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Crystal Deposits in Macrophages and Distal Lung Remodeling: A Tale
of Aging in SFTPC-Deficient Mice

One of the most widespread presentations of interstitial lung disease
(ILD) is idiopathic pulmonary fibrosis (IPF), a chronic, progressive,
and fatal disease. The prevalence of IPF in the United States has
increased twofold in the last 10 years, affecting approximately
180,000 Americans (1). Central to the pathogenesis of IPF is injury
to alveolar type II cells, concomitant with mesenchymal cell
activation and immune cell dysregulation resulting in enhanced
extracellular matrix deposition and lung remodeling (2). Important
risk factors associated with IPF include a history of smoking and
advanced age (1). Mutations of surfactant genes, SFTPC and
SFTPA, have been linked with adult and childhood ILD, where
common mechanisms include endoplasmic reticulum (ER) stress,
protein aggregation, and apoptosis as a result of production of
mutant forms of SFTPC (3). This may be best exemplified by
elegant studies where mice carrying a mutant form of SFTPC
developed spontaneous lung fibrosis (4). Equally as important as
mutant forms of SFTPC is the loss of SFTPC that has been
associated with familial ILD (5). In this regard, loss of SFTPC (and
other surfactant proteins) after bleomycin-induced lung injury (6)
has been reported. In addition, exacerbated inflammatory (7) and
fibrotic responses (8) in SFTPC2/2 mice have also been reported.
However, the chronic effects of SFTPC deficiency on lung injury
are not fully understood.

In this issue of the Journal, Ruwisch and colleagues (pp. 466–
478) link SFTPC depletion with aging and demonstrate that despite
early developmental defects, including slower body weight gain,
reduced lung volume, inflammatory cell infiltration, and deficits in
lung function, mice are able to compensate by 30 to 40 weeks of age
(9). Regardless of this recovery, exemplified by improved lung
function parameters and reduced inflammatory cell infiltration,
histopathological features of lung injury are prevalent, some as
early as 10 weeks of age. These alterations in pulmonary
architecture include airspace enlargement that appears to
precede evidence of fibrotic injury that is detected between 50 and
60 weeks of age. These observations are significant, because they
demonstrate that despite early deficits in lung function in
SFTPC2/2 mice, these animals are able to adapt and present with
normal lung function (compared with age-matched SFTPC1 mice).
Although normal lung function values were present, evidence of
fibrotic lung injury became apparent histologically between 50 and
60 weeks of age that correlated with reductions in percent oxygen
saturation. Despite these compelling observations, the authors
missed an opportunity to longitudinally track markers of
senescence, such as b-galactosidase or g-H2AX, that may help to
further understand the link between aging and SFTPC deficiency in
mice.

Perhaps the most striking finding was the presence of crystals in
alveolar macrophages in SFTPC2/2 mice; these novel findings
using EM correlated with evidence of crystals in macrophages from
IPF lungs. Interestingly, the accumulation of crystals in alveolar
macrophages was observed starting at Week 30, once airspace
enlargement was present but preceding fibrotic injury. Further
experiments revealed that the presence or accumulation of these
crystals in alveolar macrophages correlated with altered cholesterol
metabolism in macrophages. Herein, Ruwisch and colleagues (9)
report a dramatic reduction in the expression of macrophage
cholesterol efflux transporters Abca1 and Abcg1 that appear to lead
to cholesterol accumulation in alveolar macrophages starting at
Week 40, preceding evidence of fibrotic injury in SFTPC-deficient
mice. In line with this, lipid-laden macrophages (foam cells) have
been demonstrated to promote lung fibrosis (10). In those studies,
experimental fibrosis induced by silica, bleomycin, or irradiation
resulted in the release of lipid-rich products from alveolar epithelial
cells, leading to the accumulation of foam cells in close proximity
to the injured epithelium (10). Furthermore, fibrosis was
exacerbated in mice lacking the Abcg1 transporter, consistent with
Ruwisch and colleagues (9), where SFTPC2/2 presented with
reduced macrophage Abcg1 expression. Intriguingly, this
accumulation of cholesterol in macrophages was observed in both
SFTPC2/2 and SFTPC1 mice where no lung injury was reported.
This observation suggests that accumulation of cholesterol alone by
macrophages may not be sufficient to promote lung injury but that
loss of SFTPC function may be an important trigger that leads to
lung injury. Surfactant lipid composition is highly complex, and its
different constituents are able to modulate distinct metabolic and
inflammatory effects (11). Thus, it is possible that the loss of
SFTPC alters the surfactant lipid composition in such a way to
promote the development and activation of foam cells that in turn
promote fibrotic deposition (10). Although Ruwisch and colleagues
(9) demonstrate that cholesterol levels lead to differential update of
SFTPC, further experiments are needed to identify how SFTPC
deficiency alters the alveolar type II cell–macrophage paracrine
lipid axis to promote fibrosis.

The article by Ruwisch and colleagues (9) may have important
repercussions to other diseases, such as combined pulmonary
fibrosis and emphysema (CPFE), a syndrome identified in 2005
and characterized by coexistence of areas of airspace enlargement,
typically in the upper lobes, and areas of fibrotic matrix deposition,
predominantly in the lower lobes (12). Although mechanistic
studies on CPFE are limited, recent studies have demonstrated
increased adenosine signaling and hyaluronan synthesis in
macrophages in an experimental model replicating features of
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CPFE and in lung tissues from CPFE lung explants (13). In these
studies, inhibition of hyaluronan synthases by hymecromone was
able to halt fibrotic lung injury but had no effect on airspace
enlargement (13). These observations are significant, because
hyaluronan has been reported to form complexes with low-density
lipoprotein and induce cell infiltration of foam cells (14), which
have been shown to drive lung fibrosis (10). However, the link
between SFTPC deficiency, hyaluronan synthesis, and
cholesterol accumulation in the pathogenesis of chronic
lung diseases such as CPFE and ILD has not yet been
fully investigated.

Moreover, the study by Ruwisch and colleagues (9) may also
have important ramifications for bronchopulmonary dysplasia
(BPD), a disease of preterm infants characterized by stunted
development of the alveoli leading to lifelong disease (15). BPD is
characterized by inadequate surfactant lipid coating of the alveoli,
leading to breathing difficulties that can be treated by supplemental
surfactant therapy. However, despite early rescue therapies, many
preterm patients develop chronic lung diseases (15). Ruwisch and
colleague’s research may provide an important link between
surfactant deficiency and foam cell activation that may help explain
the development of chronic lung injury in patients who survive the
early phases of BPD (9). n
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