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ABSTRACT: Genetic design automation methods for combina-
tional circuits often rely on standard algorithms from electronic
design automation in their circuit synthesis and technology
mapping. However, those algorithms are domain-specific and are
hence often not directly suitable for the biological context. In this
work we identify aspects of those algorithms that require domain-
adaptation. We first demonstrate that enumerating structural
variants for a given Boolean specification allows us to find better
performing circuits and that stochastic gate assignment methods
need to be properly adjusted in order to find the best assignment.
Second, we present a general circuit scoring scheme that accounts for the limited accuracy of biological device models including the
variability across cells and show that circuits selected according to this score exhibit higher robustness with respect to parametric
variations. If gate characteristics in a library are just given in terms of intervals, we provide means to efficiently propagate signals
through such a circuit and compute corresponding scores. We demonstrate the novel design approach using the Cello gate library
and 33 logic functions that were synthesized and implemented in vivo recently (Nielsen, A., et al., Science, 2016, 352 (6281), DOI:
10.1126/science.aac7341). Across this set of functions, 32 of them can be improved by simply considering structural variants
yielding performance gains of up to 7.9-fold, whereas 22 of them can be improved with gains up to 26-fold when selecting circuits
according to the novel robustness score. We furthermore report on the synergistic combination of the two proposed improvements.
KEYWORDS: genetic design automation, synthetic biology, circuit synthesis, structural variants, cell-to-cell variability, robust genetic circuit

1. INTRODUCTION

Genetic design automation (GDA) parallels early efforts in
electronic design automation (EDA) and recently also got to
use state-of-the-art EDA tools to generate gene-regulatory
circuits realizing combinational logic1,2 as well as sequential
logic.3 While historically EDA quickly ran into unmanageable
computational complexity and hence devised clever approx-
imate methods, current GDA problems are yet too small to
require such approximations. In contrast to EDA’s scalability,
GDA suffers from our limited understanding of what
parameters fully characterize a genetic part or device,4−6

reflecting itself in GDA libraries with models of insufficient
accuracy and scope. In particular, the context-dependency of
circuit components7 represents a central problem. That is,
components behave differently depending on their adjacent up
and downstream DNA sequences,8,9 on the specific resource
allocation of the host organism,10,11 on the cross-talk from
native regulatory factors,12,13 and on adjacent components that
are biochemically up and downstream of the circuit.14,15 Cell-
to-cell variabilityreferring to the fact that even within an
isogenic cell population a synthetic circuit will behave
differently from cell to cellcan also be understood as
another context effect, i.e., the circuit functioning depends on
the specific intracellular conditions realized within a particular

cell. Cells may differ in their cell-cycle stage, their plasmid copy
number, and inevitably they will differ due to the random
nature of biomolecular events, introducing copy number
fluctuations in involved molecules.16,17 Such intrinsic noise
will especially be important when the circuit is realized through
lower abundant molecules, for instance through RNA
regulators,18,19 when compared to transcription factor based
implementations.
As a consequence of cell-to-cell variability, the individual on

and off expression levels for a genetic logic circuit may easily
span 1 order of magnitude across a cell population (see, e.g.,
ref 1). For biomedical applications, such as disease detection
and therapeutic circuits,20,21 stringent specifications are needed
that guarantee the proper functioning of a circuit on the single-
cell level and not just on bulk averages. As long as the on and
off output levels cannot be assessed for each cell individually,
such specifications translate to the requirement that the two
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distributions corresponding to the circuit’s on and off levels
across the cell population, accessible for instance through flow-
cytometry, do not show any overlap.22 In other applications
such as biotechnology these requirements may be overly
stringent, and one is more concerned with just the fold-change
between on and off bulk levels.
Taken together, current GDA tools such as Cello1,2 require

further domain specific adaptation in order to cope with
context-dependency, the under-specification of part and device
models and the intracellular variations encountered at the
single-cell level. For instance, considering host energetics,
GDA should find the circuit topology with the minimal
number of components and should select the specific
component realizations from the library that lead to robust
circuits functioning under varying conditions. Existing tools for
genetic circuit design23 either use standard EDA methods and
tools to determine the circuit topology, including Cello1 and
GeneTech,24 or leave the specification of the topology to the
user and optimize inside its boundaries, like SBROME25 does.
iBioSim26 uses an elaborate technology mapping algorithm
that structurally matches library gates on a subject graph using
branch-and-bound, but also constructs only one topology with
minimal size in base pairs. Furthermore, Cello scores circuits
based on the on and off levels corresponding to their median
parametrization without incorporating variance information
during the optimization process but provides predicting output
distributions of the synthesized circuit. GeneTech does not
provide simulation capabilities, SBROME uses a deterministic
gene expression model for single level output prediction only,
and iBioSimwhile being very flexible in integrating
simulation capabilitiescould not be found to incorporate
simulation results in the synthesis and technology mapping
process.
To this end, we propose the following extensions to the

state-of-the-art GDA workflow. First, we demonstrate that
better circuit topologies can be found compared to the ones
obtained through generic EDA tools, exemplified by the 33
circuits reported in ref 1. We efficiently enumerate all structural
circuit variants,27 which remains undoubtedly feasible for
circuit sizes currently encountered in synthetic biology.
Second, we improve the simulated annealing (SA) based
gate assignment by employing neighborhood relation among
all possible assignments.28−30 Since prominent placement tools
for field programmable gate arrays31 also utilize such
neighborhood relation, we adopted schemes from them.
Third, we introduce parametric uncertainty in device models
to mimic cell-to-cell variability, context-dependency, or under-

specification and extend the circuit scoring function to account
for the incurred variability. We modify the traditional
Wasserstein metric32,33 to obtain a score that scales with the
distance of the on and off levels and also reflects the degree of
overlap among the corresponding distributions. Accordingly,
two realizations of the same logic circuit showing the same
output medians across the complementary input assignments,
and hence leading to identical scores in the traditional setting,
could now be scored differently due to their possibly different
output variability. Moreover, we develop a framework for
robust design in the absence of probability distributions for
specifying parametric uncertainty. In particular, if uncertainty is
only given in terms of upper and lower bounds on the device
parameters or gate characteristics, we present a worst-case
design approach based on envelope transfer function (see
Figure 1 for an overview).

2. RESULTS AND DISCUSSION
2.1. General Problem Statement. This work deals with

the particular problems of circuit synthesis and technology
mapping in an automated generation of genetic logic circuits. It
therefore focuses on jointly finding an optimal circuit topology
γ in a set of topologies Γ and an optimal gate assignment a in a
set of possible assignments which varies with the topology
γgiven a library of gates and a Boolean function
specification ϕ ∈ . To formulate an optimization problem,
we need a measure of compliance of a circuit (γ, a) with the
functional requirement ϕ. This measure S(γ, a), which we call
the circuit score, will be the optimization objective, and we
state the optimization problem as

γ γ* * =
γ ∈Γ×

a S a( , ) arg max ( , )
a( , ) (1)

with the optimal topology γ* and assignment a*. It is now
crucial for the quality of the resulting logic circuit to take great
care in specifying the set of possible topologies Γ on the one
hand and the circuit score S(γ, a) on the other. In the
following, we will discuss possible approaches to find and
characterize application-optimal Γ and S(γ, a), which are
compared with the approaches being part of the Cello
framework1, used as benchmark. These benchmark approaches
encompass the circuit topologies from the original article* and
gate assignments obtained from our own re-implementation of
the technology mapping procedure as detailed in the
supporting information document on cellocad.org*, which
includes everything detailed in section V.D., 'repressor
assignment'. Besides the core gate assignment optimization,

Figure 1. Different circuit design approaches. (A) Traditional design and scoring approach with a nominal parametrization without uncertainty, as
used by Cello.1 Cello does allow the prediction of output distributions but performs circuit synthesis only on median parametrizations. (B) Robust
design approach accounting for cell-to-cell variability when probability distributions for device parameters are available, presented in this article.
(C) Robust design solely based on interval specifications of transfer characteristics, presented in this article.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00193
ACS Synth. Biol. 2021, 10, 3316−3329

3317

https://pubs.acs.org/doi/10.1021/acssynbio.1c00193?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00193?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00193?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00193?fig=fig1&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00193?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


this includes toxicity constraints and the avoidance of illegal
promoter combinations which we required both for our own
results as well. The results from the benchmark are collectively
referred to by "Cello''. Since the dependence of on the
topology γ reflects the natural hierarchy of the problem, we will
first address the synthesis problem and then proceed with the
discussion on technology mapping and the score.
2.2. Circuit Synthesis Involving Structural Variants.

Prominent EDA tools, like ABC used in Cello, apply the cost
functions area and delay,34 which are not directly suitable for
genetic circuits, where fold-change and robustness pose the
main challenges of design. We therefore enumerate circuits of
all different topologies available from a given library of logic
gates, which satisfy the logic function of the circuit. Since this
structural enumeration is a combinatorial problem and quickly
becomes infeasible, we optimize this procedure by following a
hierarchical approach by considering only equivalent fan-out
free circuits and performing pruning by isomorphism checking
and the application of synthesis and library constraints online
during enumeration (see Figure 2A and also Section 4.2). After
all fan-out free circuits have been found, we remove redundant
gates inherent to this specific type of circuit topology to obtain

the final set of circuits as generally structured Directed
Acyclical Graphs (DAGs).
In order to measure the benefit of including structural

variety in genetic circuit synthesis, we synthesized all 33
functions provided in1 using Cello’s library of genetic logic
gates. In total, we carried out three runs of our proposed
synthesis approach, constraining the search space differently.
We only included circuits of minimum size in the first run and
then relaxed this criterion to include one and two excess gates
in the second and final run, respectively. At this point, we still
used Cello’s circuit score metric to rate the separation of
complementary Boolean outputs of the synthesized circuits.
Finally, we compared our results to the circuits synthesized by
Cello. To prevent fairness issues coming from Cello’s
stochastic gate assignment optimization, we simulated all
possible assignments exhaustively for both Cello’s and our
circuit structures.
We found that in the first run we were able to improve the

circuit score of 22 of the examined 33 functions, while no
circuit performed worse than the corresponding circuit
synthesized by Cello and exactly the same number of logic
gates was used (Figure 2B). A 3.8-fold improvement in the
score could be achieved maximally (Figure 2C), while on

Figure 2. (A) Synthesis flow for genetic circuits involving the enumeration of structural variants (also see Section 4.2). (B) Synthesis results for the
33 Boolean functions using Cello’s and our proposed synthesis approach with the number of excess gates allowed denoted in parentheses. Every
function is represented by one line and its color codes the size of its minimal circuit implementation. The monotonically ascending lines clearly
show that the majority of circuits perform better using the proposed synthesis approach, while no circuit performs worse. (C) Resulting circuits and
their scores using Cello’s scoring metric for function 0x4D using Cello’s synthesis (with SA and optimal gate assignment) and our proposed
synthesis approach. Given optimal gate assignments, the improved topology leads to a 3.8-fold improvement in the circuit score. Both circuit
topologies feature the same number of genetic gates, as for the implicit output OR no physical realization is needed. (D) Plot showing the output
histograms of the circuits for function 0x4D. The proposed design features a higher output in the ON case, thus increasing the separation between
the complementary outputs and the Cello score.
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average the scores improved by 29%. Relaxing the considered
circuit size to include up to one excess gate, the circuit score
for 30 of the 33 functions could be improved up to 7.9-fold,
leading to an overall improvement of 111% on average
compared to Cello. Relaxing the size by two excess gates, this
trend continued (improvement for 32 of 33 functions up to
7.9-fold, 133% on average). Thus, our synthesis approach not
only improves on Cello for many of the considered functions
using exactly the same number of logic gates, it also enables the
designer to trade off circuit size against circuit performance
deliberately (Figure 2B). It also shows that genetic circuit
synthesis profits from the additional degree of freedom of
circuit topology. While the gate libraries are constricted and
feature gates with heterogeneous transfer functions, it allows
for placing well performing combinations of genetic gates in
the circuit. For function 0x4D, for example, the proposed
synthesis approach generated a circuit topology in which the
output is driven by a NOR gate instead of the implicit OR gate
while keeping the total number of genetic gates minimal (see
Figure 2C). Figure 2D depicts the increased separation of the
complementary output states that leads to the improved Cello
score of the proposed design.
2.3. Technology Mapping of Genetic Circuits Using

Neighborhood Heuristics. In EDA, the process of choosing
logic gates from a library to implement a given circuit is called
technology mapping.35 This process tries to find an assignment
of gate realizations ∈a from the library of real logic gates
to the abstract logic gates in the circuit topology γ that

optimizes a given score on the circuit. With regard to the
presented circuit synthesis approach and the following
statistical circuit evaluation method, an elaborate heuristic for
technology mapping can contribute to alleviate the increased
complexity in the synthesis process.
Cello already addresses the technology mapping problem

with a generic Simulated Annealing (SA) heuristic to find the
optimal gate assignment. However, since no problem specific
knowledge is used during the generation of neighboring
assignments by drawing gates from the library, their
implementation can exhibit a far from optimal solution quality
(see Figure 2C). To alleviate this problem and obtain a more
traversable assignment scoring landscape, we design a Markov
policy for the random draws, which uses a metric that defines a
distance between library gates on the space of analytical
characteristics of the gates’ steady-state transfer functions (see
Figure 3A and also Section 4.3). Then a weighted euclidean
distance in this space is used to allow drawing gates from an
adaptive radius during SA (Figure 3B, 3C).
To evaluate our technology mapping approach, we first

compiled a set of 32 circuits by synthesizing multiple circuit
variants for the Boolean functions examined in ref 1 and
selecting circuits with 5 or more logic gates, thus sorting out
circuits that are well assignable exhaustively. The problem sizes
ranged from ∼1 × 106 to ∼7.3 × 107 possible gate assignments
given the usage of Cello’s gate library. We then mapped the
circuits using our basic SA and SA with proximity based
neighborhood generation with different ratios of the distance

Figure 3. (A) Parametrization of a general repressor Hill transfer function with offset and distribution of the considered genetic gates in the defined
space of characteristics xm, ym, and y′(xm). (B) Radius based informed move of SA. The realization of one randomly selected gate of the circuit is
swapped for a realization in the library based on the current radius r. (C) Exemplary SA trace illustrating the adaptive radius. (D) Number of
simulations needed for mapping the set of benchmark circuits with SA applying 66 different weight configurations.
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weights. To account for SA’s stochastic run time, we repeated
the mapping process 10 times and determined the mean run
time of all runs.
Table 1 shows the mean score and number of simulations

needed for different SA configurations compared to exhaustive
search. Independently from the chosen weights, all SA runs
yielded near-optimal scores. The base SA algorithm (no
metric) reduced the number of simulations needed compared
to exhaustive search by 97.5%. Enabling the proximity based
neighborhood generation with equally weighted dimensions, a
further 1.61-fold speedup over basic SA is provided. For
finding the best ratio of the weights given Cello’s gate library,
we repeated the evaluation for the 66 different configurations
depicted in Figure 3D. Using the best configuration found, we
were able to speed up the mapping process 2.23-fold across the
set of 32 circuits and 5.8-fold for single circuits maximally over
basic SA while still yielding near optimal technology mapping
results. Mapping the benchmark set on a standard desktop PC,
we measured a run time of 14.96 h for basic SA and 7.19 h
using the best weight configuration.
2.4. Robust Circuit Scoring. Signal propagation in genetic

circuits varies significantly across members of a cell population
due to context effects including those collectively termed cell-
to-cell-variability. Therefore, a population-wide examination of
such a circuit must naturally encompass a range of possible
realizations of this circuit. We present two approaches to
achieve such an inclusion. The first is based on a stochastic
description of the circuit, which uses statistics of gate

parametrizations and scores whole distributions of circuit
outputs. The other is based on interval representations of
transfer functions and signals to bound ranges of possible
signal outputs of the circuit. Both approaches enter problem eq
1 by an appropriate choice of the score S(γ, a), which defines
how we identify an optimal circuit and how much effort is
needed to do so.

2.4.1. Expectation-Based Score (E-score). The score used
by Cello is calculated using median realizations of the mapped
gates’ known transfer function statistics, which are obtained
empirically using flow cytometry measurements of isolated
gates. Although this approach ignores the cell-to-cell variability
of the circuit function, it results in a fast scoring procedure.
While calculating any single circuit realization demands a
similar runtime, the median realization is presumed to pose as
what is deemed a typical realization of the respective circuit.
However, this circumstance does not allow the user to trade
computation time for scoring detail. To allow such a trade-off,
we propose a sampling-based approach as an adjustable,
parallelizable alternative, whichgiven an assignment
calculates output samples based on randomly drawn transfer
function realizations from the known statistics and scores the
resulting empirical distributions as a whole with a score, which
roots in the Wasserstein distance.32 We can show that the
Wasserstein distance of the logarithmic output distributions
emerges as a natural measure of separation corresponding to
the population-wide expected on−off difference (see Methods
4.4.3). While the distance alone is a suitable candidate for

Table 1. Mean Number of Simulations Needed and Mean Score for Different Simulated Annealing Configurations Across 32
Circuits

mapping algorithm weight config. wym wxm wy′(xm) score simulations speedup

exhaustive − − − − 439.27 820 029 600 0.02
SA none 0.0 0.0 0.0 439.18 20 475 365 1.0
SA equal 1.0 1.0 1.0 439.00 12 696 430 1.61
SA best 0.1 0.9 0.0 439.10 8 987 015 2.23

Figure 4. (A) Proposed E-score and Cello score of the two output distributions plotted over their standard deviation σ. The medians stay constant
for all σ. Although intuitively the distributions with higher variance would be considered worse, Cello’s score does not take this into account. (B)
Illustration of the two scores. The CDF’s of the two distributions representing Boolean on and off are plotted. An optimal output would
concentrate all probability mass at specific points, which are considered to be at the median locations in accordance to Cello. Our score tries to
capture the area enclosed by the inner tails of the output distributions within the optimal boundaries in the way hatched in gold, while Cello only
builds the difference between two points. Choosing the Wasserstein-equivalent (cf. eq 7 in Methods 4.4.3) scores the area between the two blue
lines, which would equal Cello’s score.
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comparing possibly overlapping output distributions in the
sense of obtaining a functionally robust circuit, it is agnostic to
variances in symmetric distributions. Although the obtained
output distributions were often found to be skewed (in the
direction of the complementary Boolean output), this
insensitivity to variance is not suitable for a general score.
We therefore chose to evaluate the distance partially in the
sense depicted in Figure 4B. We name the so obtained new
score the E-score, and it allows us to score the negative impact
of larger variance compared to an optimal output under a given
median distance as shown in Figure 4A and detailed in
Methods 4.4.3. For the calculation in particular consider eq 8
in 4.4.3. Note that as a consequence, the E-score generally has
a different absolute scale and a circuit scored by the E-score is
not necessarily comparable to one scored by the Cello score.
The sample realizations of the gate transfer functions

themselves are obtained from sampled points of “noisy” Hill
functions. These sampled points are obtained from Cello’s
median realization processed together with histograms
generated from flow cytometry data, which are sourced from
Cello’s user constraint files (UCFs). Processing these has been
done in accordance to the instructions from Cello’s
supplementary material. The points are sampled, such that
they represent equal quantiles on the so obtained empirical
CDFs. We fitted Hill functions to these points, so that Cello’s
median realization becomes a special case of a set of quantile
realizations leading to empirical output distributions, which as
a whole score the circuit (Figure 4A and B). If we speak of
quantile realizations, we mean these fitted gate transfer
functions, which match specific quantiles on the empirical
CDFs from Cello’s data. A more detailed description on how
the samples have been obtained is given in Methods 4.4.2. To
generate the circuit’s output distributions, first a sample circuit
input is chosen. Then, an individual sample quantile realization
is taken for each of the circuit’s gates and a circuit output
sample is obtained from calculation of the circuit’s transfer
function. This is done multiples times with new samples each
time, until a desired refinement of the so obtained empirical

output distribution is achieved. Details on the calculation are
found in Methods 4.4.1.
To test the procedure, we first rescored all circuits with ≤6

gates with their previous optimal assignments obtained from
the exhaustive search using Cello’s original score described
above, but this time drawing 5000 quantile realizations and
using the E-score. Unsurprisingly, since our score is stricter
than the Cello score, the scores have been significantly lower
(Figure 4A). We kept the same circuit topologies obtained
originally by Cello to retain comparability and only changed
the gate assignment based on the new score. We found the best
gate assignments for these topologies exhaustively while
incorporating all sample realizations and the E-score instead
of only the median realizations and the original score. We
could improve 20 of 31 assignments. The median improve-
ment (only the improved assignments) was by 71.08% in
score, while the mean improvement was at 198.82% (we will
come back to this in a few sentences). If the circuit could be
improved, on average 30.02% of the gates have been exchanged
in comparison to the assignment obtained using Cello's score.
The mean number of gates in improved circuits has been 5.2,
while in kept circuits it has been 3.45. The reason for the large
mean improvement is that the E-score naturally detects and
punishes error prone circuits, which occur in the exhaustive
results obtained from Cello's score, as long as these are not
being ruled out by additional constraints. We use the term
“error prone” circuit here as a simplifying term for circuits,
which result in a large fraction of inverted Boolean outputs
using the sampled circuit realizations (see Figure 5D). Since
Cello’s score cannot detect such circuits, an assignment might
lead to inverted outputs in a real circuit where cell-to-cell
variability is present. The original Cello framework offers
circuit performance evaluation tools, which detect the worst of
such assignments. However, these tools work on the median
circuit realization alone as well and thus oversimplify the
dependency of a gate's input variance on the preceding gate
cascade in a circuit (c.f. Figure 5A), resulting in unnecessarily
accepted or rejected assignments. Our scoring approach avoids

Figure 5. (A) Input, output and joint histograms for a sample gate I/O scenario. The gate corresponds to promoter “BM3R1” with ribosome
binding site “B3”. The gate's transfer statistics are reconstructed using the flow cytometry data from the Cello UCF “Eco1C1G1T1.pA-
N1201.UCF.json”. If only the medians of input distributions and gate transfer functions are considered like in Cello, the blue output would be
considered a preferred result compared to the yellow one. (B) Illustration of the sampling procedure. N parametrizations are predrawn for each gate
for the respective environment and combined under independence assumption to yield the circuit output. (C,D) Plot showing the two histograms
generated for the best assignments chosen by the respective scoring scheme. (C) 0x41 and (D) 0x1C. The optimal assignment of circuit 0x1C
under Cello score results in many inverted Boolean outputs with given cell-to-cell variability and under the independence assumption made for the
sampling.
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such error prone assignments by construction. This circum-
stance lead in the extreme to a 26-fold improvement in score in
circuit 0x1C. The target output levels of 0x1C stayed
unchanged, since the final gate has been kept. Additionally,
to demonstrate the practicability of the SA heuristic, we
mapped the two largest circuits 0x41 and 0x81 with ∼7.3 × 107

possible assignments using SA and compared the results with
the (exhaustively obtained) best possible assignments from
Cello's score while still not modifying the circuit topology.
Despite the stochastic optimization, both circuits could be
improved (0x41 significantly and 0x81 slightly by 125.57% and
10.14%). Exemplary output histograms for circuit 0x41 and the
restored nonfunctional circuit 0x1C are given in Figure 5C and
D. We can conclude that, especially for strong cell-to-cell
variability, a higher confidence in the functionality of the so
obtained circuit w.r.t. a whole population can be achieved
incorporating known statistics in the technology mapping

process. To give an overview of the experiments, we provide
statistical results in Table 2, where we compare sample scoring
runs utilizing 5000, 500, 100, and 50 samples with the result
obtained using Cello’s score. While excluding error-prone
assignments by default (cf. Figure 5D), our score was able to
reduce the variance of the logarithmic output distributions
significantly (cf. Table 2, column 3). Note, that the broad
availability of efficient low-level array computation tools allows
for a competitive calculation of our score, leading to the
comparably small performance decrease shown in Table 2.
Another interesting phenomenon is, that since our calculated
median gate outputs are of higher accuracy compared to those
obtained from Cello's median circuit realization, we find some
circuits to pass the (median) toxicity constraints, which would
have been rejected by Cello. This can lead to assignments
obtained via E-score which also exhibit larger Cello scores than

Table 2. Exhaustive Runs (31 Circuits) Giving an Impression of Different Scoring Schemesa

aCello score, E-score (5000 samples; used as a reference), E-score (500 samples), E-score (100 samples), E-score (50 samples), I-score (uniform),
I-score (maximin). The median reference E-score was roughly the same ≈73 for all. Besides the reference score with 5000 samples, which
incorporates the most detail of the output distributions among all scores presented, we used the maximum variance of the logarithmic output
distributions as another measure of fitness for the resulting assignment.

Figure 6. (A) Overview of the designs considered within this work. The black arrows illustrate the direction of increasingly refined modeling. (A.1)
Cello scoring: model representing median parametrization without considering uncertainty. (A.2) Expectation-based scoring (E-score, eq 8):
distributional information provided by parameter statistics taken into account. (A.3) Interval-based scoring (I-score, eq 11): enveloped model of
transfer functions, consisting of a lower and upper envelope. (A.4) Modified envelope-free circuit equivalent to the one shown in A.3. (B)
Exemplary illustration of an enveloped circuit and its envelope-free version below. Note that the wires in the enveloped circuit carry intervals and
not scalar values, which is alleviated in the equivalent envelope-free circuit.
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those obtained using the Cello score directly as an optimizer
(e.g. circuit 0x41 in the supplement).
2.4.2. Interval-Based Score (I-score). The E-score uses

inverse transform sampling to draw samples representing
random quantiles on the histograms obtained from flow
cytometry. While for an acceptable amount of samples and
under correct assumptions this approach is versatile and
guaranteed to provide a consistent result, it might be useful to
think about efficient alternatives with a stronger focus on
robustness. We present two such efficient alternatives based on
interval estimation. We call these variants I-score. One of the
two variants implements the maximin principle fundamental to
robust optimization36 the other is based on inscribed
distributions. Though by construction not able to express
output separation tendencies in proportions of the population,
the score is able to identify assignments, which shift at least
one individual to wrong outputs or in proximity to possible
decision boundaries. Details can be found in Methods 4.5, but
we give a short summary in the following. The basis of this
score are bounding envelopes derived from our set of
estimated context parameters, which enclose all or almost all
of the known gate transfer function realizations. We then
create a modified circuit double in size to the original, which is
able to propagate (interval bounded) signals through the
enveloped circuit and generate output intervals, which bound
the output signals of the whole population, see Figure 6A.
Scoring by the maximin principle on these intervals is then
performed by taking the distance of the smallest lower interval
boundary corresponding to Boolean 1 and the largest upper
boundary corresponding to Boolean 0 (cf. eq 11 in Methods
4.5). An illustration of this idea is given in Figure 6. Having
obtained the output intervals, scoring by the maximin
approach is just one among a variety of possibilities. As an
example, we could as well suspect these output intervals to
support distributions of output values again like in Section
2.4.1. By having no additional information, a maximum
entropy assumptionand therefore uniform distributions on
the support enclosed by the output intervalswould be a
reasonable choice, which we briefly refer to by uniform I-score.
To evaluate the maximin approach, we again mapped all

circuits with ≤6 gates using this score as a maximizer. We then
rescored all circuits and their worst-case optimal assignments
obtained with the maximin I-score again using the expectation-
based E-score with 5000 quantile realizations. In comparison

to Cello, of the 31 circuits, 9 have been improved, 4 have been
kept, and 18 have been worsened w.r.t. the E-score. The mean
E-score was the lowest of all tested scoring schemes, and as
expected, the very bad E-scores assumed by the Cello solutions
have been avoided. Remarkable is the maximal variance of the
logarithmic outputs. Their maximum has with 0.99 been
significantly lower compared to Cello and also to some degree
compared to the expectation-based scoring schemes. The mean
maximal variance at 0.57 has been the lowest throughout. We
then did the same experiment again with the only difference
being that we did not use the maximin I-score on the output
intervals but inscribed uniform distributions into these
intervals and scored them using the E-score. In comparison
to Cello, of the 31 circuits, 15 have been improved, 5 have
been kept, and 11 have been worsened. The mean uniform I-
score has been around 4 points larger than that of Cello, while
a very good minimum could be reached comparable to that of
the full sampling E-Scoring. The maximal variance of the
logarithmic outputs has been low overall as well. Its maximum
has been the lowest throughout and its mean lies only a small
portion above that of the stricter maximin approach.
Both schemes avoid erroneous circuits (large fraction of

inverted Boolean outputs) and reduce output distribution
overlap. Since the focus of the approach with inscribed uniform
distributions on population-wide output separation is stronger,
its minimal score has been almost as large as that of the
baseline. Both interval-based approaches take less than two
times the runtime of the Cello score, which has been the fastest
overall. Unsurprisingly, the two interval-based scoring
approaches also lead to output distributions with minimal
log-variance. Like above, an overview can be found in Table 2.

3. CONCLUSIONS

This work provides improvements to the emerging domain of
genetic design automation, in particular for the synthesis of
combinational logic circuits. We show that there is currently
little need to make aggressive approximations in the circuit
synthesis and the technology mapping step when compared to
electronic design automation. Neither the implementable logic
circuits nor the device libraries reach sizes that would require
them. Using 33 example circuits from ref 1, we demonstrate
that enumerating structural variants for a given Boolean
specification and having an optimized stochastic search
strategy in the technology mapping yield significantly better

Figure 7. Synthesis results for function 0xF6. (A) Circuit structure synthesized by Cello with optimal gate assignment found by exhaustive search
separately with respect to Cello’s score. (B) Circuit structure synthesized using structural variants with gate assignment optimized with respect to
the E-score using the neighborhood based SA. (C) Repressor legend. (D) Plot showing the output histograms of both circuits. The proposed
synthesis methods lead to a circuit that features a higher output fold-change and a lower variance in the ON state.
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circuit realizations with an up to 40-fold improvement, all
based on the traditional Cello library and scoring scheme (see
Figure 2). Under optimal gate assignments a 7.9-fold
improvement can be achieved just due to structural variants,
whereas for a given circuit structure one can find better gate
assignments through a fast stochastic search that reliably finds
the best assignment with a 2.2-fold speed-up (Table 1).
Compared to the invested experimental time to actually
implement and test genetic circuits, the incurred higher
runtime for enumerating structural variants is negligible.
Going beyond those direct improvements of the established

design process, the work presents a more general design
approach that takes into account unavoidable underspecifica-
tions within biological device libraries, context-effects, and cell-
to-cell variability of circuit function. We show that accounting
for them in the simplest way through parametric uncertainty,
the design process yields more robust circuits, quantified in
terms of a novel scoring metric that penalizes variance and
overlap of the complementary circuit output distributions. We
use random parametric families of Hill curves, learned directly
from flow-cytometry data as gate models in the library and
establish a fast Monte Carlo based scoring scheme. If
uncertainty is only specified in terms of interval boundary,
we provide another robust scoring scheme that just works with
envelopes of gate characteristics and does not require any
sampling step. The general methodology developed in this
paper is not bound to a particular gate library. For libraries
involving gates other than NOT and NOR gates, the
neighborhood heuristic in the gate assignment can be adapted
using correspondingly other features of the gate response
curves. The proposed interval propagation method (Figure 6)
works for all monotone gate characteristics.
The proposed usage of structural variants and the robustness

score can also be combined. To demonstrate the power of this
combination, Figure 7 compares the synthesis of circuit
function 0xF6 according to an optimal Cello run (complete
enumeration is used instead of SA) and according to our
approaches with a near-optimal assignment obtained from
neighborhood-based SA. Compared to using only the new
logic synthesis, the combination reduces the log-output
variance by four-fifths, and compared to using only the new
scoring, it doubles the output fold-change. When compared to
an optimal Cello run for this circuit, with a 2-fold- increase for
each isolated method, the combination achieves a synergistic 4-
fold increase in E-score. We also performed the evaluation of
our methods without the constraints on toxicity levels and
promoter combinations. Compared to the constrained case,
the results, and in particular the performance gain achieved by
the novel approach, stayed qualitatively the same.
We see the work as a first step toward the use of more fine

grained device models and the development of domain-
adapted logic synthesis and technology mapping tools. There
are several more extensions that we foresee in order for
computer-based design methods to reach the necessary
predictive power to be routinely used in the lab. Context-
effects such as host energetics will require a more detailed
biophysical model for how gate characteristics change under
different conditions. Even if a random parametrization can
account for that to a zeroth order, it will require the
incorporation of a correlation structure among parameters
that will be induced by cellular confounders like the cell’s
energy state. Another aspect that also generates interdepend-
ence among gates is cross-talk due to, for instance, off-target

binding of involved regulators or polymerase readthroughs for
adjacent expression units. Such interdependency asks for
enriched device models in libraries but will open up new
interesting computational challenges for the circuit synthesis.
Methods that account for intrinsic noise and for temporal
aspects even for combinational logic,37 such as rise times or
simple reversibility of circuit responses, are also yet to be
developed. Integrating the temporal properties of genetic
circuits that are central for designing sequential logic circuits3

into a consistent robust design and scoring framework is
another challenge ahead.

4. METHODS
4.1. Robust Circuit Synthesis and Technology

Mapping. In the following, we introduce the optimization
problem formally in more detail compared to Section 2 and
then dedicate separate sections to circuit synthesis and
technology mapping/scoring. Let thus Σ( , ) be the set of
all labeled DAGs where ∈G is a DAG with G = (V, E), E ⊆
V × V, and labeling Σ →V: , with denoting the set of
available types of functions (i.e., gate types) in that technology.
Circuit synthesis returns a finite set of circuit topologies
Γ ⊂ Σ( , ) based on the synthesis map from the space of
specifications in terms of Boolean formulas and an available
library , i.e., × → ΣT: ( , ). The technology mapping
is the injective function M that takes each vertex of a topology
γ in Γ and assigns it one element of library , i.e.,

Γ × → ⊂ ×M V: . Both processes jointly result in a
circuit (γ, a) with γ ∈ Γ and ∈a . Rating such a circuit is
then done using a circuit score function Γ × → ≥S: 0
with the choice S(γ, a) = exp(s(γ, a)), which we conveniently
define to be the exponential of the log-score function

Γ × →s: . The definition of S as an exponential allows
us to tackle the scoring in the logarithmic domain, which is
more amenable with respect to the biological application. The
score S is then quantifying the compliance of the circuit
outputs with the Boolean functional requirement ϕ ∈ .
Proceeding from here, we can formulate the process of
synthesis and technology mapping as an optimization problem
of the form

γ γ γ* * = =
γ γ∈Γ× ∈Γ×

a S a s a( , ) arg max ( , ) arg max ( , )
a a( , ) ( , )

using the monotonicity of the logarithm for the last equality,
with (γ*, a*) being the optimal structure and assignment
combination w.r.t. the score S. The efficient construction of the
set Γ and the proposed functional forms of s will be detailed in
the following sections.

4.2. Circuit Synthesis involving Structural Variants.
The problem of finding all structurally different implementa-
tions of a Boolean function is a DAG-enumeration problem.
Thus, we intermediately enumerate all fan-out free circuit
structures C = {γ ∈ Γ : ∀v ∈ V : |{u ∈ V : (v, u) ∈ E}| = 1},
simplifying enumeration and pruning (see Figure 2A). During
the systematic construction of C from the given set of gate
types S in a library of genetic logic gates , the found
topologies are pruned according to the optional synthesis
constraints maximum circuit weight ω and depth δ, i.e., ∀γ ∈ C
: |γ| ≤ ω ∧ l ≤ δ, with l being the longest path of γ.
Furthermore, let ϕ be the n-ary Boolean target function and Iγ
= {i0, i1, ...} be the set of unconnected gate inputs of γ, then ∀γ
∈ C : |Iγ| ≥ n. If the enumeration leads to isomorphism

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00193
ACS Synth. Biol. 2021, 10, 3316−3329

3324

pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00193?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


between the newly found topology γ′ and any existing topology
γ, i.e., ∃γ ∈ C : γ ≃ γ′, γ′ is also discarded. The intermediate
result is the complete set of unique fan-out free circuits
consisting of gates of types S with a sufficient number of
unconnected gate inputs to implement ϕ.
Then, a set of primary inputs = { }−p p, ..., n0 1 with

∈ ≡ { }p 0, 1i is instantiated, and all possible assignments of
unconnected gate inputs and primary inputs are generated, i.e.,

⊂ × I . For each fully specified circuit the Boolean
function is evaluated, and thus the set of circuits Cϕ

implementing ϕ is obtained, i.e.,

Redundant logic gates inherent to fan-out free circuits are then
eliminated by evaluating their function w.r.t. to the primary
inputs and merging functionally equivalent gates, thus
returning to a general DAG structure. This allows an
application of final library constraints, i.e., checking whether
the total number of genetic realizations in and the number
of realizations per gate type is sufficient to implement each
circuit.
4.3. Technology Mapping of Genetic Circuits Using

Neighborhood Heuristics. The smallest possible change
that can be performed to generate a neighbor from a given
solution is the substitution of one gate realization by another
realization of the same logic type. Given that the gates, e.g.,
used in Cello differ greatly in their signal transfer behavior, a
random substitution of one gate leads to an arbitrarily big
change in the gate’s transfer function and thus in the circuit’s
performance. Thus, we determine characteristic features of the
gate realizations’ transfer functions and combine them into a
proximity measure, enabling heuristic search algorithms to
deliberately control the severity of changes to a solution during
neighborhood generation.
The elementary transfer behavior of Cello’s genetic logic

gates is characterized by a Hill repressor function

= +
−

+ ( )
y x y

y y
( )

1 x
K

nmin
max min

(2)

where x and y denote the input and output promoter activity,
ymin and ymax define the output interval, K is the repression
coefficient, and n the Hill coefficient. This transfer function
gives the gates a NOT or a NOR characteristic, depending on
how many signals it is sensitive to. A feature used for
characterizing electronic NOT gates is the switching threshold
Vm. It is defined as the point on the transfer function where Vin
= Vout and impacts the device’s noise margins.38 Because of the
global voltage levels VDD and VGND used commonly for input
and output signals and thus symmetrical input and output
intervals, Vm can be found near the inverter curves inflection
point for well built devices. Genetic logic gates lack a common
reference value for input and output levels. Thus, we redefined
the switching threshold for the considered genetic gates to be
the point on the Hill curve, where an output concentration
halfway between the minimum and maximum output
concentrations is reached (see Figure 3A). Let ym be that
output concentration and xm the corresponding input
concentration. We choose these characteristic features to be
the first two dimensions of our proximity measure, i.e.,
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Further examination of the given gate library showed that
the gates transfer functions differ greatly in the gradient at
y(xm). Thus, we define the gradient y′(xm) at the switching
threshold to be another characteristic feature

= ′d y x: ( )m3 (5)

Denote by di the three-dimensional feature vector of gate i
and define the diagonal weighting matrix ∈ ×W 3 3 with
entries Wnm = wn/δn for n = m, where wn ∈ [0, 1] is the
adjustable weight for feature n (see Figure 3D) and δn the
maximal absolute difference in the n-th feature between two
gates across the whole library, then we can quantify the
similarity between any two gates i and j in library by the W-
norm

= −D d dij i j W

2

In order to evaluate if local search heuristics for the
technology mapping of genetic circuits can benefit from the
proposed proximity measure, we integrated it into the
neighborhood generation of SA that has been shown to profit
from a well structured, problem specific neighborhood.28−30

A major challenge when implementing SA is to specify
central parameters like initial temperature and annealing
schedule that lead to the desired solution quality and a
reasonable run time. For the base implementation of the
algorithm, we adopted these specifications from VPR, a tool for
FPGA logic synthesis that uses SA for FPGA placement.31

Then, we adapted the algorithm to yield near-optimal results
for the given technology mapping problem by slowing down
the annealing schedule and conditioning the number of
iterations per temperature level on the problem size. Here,
the problem size is the number of possible gate assignments
resulting combinatorially from the composition of gates in the
circuit and in the library.
For every iteration k, VPR determines a radius rk in which

logic cells on the chip are considered to be swapped in the
search process. The ratio of the number of accepted solutions
to the number of total evaluations α is calculated continuously
during the annealing process, and r is controlled to keep α near
the empirically determined sweet spot of 0.44, i.e., rk = rk−1(1
− 0.44 + α). When, caused by the decreasing temperature, α
drops below 0.44, the search radius r is decreased. This leads to
a more local search for neighboring solutions in the late phase
of the annealing process that are likely to have similar score
values, thus leading to an increase of α. This ultimately results
in the evaluation of less solutions with low scores that would
be rejected anyway. We adapted this approach to our proximity
based neighborhood generation. In our case, the radius
controls which two gate realizations i and j in the library are
considered for a swap, based on their distance Dij. The radius is
initialized with the maximum distance of gates in the library,
thus allowing for a global search in the search space in the
early, high temperature phase. During the annealing process, r
is decreased, progressively excluding gates with strongly
differing transfer characteristics from the neighborhood
generation. Further implementation details can be learned
from the code available in a public repository.
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4.4. Expectation-Based Score (E-score). Like mentioned
in Section 2.4.1, to better represent the variability of the gates
over different cellular contexts, considering statistical descrip-
tions of the circuits and their outputs is one possible way. This
improves the representation of population-wide circuit
behavior in the score function S(γ, a) (and therefore s(γ, a),
which is used as a proxy). However, before we focus on the
scoring in detail, we need a stochastic description of a genetic
circuit. Therefore, we first introduce such a description, then
we talk about how to generate sample realizations from this
circuit, and finally, we talk about the score.
4.4.1. Circuit Description Respecting Cell-to-Cell Varia-

bility. Let thus Ξ Γ × → Θ: denote the parametrization of
a circuit (γ, a). To represent the cellular context in terms of
known statistics, we understand Ξ(γ, a) as a random variable
characterized by a distribution Ξ(γ, a) ∼ P(θ) associated with
circuit (γ, a). In the following, if we speak of a circuit
parametrization, a circuit realization or a specific context, we
mean a particular realization Ξ(γ, a) = θ, which we assume to
be constant for each member in a population. Our goal will be
to not only calculate the circuit output based on the median
realization of the parameters, like Cello, but also a set of
sample outputs consistent with realizations based on the
measured data, which jointly represent output distributions
associated with a whole cell population. Since the circuit
function under a fixed parametrization isat this scale
assumed to be sufficiently deterministic, the output distribu-
tions depend on a vector of realizations representing the M
circuit inputs ∈ ⊂ ≥ub b

M
0 and the vector of realizations θ

∈ Θ representing the (cellular) context. Let further the
realization of the random variable representing the 1-bit output
be denoted by v. A Boolean label ∈ ≡ { }b 0, 1 is attached
to each set of input configurations b and its elements ub to
indicate which output v is associated with a Boolean value 0 or
1 from the truth-table ϕ. If we just write u, we usually mean an
arbitrary input without caring about any underlying logic
function. The output density p(v) can be found by margin-
alization


∫ ∫ θ θ θ= |

Θ≥

p v p v pu u u( ) ( , ) ( , ) d db b bM
0 (6)

with p(v|ub, θ) being the density of the circuit output
conditioned on a particular input and context realization.
Given a gate library containing L context-dependent gate
quasi-steady-state transfer functions {g1, ..., gL}, of which all are

of a type  Θ× →≥ ≥g: M
0 0
g , where Mg is the number of gate

inputs. Then, the circuit output can be calculated from a circuit
transfer function f(ub, θ) ≡ f(ub, θ, g′, g″, ...) ≡ f (ub, θ, γ, a)
depending on the set of gates in the circuit ′ ″ ∈g g, , ... . This
circuit transfer function can be evaluated from subsequently
calculating gate outputs. Therefore, the output conditional p(v|
u, θ) can be calculated directly from f, since for a specific
context θ and input realization u the circuits transfer function f
is deterministic (as are all gates g). Consequently, p(v|u, θ) =
δ(v − f (u, θ)) is given by a degenerate distribution, where δ is
the Dirac delta function. As a simplifying assumption, we
require the factorizations p(u, θ) ≡ p(u)p(θ) and

θ θ≡ ∏ ∈p p( ) ( )g g . The first assumes input distributions

independent of the cellular context and circuit chosen and the
second that the cellular context is acting independently on the
gates in the circuit. This allows us to equip every gate with an

individual set of sample realizations independent of which
other gates are in the circuit. The latter enables initial sample
generation for all gates in the library to allow a fast simulation
in a technology mapping process. We require further that gl(x,
θ) ≡ gl(x, θl) for all ∈gl to allow learning the gate
parameters from Cello’s isolated gate measurements.
Cello’s gate library has some properties we need to address

briefly. It consists only of NOT and NOR gates, where the
latter combine multiple inputs to a single input via implicit
summation. This means, if we write g(x, θ), this also includes
gates with Mg > 1 by g(x, θ) ≡ g(x0 + x1 + ... + xMg

, θ), cf. ref 1.
4.4.2. Collecting Samples. We built our set of samples by

taking the cytometry data from Cello’s UCFs. For each binned
data set in the UCF file associated with an input concentration
from the discrete set x ≡ (x0, x1, ..., xk), we define the empirical
distribution P̃k represented by the random variable ξk ∼ P̃k, so
that P̃k is represented by the binned data set with its median
logarithmically shifted to 0 (if not already). We multiplied
these ξk with the Hill functions representing median
realizations g(x, θ̃) also present in the UCF file to obtain
“noisy” Hill function values g(xk, θ̃)ξk for each k (we added log
ξk in the logarithmic domain). We did this in accordance to the
instructions from the Cello supplementary material. We thus
obtain a new distribution P̃′k for each k with support
logarithmically shifted by the constant logg(xk, θ̃). Employing
inverse transform sampling, we drew a set of N i.i.d. standard
uniform random variates q = (q0, q1, ..., qN) representing
quantiles andusing these and the inverses of the empirical
CDFsobtained N sets of k samples yn = (y0

(n), y1
(n), ..., yk

(n))
from the P̃′k representing similar quantile locations for all the k.
The relation between qn and yk

(n) is then given by qn = P̃k(yk
(n)).

Let g (θ) ≡ (g(x0, θ), ..., g(xk, θ)) be the vector of gate outputs
for each of the xk under realization θ. We then solved the
Tikhonov-regularized least-squares regression problems θn =
minθ∥g(θ)− yn∥22 + λ∥θ − θ̃∥22 to obtain N sets of environment
parameter samples θn (we use Hill function parameters as a
proxy) representing the variability captured by the cytometry
measurements. Under the independence assumptions outlined
in the previous Section 4.4.1, we can generate the samples
offline and store them in an extended gate library.

4.4.3. The Score. Equipped with our definitions from above,
we are now able to specify a suitable s(γ, a), which we use to
score a context-dependent circuit. Like Cello, we use the
logarithmic on−off difference as a basis for our score, which
seems to be a suitable quantification of the separation of two
values in the positive reals. However, in contrast to Cello,
which calculates logf(u1, θ̃) − logf(u0, θ̃) with the median
realization θ̃, we have probability distributions to score if Ξ(γ,
a) is a random variable. As a consequence logf(u1, Ξ(γ, a)) −
logf(u0, Ξ(γ, a)) is a random variable as well. Therefore, we
first chose its expectation as a scoring candidate, which
manifests in the log-score

γ γ

γ

= [ Ξ

− Ξ ]

∈ ∈
s a f a

f a

u

u

( , ) min E log ( , ( , ))

log ( , ( , ))

u u,
1

0

1 1 0 0

(7)

where 1/0 is the set of all real valued circuit input vectors
associated with Boolean output 1/0 from the circuit’s truth-
table ϕ. Let logf(u0, Ξ(γ, a)) ∼ P0 and logf(u1, Ξ(γ, a)) ∼ P1
for a specific (u0, u1). So, P0 and P1 are the CDF’s of
population-wide individual log-outputs associated with Boo-
lean 1 and 0 for specific circuit inputs u0 and u1. Then,
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interestingly, the expectation in eq 7 is equal to the
Wasserstein distance of P0 and P1 if P0(v) − P1(v) never
changes sign. This means that looking at any arbitrary circuit
log-output v′, there must lie more probability mass below this
value associated with Boolean 0 than with Boolean 1, so P0(v′)
> P1(v′). The Wasserstein distance, which is meant here, is
defined on the metric space  | − |x x( , )1 0 by
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where is the set of all joint probability measures F on 2,
which have marginals P0 and P1. Note that the last equality
holds unconditionally. In our case, where we have two

empirical distributions P̃0 with samples 0 = {x ,0
(1)

}x x, ..., N
0
(2)

0
( ) and P̃1 with samples 1 = {x ,1

(1) }x x, ..., N
1
(2)

1
( )

(ordered by increasing magnitude), the calculation reduces to
(cf. the analogy for 1 in ref 33)
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where x0
(n) is the n-th order statistic (n-th smallest sample) in

0. The same holds for x1
(n) and 1. We discussed in Section

2.4.1 that, however, this score is agnostic to variance in
symmetric distributions. Therefore, if the output distributions
are symmetric, an overlap could not be detected. We therefore
modify the score in the sense depicted in Figure 4B to only
score the negative deviation from a per-median optimal output
window caused by the distributions’ variances. This formalizes
in the log-score

γ γ

γ

= [ { Ξ ̃ }

− { Ξ ̃ }]
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s a f a f

f a f

u u

u u

( , ) min E log min ( , ( , )), ( )
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u u,
1 1

0 0

1 1 0 0

(8)

where f(̃u) ≡ f(̃u, Ξ(γ, a)) is the median circuit output for
input u over Ξ(γ, a). We call the exponential S(γ, a) = exp(s(γ,
a)) with s(γ, a) from (eq 8) the E-score. Note that this
modification does not reduce the computational effort in
comparison to 1(P̃0, P̃1) but does not increase it notably
either. The expectation in the score (eq 8) can be calculated on
the empirical output distributions by

i
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jjjjjjjjj
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(9)

where x̃0 and x̃1 are the medians of P̃0 and P̃1. Note that these
are not equal to logf(u0, θ̃) or logf(u1, θ̃), since the output of
the median circuit realization does not guarantee to yield the
median circuit output. Note that the resulting score S(γ, a)
generalizes Cello’s score. For degenerate distributions (two
“samples”), it is simply given by S(γ, a) = exp(x1 − x0). In the
case of Cello, the x0, x1 are the logarithms of the circuit outputs
produced by the median realization θ̃ for two corresponding
inputs u0 and u1.

4.5. Interval-Based Score (I-score). Like mentioned in
2.4.2, we propose another approach, which is stricter and
concentrates more on robust optimization.39 It is an
implementation of the maximin principle in the sense that it
does not seek to negotiate the diversity of a population, like an
expectation does, but to find just the weakest element. This
can also be the case if we do not want to calculate samples to
approximate an output distribution or do not have sufficient
data to derive distributions of parameters. In this case, the
circuit parametrization Ξ(γ, a) is not understood to be random
anymore, but becomes a set-valued map, returning a set
containing all known parameter realizations Θ ∈ Ξ(γ, a) ⊂ Θ
in circuit (γ, a). The associated maximin-score is then

θ θ
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θ
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(10)

with an additional minimizer over the range of possible
parameters. We now, without knowledge of existence, choose
two parameter sets θ and θ̅, for which we demand the
conditions that for any ∈ub b with ∈b we have f(ub, θ̅) ≥
maxθ∈Ξ(γ,a) f b(ub, θ) and f(ub, θ) ≤ minθ∈Ξ(γ,a) f b(ub, θ) so that
we obtain the following lower bound s(γ, a) ≤ s(̃γ, a)

θ θγ ≡ { ̲ − ̅ }
∈ ∈

s a f fu u( , ) min log ( , ) log ( , )
u u,

1 0
1 1 0 0 (11)

which we use as an interval-based score and call its exponential
S(γ, a) = exp(s(γ, a)) the I-score. We can show that if all gates
in the circuit (γ, a) have transfer functions ∈g that are
monotonous (either decreasing or increasing) for any fixed
parametrization θ and  θ θ∀ ∈ ̅ ≥ ̲+x g x g x: ( , ) ( , ), then θ
and θ̅ exist and the output intervals θ̅ ≡ ̅v f u( , )b b ≥

θθ γ∈Ξ f umax ( , )a b( , ) a n d θ̲ ≡ ̲v f u( , )b b ≤ θ γ∈Ξmin a( , )

θf u( , )b for ∈b can be calculated only from the bounds
θ and θ̅. Since, like explained in 4.4.1, we use Cello’s gate
library, which consists only of NOT gates and NOR gates with
implicit summation, the monotonicity condition for all g is
satisfied. Additionally, because we derived all available samples
from Cello’s cytometry data and the bounds have been chosen
appropriately, the inequality is very strict given the knowledge.
To calculate the output intervals [vb, v̅b] for ∈b , we can
generate a modified circuit, which consists of 2K gates (if the
circuit consists of K). This is done by generating two gates g̅, g
from one ∈g in the circuit, which contain the upper θ̅ and
lower θ parametrizations. Then, for all following adjacent gates
g′, we wire the output g̅ into g′ and g into g̅′. This resulting
circuit then propagates input intervals [ub, u̅b] to output
intervals [vb, v̅b]. Once the output interval is calculated by
standard signal propagation (see 4.4.1) through the modified
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circuit, the score (eq 10) can be approximated by eq 11, taking
the smallest difference v1 − v̅0. The generation of g̅ and g can
thereby be done offline in advance, and the new information
can be gathered in an extended gate library.
As a small addition, and to give an idea of possible further

considerations, we also propose a relaxed, less strict version of
this score. Since it is easy to calculate output interval bounds
[v1, v̅1] associated with Boolean 1 and [v0, v̅0] associated with
Boolean 0, we can again think of these intervals as supporting
output distributions. We could, e.g., use this as a starting point
for approximations of eq 8. Doing so, a reasonable
assumptionif nothing else than the interval boundaries
were knownwould be assuming maximum entropy and
therefore two uniform distributions with support within the
interval boundaries. These can then again be scored using, e.g.,
the E-score (eq 8).
The source code of the proposed synthesis and scoring

methods is available at https://www.rs.tu-darmstadt.de/
ARCTIC.
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