Protein P 100 75.11 91.2 82.38

R 17.35 59.19 86.99 92.92

F1 29.57 66.2 89.04 87.33

O P 90.77 82.59 91.33 95.11

R 68.84 96.52 100 99.97

F1 78.3 89.02 95.47 97.48

SVM-CRFs1 refers to the SVM-CRFs without amending and SVM-CRFs2 is SVM-
CRFs with amending. P, R and F1 are precision, recall, and F1 respectively.
doi:10.1371/journal.pone.0039230.t003

Figure 1. The macro-precision, macro-recall, and macro-F1 rate results using GENIA data with the four approaches. SVM-CRFs1 refers
to SVM-CRFs without amendment while SVM-CRFs2 is SVM-CRFs with amendment.
doi:10.1371/journal.pone.0039230.g001
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D~ xi,yið ÞDxi[ ,yi[ {1,1ð Þf g i~1,:::,nð Þ where yi is either 1 or

21, indicating the class of xi. In our previous experiment [31], we

used SVM to identify biological terms from text. We used word,

word shape, part-of-speech, and morphology as features for

identification, as shown in Table 5. The results [31] were good.

SVM uses a line or surface to separate the data [30]. Thus,

SVM is suitable for binary classification problems but not

multiple-class problems where there are more than two

candidate objective classes [32]. In most cases, name entity

recognition is a multiple-class task. As a result, the initial binary

SVM is not fit for most name entity recognition tasks. We can

use two main types of approaches to solve multiple-class

problems. One is to update an SVM kernel function that can

merge the multiple classification surface problems into an

optimization so as to solve multiple class classification in one

pass. The alternative is to apply multiple binary classifiers until

they finish the job [32].

CRFs Terms Identifier
CRFs are often used for the labeling or parsing of sequential

data, such as natural language text or biological sequences [33].

CRFs work well in named entity recognition tasks. Many features

can be used in CRFs. For example, term appearance (e.g.,

capitalization, affixes, etc.) and orthographic features (e.g.,

alphanumeric characters, dashes, Roman numeral characters,

etc.) are used frequently.

However, CRFs have many drawbacks. First, CRFs use a

limited size of context rather than the whole text because of

computational limitation, thereby limiting the contextual infor-

mation. Second, splitting the context of the whole text into small

pieces of context will generally separate inherent relationships

among them, and simply combining these pieces of context again

cannot reproduce the original context due to the loss of

relationships during splitting. For example, a CRF biological term

identifier uses a two-word context. The whole text could be split

into many pieces of two-word contexts. As a result, the same term

in the different places of the text could be tagged with different

results due to the variation in the context. However, SVM deals

with the whole text so it does not have such restrictions. Third,

CRFs are affected by the data distribution. If we want to achieve

better results, the data should have an exponential distribution.

However, biological terms in texts generally do not meet this data

distribution prerequisite.

SVM-CRFs Combined Biological Name Entity Recognition
One of the new research areas in machine learning is combining

useful algorithms together to provide better performance or for

Figure 2. The macro-precision, macro-recall, and macro-F1 rate results using JNLPBA04 data with the four approaches. SVM-CRFs1

refers to SVM-CRFs without amendment while SVM-CRFs2 is SVM-CRFs with amendment.
doi:10.1371/journal.pone.0039230.g002

Table 4. Testing results on JNLPBA04 data by four
approaches.

Result SVM CRFs SVM-CRFs1 SVM-CRFs2

DNA P 100 46.25 74.84 76.80

R 27.75 92.90 87.20 87.25

F1 43.44 61.76 81.18 81.69

RNA P 100 55.84 76.66 78.32

R 10.94 79.67 86.27 86.49

F1 19.72 65.66 81.18 82.20

Cell line P 100 53.69 76.74 79.52

R 29.82 88.69 95.67 95.01

F1 45.94 66.56 85.16 86.58

Cell type P 42.10 52.53 79.12 81.30

R 78.63 81.88 89.11 89.43

F1 54.84 64.00 83.81 85.17

Protein P 100 34.88 71.21 65.06

R 24.94 69.02 89.72 91.34

F1 39.90 46.34 79.40 75.99

O P 93.01 94.15 100 100

R 72.43 46.36 86.38 86.20

F1 81.44 62.17 92.69 92.59

SVM- CRFs1 refers to the SVM-CRFs without amending and SVM-CRFs2 is SVM-
CRFs with amending. P, R and F1 are precision, recall, and F1 respectively.
doi:10.1371/journal.pone.0039230.t004
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achieving smooth and stable performance. SVM and CRFs are

two conventional algorithms that can deal with named entity

recognition tasks well. As stated earlier, the feature context used by

SVM is global and it does not have the same constraints as CRFs.

SVM is initially the best fit for binary-class tasks and it does not

perform well on multiple-class tasks. CRFs generally require more

computational time and space than SVMs. Thus, although CRFs

have many drawbacks, they are very good at sequential data

tagging tasks, which is a typical problem in name entity

recognition. Thus, we combined SVM and CRFs because they

can complement and facilitate each other.

In our approach, biological named entity recognition was

regarded as a two-step task. The first step was to determine

whether a candidate term was a biological one. If it was a

biological term, we determine its class of entity. The first step was a

binary classification task where the result was either yes or no,

before we could fully use SVM to complete the task. We then used

CRFs to infer the type of biological term. Finally, we merged the

results returned by SVM and CRFs, before performing an

amendment process.

Inconsistency Removal
In this paper, we used a BIO pattern for the resulting tags: tag

that started with the character B began a term; tags starting with

the character I represented the intermediate words of a term; while

tags starting with the character O indicated that the word was not

a biological term. For example, the tag BG#protein shows that

the word is the starting word of a protein, while the tag

IG#protein is an intermediate word for a protein. Thus, the

following words with tags

NOTCH1 BG#protein

ankyrin IG#protein

repeat IG#protein

region IG#protein

can be composed as a complete protein term: NOTCH1 ankyrin

repeat region.

Given the statement above, we propose a phased approach

(Algorithm 1) for determining whether a term is a biological term,

as shown in Algorithm 1.

Algorithm 1 : Biological terms determining

Input : T : words to be tagged

Output : T 0 : words with tags

1 : for all t [ T do

2 : determine if t is a predefined type of biological word by

using SVM

3 : if t is a predefined type of biological word then

4 : tagZBio

5 : else

6 : tagtZO

7 : end if

8 : end for

9 : T1Z tDt[T ^ tagtZOf g

10 : T2Z tDt[T ^ tagtZBiof g

11 : for all t [ T2 do

12 : determine which type of biological word by using CRFs

13 : tagtZ the type of biological word

14 : end for

15 : T 0ZT1|T2

16 : return T 0

Algorithm 1 determined whether a term was a biological one.

The input was the word set of all terms. The output was words

with the tag Bio showing that the word was part of a biological

term or the tag O showing that the word was not a biological term.

Words tagged with Bio are further processed by CRFs to

determine their biological classes.

However, SVM and CRFs are two different algorithms. Simply

merging the results returned by SVM and CRFs could cause

inconsistency. For example, the term CsA treated cell is a cell line

mention. Its correct tag should be

Table 5. Features that are generally used for SVM named entity recognition.

Features Features

1 All figures 12 With ‘%’

2 With figures and letters 13 With ‘,’

3 With capitalized letters 14 With ‘.’

4 All capitalized letters 15 With ‘:’

5 First letter is a capitalized letter 16 With ‘2’

6 First letter is a capitalized letter and followed by ‘.’ 17 Combination of letters and ‘$’

7 With capitalized letter in the middle of the word 18 Combination of capital letters and ‘.’

8 All lower-case letters 19 Combination of letters and ‘.’

9 With two ‘/’ 20 Combination of letters and ‘2’

10 With one ‘/’ 21 Combination of figures, letters and ‘/’

11 With ‘$’

doi:10.1371/journal.pone.0039230.t005
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CsA BG#cell line

treated IG#cell line

cells IG#cell line:

The SVM identifier predicted the word CsA and word cells as

biological words, but the word treated was predicted as a non-

biological term. The final results of the SVM and CRFs are

CsA BG#cell line

treated O

cells IG#cell line

Therefore, we needed to amend any inconsistencies to improve the

results. Before the amendment, we determined which terms were

inconsistent. We use the following two rules to identify inconsistent terms:

N Rule 1: If the precursor and the successor of a word are both

middle words of a biological term, the word should be also a

middle word of the term.

N Rule 2: A term begins with a word tagged with a start tag.

Rule 1 and Rule 2 removed any inconsistencies caused by shifts

in context. We used Algorithm 2 to carry out the term consistency

analysis, as shown as follows.

Algorithm 2 : Biological terms inconsistence analyzing

Input : T merged results inferred by SVM and CRFs

Output : a pending terms list containing inconsistent terms

1 : pendingZfalse

2 : for i~1 to Tk k do

3 : if tagt1
starts with B and pending ~ true then

4 : end posZi{1

5 : Add wordstart pos...end pos to pending terms list

6 : pendingZfalse

7 : end if

8 : if tagt1
starts with I and pending ~ true then

9 : vend posZi{1

10 : start posZi{1

11 : Add wordstart pos...end pos to pending terms list

12 : else if pending ~ false then

13 : pendingZtrue

14 : start posZi

15 : end if

16 : if tagt1
starts with O and pending ~ true then

17 : end posZi{1

18 : Add wordstart pos...end pos to pending terms list

19 : pendingZfalse

20 : end if

21 :end for

22 : return pending terms list

Algorithm 2 determined word inconsistency of a term by

merging the results of SVM and CRFs, and returning a pending

inconsistent terms list.

Term Length Maximizing
Using Rule 1 and Rule 2, we can identify and eliminate

inconsistencies. In the example, the prediction results for the term

CsA treated cell

CsA BG#cell line

treated O

cells O

will be treated as correct, although the results are not exactly the

best fit. Thus, we propose a new rule to address this type of

inconsistency.

N Rule 3: The length of a biological term is expected to be as

long as possible.

According to Rule 3, biological terms should be as long as

possible. Using our approach, we extend a term from left to right

to validate whether the extended terms are biological terms. Thus,

given word0word1, . . . ,wordn{1wordn, if word1, . . . ,wordn{1 is

tagged as a biological term, we have to check:

if word0word1, . . . ,wordn{1 is a biological term;

if word1, . . . ,wordn{1wordn is a biological term;

if word0word1, . . . ,wordn{1wordn is a biological term:

If any of the extended terms are in a biological term list, it is

definitely a biological term. However, it is impossible to

produce a complete biological term dictionary. Therefore, we

need to make some deductions to predict the tags of the

extended word.

We used a maximal forward and backward probability

squeezing approach to extend the term. The maximal forward

probability approach determines each forward output probability

of state t on the basis of state t21, while the maximal backward

probability determines each backward output probability of state t

on the basis of the state t+1 [34]. Our approach identifies the

output with the maximal product result for the forward probability

and the backward probability.

We assume an output sequence O1, . . . ,OT Twtð Þand a hidden

state sequence X1, . . . ,XT Twtð Þ. Let aij be the transfer proba-

bility from state t21 to state t, while at{1 is the probability of

observing all of the given data up to state t21. At state t21, given

an output sequence O1, . . . ,OT and a hidden state Xt{1, we can

find the forward output using the following equations [34].

at{1(k):p O1, . . . ,On,Xt{1ð Þ ð7Þ

at(k)~
Xn

i~1

at{1(i) � aik

� �
ð8Þ

SVM-CRFs for Biological Named Entity Recognition
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Let, bkj be the output probability from state t to state t +1 and

atz1 be the probability of all future data from state t +1 to state t.

At state t+1, given output sequence O1, . . . ,OT and hidden state

Xtz1, we can conduct inference and find the backward output

using the following equations [34].

atz1(k):p Otz1, . . . ,OT ,Xtz1ð Þ ð9Þ

at(k)~
Xn

i~1

atz1(i) � bki

� �
ð10Þ

The final result maximizes the product of the result returned by

forward inference and backward inference, as shown in the

following equation. An illustration of maximal forward and

backward probability squeezing is shown in Figure 3.

p ODXð Þ~arg max
i~1,...,n
j~1,...,n

Xn

i~1

at{1(j) � ajk

� �
�
Xn

j~1

atz1(i) � bki

� � !
ð11Þ

The maximal bidirectional probability squeezing method that

uses the forward probability and backward probability to predict

the outputs of intermediate states tends to lead to bias when

dealing with states that are rare. Thus, we add positive gain to rare

event cases to reinforce their probability and avoid bias, as shown

in Algorithm 3.

Algorithm 3 : Getting terms with maximal positive gain

Input : biological term wleft . . . wright

Output : maximal matching term as well as tags

1 : iZleft

2 : jZright

3 : left extZ0

4 : right extZ0

5 : final leftZleft

6 : final rightZright

7 : while wleft . . . wright is a positive instance do

8 : leftZleft{1

9 : end while

10 : left extZi{left

11 :while wleft . . . wright is a positive instance do

12 : rightZrightz1

13 : end while

14 : right extZright{j

15 : max total extZlef t extzright ext

16 : final leftZleft

17 : final rightZright

18 : leftZi

19 : rightZj

20 : while wleft . . . wright is a positive instance do

21 : rightZrightz1

22 : end while

23 : right extZright{j

24 : while wleft . . . wright is a positive instance do

25 : leftZleft{1

26 : end while

27 : lef t extZi{left

28 : if (lef t extzright ext)wmax total ext then

29 : final leftZleft

30 : final rightZright

31 : end if

32 : return wfinal left . . . wfinal right and Ofinal left . . . Ofinal right

Algorithm 3 adds positive gain to rare cases to reinforce their

probability and avoid bias.

We also maintain the context window as large as possible, so the

output has the maximal positive gain, as shown in Algorithm 4.

Figure 3. Forward and backward probability squeezing takes
the product of the probability obtained by forward inference
and the probability obtained by backword inference. Here
aij 1ƒiƒn,1ƒjƒnð Þ and bkj 1ƒkƒn,1ƒjƒnð Þ are the transfer proba-
bility, while at(i) 1ƒiƒnð Þ is the probability of taking Oi .
doi:10.1371/journal.pone.0039230.g003
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Algorithm 4 : Maximal probability squeezing with positive gain

Input : tag Oleft . . . Oright of biological term wleft . . . wright

Output : resulting tag of wk

1 : sum að ÞZ0

2 : sum bð ÞZ0

3 : for i~1 to types of resulting output do

4 : for j~1 to types of resulting output do

5 : sum að ÞZsum að Þzat(i) � aij

6 : um bð ÞZsum bð Þzbtz1(i) � bij

7 : end for

8 : end for

9 : p maxZ0

10 : p curZ0

11 : kZ{1

12 : positiveZfalse

13 : for i~1 to types of resulting output do

14 : p �c�u�rZsum(a)zsum(b)

15 : if wleft . . . wright is part of a term with maximal

positive gain then

16 : postiveZtrue

17 : p curZp curzD

18 : end if

19 : if p maxvp cur then

20 : p maxZp cur

21 : kZi

22 : positiveZfalse

23 : end if

24 : end for

25 : if postive~true then

26 : return output of Ok from O1 . . . On

27 : else

28 : return output of type k

29 : end if

Algorithm 4 is maximal bidirectional probability squeezing,

which uses the forward probability and backward probability to

predict the output. Algorithm 4 also maintains a maximal context

window so the output has the maximal positive gain.

When we use Rule 3 to maximize the term length, we gradually

extend the context window size. We initially set the context

window size for the tag OtOtz1, . . . ,OT Twtð Þas 3. The sequence

piece of the context window will then be Ot{1OtOtz1, while the

pending sequence is extended to Ot{1OtOtz1, . . . ,OT . We take

the piece Ot{1OtOtz1and use Algorithm 4 to infer the resulting

tag Ot. We then judge whether it is correct using Algorithm 2. If

correct, the output of the sequence will be revised, but otherwise

the context window will be extended left one step and right one

step, making it Ot{2Ot{1OtOtz1Otz2. The pending sequence

will also be extended to Ot{1OtOtz1, . . . ,OT OTz1. We then

determine the state of Ot using Algorithm 4 with the context

window Ot{2Ot{1OtOtz1Otz2. This is conducted iteratively until

the predictive tag result is correct according to Algorithm 2 or we

still cannot find the correct result after the whole output sequence

has been treated. The amendment of the output sequence in

various contexts is performed using Algorithm 5

Algorithm 5 : Amending with variable context

Input : resulting tag OtOtz1 . . . OT to be amended

Output : revised resulting tag OtOtz1 . . . OT

1 : contextZnull

2 : iZ0

3 : while ivt do

4 : iZiz1

6 : contextZOt{1 . . . Ot . . . Otz1

7 : get output of Otby Algorithm 4

8 : if OtOtz1 . . . OT is predicted to be correct by Algorithm

2 then

9 : revise OtOtz1 . . . OT

10 : end if

10 : end while

Algorithm 5 ensures that the results in context will be adaptively

extended gradually.

Performance Evaluation
We evaluate the results in terms of precision, recall rate, and F1

rate. Precision, recall rate, and F1 are given by the following

equations [3].

precision~
number of true positive

number of true positiveznumber of false positive
ð1Þ

recall~
number of true positive

number of true positiveznumber of false negative
ð2Þ

F1~
2 � precision � recall

precisionzrecall
ð3Þ

For example, when we identify a protein term, the definition of

true positive, false positive, true negative, and false negative are

regarded as:

True positive: protein term correctly identified as protein.

False positive: non-protein term incorrectly identified as protein.
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True negative: non-protein term correctly identified as non-

protein.

False negative: protein term incorrectly identified as non-

protein.

We also used macro-precision, macro-recall and macro-F1, to

evaluate the overall performance of the identifiers. Their

definitions are as follows [3]:

Macro{ Pr ecision~

Pn
i~1

precisioni

n
ð4Þ

Macro{Recall~

Pn
i~1

recalli

n
ð5Þ

Macro{F1~

Pn
i~1

F1i

n
ð6Þ

Conclusions
The vast biological literatures provide a highly reliable

information source for biological research. Mining information

and finding new knowledge is a very important new subject, where

the identification of biological terms is fundamental. We propose a

novel machine learning approach to achieve biological named

entity recognition. This approach used an SVM to determine

whether the term is a biological term, before CRFs were used to

infer the type of a biological term. We then judged whether the

merged result was consistent in the new global context and applied

an amendment approach that used maximal bidirectional

squeezing with positive gain in an adaptive context algorithm for

correcting inconsistent terms. The results showed that our

approach could achieve biological named entity recognition and

it performed better than CRFs and SVM alone.
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