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Abstract: Zika virus (ZIKV)—a member of the Flaviviridae family—is an important human pathogen.
Its genome encodes a polyprotein that can be further processed into structural and non-structural
proteins. ZIKV protease is an important target for antiviral development due to its role in cleaving
the polyprotein to release functional viral proteins. The viral protease is a two-component protein
complex formed by NS2B and NS3. Structural studies using different approaches demonstrate
that conformational changes exist in the protease. The structures and dynamics of this protease in
the absence and presence of inhibitors were explored to provide insights into the inhibitor design.
The dynamic nature of residues binding to the enzyme cleavage site might be important for the
function of the protease. Due to the charges at the protease cleavage site, it is challenging to develop
small-molecule compounds acting as substrate competitors. Developing small-molecule compounds
to inhibit protease activity through an allosteric mechanism is a feasible strategy because conforma-
tional changes are observed in the protease. Herein, structures and dynamics of ZIKV protease are
summarized. The conformational changes of ZIKV protease and other proteases in the same family
are discussed. The progress in developing allosteric inhibitors is also described. Understanding the
structures and dynamics of the proteases are important for designing potent inhibitors.
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1. Introduction

Zika virus (ZIKV) belongs to Flaviviridae, which contains other important human
pathogens, such as dengue, West Nile, yellow fever, and Japanese encephalitis viruses.
ZIKV was first isolated in 1947; the viral infection usually causes mild symptoms, which
might not require medical treatment [1]. ZIKV infection received attention in recent years,
as it was found to transmit from human-to-human and it could result in serious diseases,
such as microcephaly in newborns [2] and Guillain–Barré syndrome in adults [3,4]. An
outbreak occurred during 2015–2016 and over 2 million people were affected [4–7]. Effort
has been made to develop antivirals and vaccines to combat the virus while no specific
medical treatment is available [8–11].

ZIKV is a positive-sense RNA virus whose genome has one open reading frame [12,13].
The polyprotein encoded by the viral genome is cleaved by both host and viral proteases
to release functionally structural and non-structural proteins. ZIKV genome encodes three
structural proteins, C, PrM/M, and E [14,15], and seven non-structural proteins, NS1, NS2A,
NS2B, NS3, NS4A, NS4B, and NS5. The amino acid sequences of ZIKV proteins exhibit
high sequence homology with those of other flaviviruses, such as dengue and West Nile
viruses. The functions of viral proteins can be predicted based on the available knowledge
of flaviviruses. Among these non-structural proteins, only NS3 and NS5 of flaviviruses
possess enzymatic activities [16–32]. The other proteins are indispensable for viral invasion,
assembly, and replication through interacting with cell membrane, host proteins, or viral
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protein–protein interactions [33–46] (Figure 1). The molecular interactions among these non-
structural proteins are important for viral replication and sustaining the functions of some
proteins, such as NS3 protease activity. Viral protease is responsible for cleaving the joints
of NS2A/NS2B, NS2B/NS3, NS3/NS4A, and NS4B/NS5, which are at the cytoplasmic site
of endoplasmic reticulum (ER) to release functionally non-structural proteins. Therefore,
inhibiting the protease activity of ZIKV is a strategy to combat the virus [11,33,47–49]. As
the sequence of ZIKV protease exhibits high homology/identity with those of dengue
and West Nile viral proteases, ZIKV protease inhibitors might show the broad activity
against these viral proteases [50–53]. Indeed, three-dimensional structures of these viral
proteases are very similar, which further demonstrates that it is possible to develop protease
inhibitors with a broad antiviral spectrum. ZIKV protease is a two-component protein
complex formed by a membrane protein NS2B and an N-terminal portion of NS3 [54,55].
Structural studies have been carried out using different artificial constructs [56–61]. Similar
to the proteases of dengue and West Nile viruses, conformational changes exist in ZIKV
protease, while the closed conformation is predominant in the solution [62–67]. In this
review, the functions and structures of the protease are summarized. We also summarize
the development of protease inhibitors. The dynamics of residues in the protease is critical
for its function and the conformational changes observed in structural studies provide
useful information for rational design of small molecule inhibitors.

Figure 1. A schematic plot of Zika polyprotein on the membrane of the endoplasmic reticulum.
Arrows indicate the viral protease cleavage sites. The cell membrane and membrane topology of
viral proteins are listed. The possible transmembrane helices are indicated as cylinders. Different
viral proteins are indicated in different color. The figure was made based on the previous report [33]
and permission was obtained. For the detailed function of viral proteins, please refer to other
references [18,30,37,39,68–73].

2. Protease Structure and Dynamics

The protease of ZIKV is a serine protease with a catalytic triad formed by three
residues, H51, D75, and S135, in the N-terminal region of NS3, whose C-terminal domain
contains helicase and NTPase activities [33]. Unlike other serine proteases, which only
contain a single polypeptide chain, the flavivirus protease, such as the ZIKV protease, is
formed by NS2B—a membrane protein with four helices embedded in the cell membrane
and the N-terminal region of NS3 containing the residues for peptide cleavage [48,74–79].
Studies show that the hydrolysis of the peptide bond requires the formation of NS2B–NS3
complex [67,80,81]. Although NS2B does not contain residues responsible for substrate
cleavage and its transmembrane domains are not critical for the enzymatic activity, it has
several roles indispensable to the functioning of viral protease. First, NS2B is critical for the
folding of NS3 as NS3 alone is insoluble or unstructured when it is expressed in bacterial
cells. NS2B binds tightly with NS3 through a hydrophilic region between the second
and the third transmembrane helix [67,80,81]. Second, the molecular interaction between
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NS2B and the substrate is critical for the enzymatic activity, as recombinant protease
constructs lacking the substrate-binding region from NS2B exhibited almost no protease
activity. Lastly, NS2B is located on the cell membrane [82]. The NS2B–NS3 complex makes
the protease approachable to other cleavage sites, which are in close proximity to cell
membranes. The non-structural proteins of the virus form a replication complex on the ER
membrane [83–87]. The location of NS2B on the membrane is critical for protease activity,
which makes NS3 perform its other functions (important for viral replication). Therefore,
both NS2B and NS3 are important targets for developing antivirals [88].

2.1. Structure of NS2B-NS3 Protease

To explore the structure of viral proteases, different constructs were made for in vitro
studies [89]. NS2B demonstrated to have four transmembrane helices while the folding of
these helices is not defined in the structural study due to lack of long-range restraints [71,90].
The structure of the full-length NS2B fused with NS3 was not obtained, as the folding
of the entire NS2B requires the presence of membrane systems and is challenging for
crystallization. Studies of crystal structures on most flavivirus proteases used an artificial
construct in which the hydrophilic NS2B peptide between transmembrane helices 2 and 3
was linked with the NS3 protease region (NS3pro) via a G4SG4 linker [91–93]. This construct
was overexpressed and purified from bacterial cells for biochemical and structural analysis
in the absence of membrane systems [80,81,94]. Structures of this construct reveal that
protease exists in open and closed conformations under different conditions [67,95]. The
folding of NS3 is almost identical in both conformations while the C-terminal portion of the
NS2B region exhibits various conformations [87]. Structural studies show that proteases of
dengue West Nile virus and ZIKV are very similar and adopt a chymotrypsin-like structure
with two β-barrels. NS3 harbors the catalytic triad formed by three residues (H51, D74, and
S135) [96]. Approximately 40 amino acids from NS2B form a complex with NS3pro. The
N-terminal region of the NS2B peptide forms a β-strand and integrates with the N-terminal
domain of NS3, and the binding affinity is very low, as NS2B and NS3pro always form
a complex when they are co-expressed in bacterial cells [97,98]. It has been noted that
the free 40-residue NS2B peptide was observed when the NS2B-NS3pro complex was
purified for structural studies [57]. There is no cell-based study to show the presence
of free NS2B. It might be useful for exploring the novel function of NS2B [99–101]. The
C-terminal part of the 40-residue NS2B peptide forms a β-hairpin structure, wrapping
around the active site of the protease to form the active-closed conformation in which
NS2B participates in formation of the S2 pocket, which is crucial for substrate-binding
and catalytic activity [57–61,102]. A structural study also reveals a salt bridge between
the side chain of P2 residue and D83 of NS2B while such an interaction was not observed
in structures of dengue and West Nile proteases [54]. In the absence of a substrate or
an inhibitor, the C-terminal region of NS2B can stay away from the active site to form
the inactive-open conformation in a construct containing the G4SG4 linker [56] (Figure 2).
Further NMR studies demonstrate that both conformations are present in this construct
and inhibitors/substrates are able to increase the population of the closed conformation
in solution [62,63,65,66,103–105]. Another NMR study demonstrated that removal of the
glycine-rich linker in the dengue protease can also increase the population of the closed
conformation in solution [98]. In the study, the hydrophilic NS2B region, comprising
approximately 40 residues, was co-expressed with NS3pro. The purified dengue protease
exists mainly in the closed conformation in solution as evidenced by the paramagnetic
study. The similar construct of ZIKV protease was studied and the result shows that the
closed conformation is predominantly present while conformational exchanges exist for
some residues at the interface of NS2B and NS3. Inhibitor or substrate binding to protease
eliminates such exchanges [57–60]. The structural studies on the three structures provide
useful information for designing inhibitors (Figure 2).
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Figure 2. Open and closed conformations in ZIKV proteases. (A). Artificial constructs for structural
studies of ZIKV protease. The domains of NS2B and NS3 are shown in different color. Transmembrane
helices of NS2B are indicated as TM1-4. The cofactor region of NS2B interacting with NS3 and
regulating protease activity is shown in green. The arrows indicate the native protease cleavage site
between NS2B and NS3. The protease domain of NS3 is indicated as NS3pro and C-terminal region
of NS3 is indicated as CTD. Artificial constructs without a linker, with a glycine-rich linker and the
native protease cleavage site are indicated as bZiPro, gZiPro, and eZiPro, respectively. (B). Structures
of the free ZIKV protease. Protease is in the closed conformation in the presence of an inhibitor.
The NS2B cofactor region and NS3pro are shown in green and light blue, respectively. The PDB
access codes are shown in the figure. All the structures are shown in the same orientation. The
TGKR sequence is shown in sticks. (C). A model of ZIKV protease on the cell membrane. The
transmembrane domains of NS2B are indicated as TMs. The boundary between NS2B and NS3 is
highlighted with a red cycle. NS2B cofactor and NS3pro are shown in green and yellow, respectively.
The dynamic nature of substrate is critical for its dissociation with protease, which is critical for
releasing other proteins.

The structures of ZIKV protease have been well characterized using three constructs
namely gZiPro with a G4SG4 linker, eZiPro with a native protease cleavage site containing
P1 to P4 residues, and bZiPro without any linker between NS2B cofactor region and
NS3pro [57,58,106]. Both bZiPro and eZiPro are in the closed conformation and the C-
terminal region of the 40-residue NS2B peptide is well folded. In bZiPro, the active site
is open for substrate binding. In eZiPro structure, P1–P4 residues occupy the active
site and exhibit interactions with NS2B while the protease is still active and binds to
inhibitors [57,58]. The open structure was observed in gZiPro and the inhibitor bound
gZiPro exists in the closed conformation [54,107]. Several studies demonstrate that bZiPro
is very suitable for understanding protease and inhibitor interactions, as the substrate-
binding pocket is accessible to various types of inhibitors [57,59,60,102]. Although the
active site of eZiPro is occupied by its native substrate, this construct is close to the native
protease under physiological conditions. A study also shows that the hit rate of fragment
screening using eZiPro is higher than that of bZiPro [102]. The artificial linker in gZiPro
affects the chemical environment of quite a few residues, while it is still useful for structural
and biochemical studies [61,108]. All constructs are very useful for developing protease
inhibitors, while they are artificial constructs lacking the NS2B transmembrane regions,
which can restrict the motion of the hydrophilic region [33,63,109,110].

The crystal structures of flaviviruses provide insight into drug design and a clue
to evaluate whether an inhibitor can exhibit activity against other viral proteases in this
family. The current ZIKV protease inhibitors also exhibit activity against proteases of
dengue and West Nile viruses. To evaluate whether an inhibitor has a broad spectrum
against different viruses in this family, analyzing protease sequences and structures will be
a feasible strategy.
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2.2. Protease Druggability

Druggability is a term in drug discovery referring to the likelihood of developing a
small-molecule compound, which can modulate a target [111,112]. Druggability of a target
can also be interpreted as the fact that a binding site is present for forming tight interactions
with a small-molecule compound. It is important to estimate the successful rate of a drug
discovery project. There are several ways to predict druggability of a target. The structural
study on a target is one of the efficient strategies to analyze druggability [113,114]. A small-
molecule drug is usually hydrophobic with a tendency to interact with a hydrophobic
surface. Therefore, analyzing the surface charges of a target that affect the hydrophobicity
of the pocket can be utilized as one of the criteria to evaluate the druggability [115].
Proteases of flaviviruses, such as ZIKV, dengue, and West Nile virus recognize a sequence
with positively charges residues such as Arg and Lys at P1 and P2 position [116]. The S1
and S2 pockets of the protease active site are negatively charged (Figure 3). Therefore,
the druggability of the active side of ZIKV protease is very low [117]. To develop small-
molecule inhibitors, other druggable sites of ZIKV protease need to be identified [118,119].
Structural studies reveal the presence of the open and closed conformations, making
it possible to develop small-molecule inhibitors through allosteric mechanisms, such
as stabilizing the open/inactive conformation or inducing conformational changes of
NS2B [74,120].

Figure 3. The protease active site is negatively charged. The structures of eZiPro (PDB ID 5GJ4)
with (A) and without (B) TGKR sequence of NS2B are shown to understand the surface charges.
The TGKR residues are shown in different color. The surface charge figure was made using PyMOL
(www.pymol.org (accessed on 3 August 2018)). Surface areas with positive charge, negative charge,
and no charge are shown in blue, red, and white, respectively. The substrate-binding site is negative
charged, suggesting the challenges of developing small molecule inhibitors, which prefer interacting
with a hydrophobic surface.

The charges in the protease active site make developing small molecules challenging
while the progress made in the development potent peptidic and allosteric inhibitors still
show that it is feasible to develop protease inhibitors for clinical applications.

2.3. Protease Dynamics

The native form of ZIKV protease contains four components—the transmembrane
helices of NS2B, the 40-residues NS2B sequence (cofactor region) interacting with NS3pro,
the protease cleavage site, and NS3pro (Figure 2). The structural study has not yet been
carried out for the native form of ZIKV protease [110,121,122]. Protein dynamics and
conformational changes have been analyzed using artificial constructs and computational
techniques [64,123,124]. The first NMR study on West Nile protease was carried out to
understand the open and closed conformations [62]. In the study, exchanges were observed
in the protease and inhibitor binding to protease stabilized the closed conformation. As
the protease cleavage site is present in the native protease, the closed conformation was

www.pymol.org
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proposed to be utilized in structure-based drug design [65,66]. A careful study was carried
out on dengue protease to access the folding of the protease in solution. Both open
and closed conformations were observed in solution [103]. Similar to West Nile protease,
inhibitor binding to dengue protease reduces the population of the closed conformation [63].
Another NMR study using an unlinked dengue protease demonstrated that the closed
conformation was predominant in solution [98] (Figure 4). In the unlinked protease-bZiPro,
the protease exists in the closed conformation while exchanges are also present for the
residues at the C-terminal part of NS2B peptide and some residues from NS3 (Figure 4). In
the presence of substrate peptides, the exchanges at the NS2B and NS3pro were suppressed
(Figure 4). A crystal structure of eZiPro captured the molecular interactions between P1–P4
residues and viral protease [58]. A follow-up NMR study demonstrates that the P1–P4
residues are flexible in eZiPro [108]. Indeed, binding studies using an unlinked protease-
bZiPro show that peptides derived from the protease cleavage site (P1–P4 residues) bind to
protease with affinities in µM–mM range [108] (Figure 4). Such a dynamic nature and weak
protease binding affinity of the residues at the cleavage site is critical for the protease’s
function as these residues are present in the native protease and should not interfere with
the cleavage of other positions (Figure 1). The dynamic nature might be important for
viral protease to recognize cleavage sites. Inhibitor/substrate induced conformational
changes were observed in proteases of dengue, West Nile, and Zika viruses. In addition,
computation-based studies also reveal the structural changes of viral proteases [125,126].
Based on these observations, researchers have been developing compounds that were able
to stabilize the inactive/open conformation [49,127]. As the protease contains two proteins,
any compounds affecting their interactions might be active against the enzymatic activity.
The dynamics and conformational changes of the protease revealed by structural studies
provide insights into developing protease inhibitors [128].

Figure 4. Dynamics and conformational changes in ZIKV protease. (A). Overlay of 1H-15N-HSQC
spectra of eZiPro and bZiPro. This figure is obtained from the reference [58]. The 1H-15N-HSQC
spectra of eZiPro and bZiPro are shown in black and red, respectively. More cross-peaks appeared
in eZiPro suggests that substrate binding to protease suppresses exchanges. (B). Binding affinity
between protease and peptides. The weak binding affinity is important for the function of the
protease. This figure was obtained from the reference [108] with permission.

In summary, the dynamics of proteases is critical for function of the enzymes and
provides insights into inhibitor design. First, the open and closed conformations observed
in the crystal structures provide ways to develop inhibitors. Any compounds able to lock
these conformations will be effective in inhibiting the enzyme activity. Second, the weak
binding affinity between NS3 and P1–P4 residues, which are dynamic in solution, is critical
for the enzyme to cleave other enzymatic cleave sites. Lastly, the dynamic nature of the
protease might be critical for changing orientations of the protease on the membrane, which
can be critical for the protease activity or other enzymatic activities of NS3.

3. Protease Inhibitors

Several strategies, such as high throughput screening (HTS), computation-guided drug
design, and fragment based drug discovery have been applied to develop protease in-
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hibitors [129–133]. The available inhibitors have been reviewed thoroughly [10,33,117,134–
139]. Inhibitors include substrate derived peptidic compounds, small molecules binding
to the active site and allosteric inhibitors (Figure 5) [11]. Due to the presence of confor-
mational exchanges in the protease and low druggability of the protease active site [89],
developing the allosteric inhibitor is of great interest and potent allosteric inhibitors have
been developed [50,118,140,141]. As this type of inhibitor exhibited antiviral activity in
cell-based assays, it has great potential in being developed into antivirals.

Figure 5. Structures of several protease-inhibitor complexes. The structures of inhibitors in complexes
with proteases are shown. NS2B and NS3 are shown in green and light blue, respectively. The PDB
accessing codes are indicated in the figure. All the structures are shown in the same orientation.
Several types of inhibitors such as peptidic inhibitors, fragments, irreversible inhibitors, and allosteric
inhibitors are shown in sticks.

3.1. Peptidic Inhibitors

Inhibitors derived from the substrate have been developed and well-characterized [142–144].
These peptidic inhibitors can grouped into three classes: covalent peptidic inhibitors, cyclic
peptides, and normal peptides. Covalent peptidic inhibitors are the dominant ones and con-
tain three important regions—the backbone derived from the substrate sequence interacting
with the S1–S2/S3 sites, the cap region enhancing the activity by forming interactions with
residues outside of S1 and S2/S3 sites, and a warhead at the C-terminus, such as aldehyde
and boronic acid forming a covalent bond with residue S135 [93,145–147]. One of the most
characterized peptidic inhibitors is a tetrapeptide inhibitors-nKRR-aldehyde, which exhib-
ited a wide-spectrum activity against flavivirus proteases [59,60,116]. Extensive studies,
on, e.g., optimizing the competent of the peptide sequence using different amino acids,
adopting various warheads, and shortening or increasing the length of the peptide, have
been carried out to improve the potency of inhibitors [148,149]. The peptidic inhibitor with
the smallest molecule weight is Ac-KR-aldehyde in which two amino acids are present [60].
Inhibitors that are cyclic peptides can be developed from the substrates and identified from
screening. This type of inhibitor usually contains more than three amino acids. The cyclic
peptides can be more stable than normal peptides under physiological conditions. It is
possible to develop both competitive and noncompetitive cyclic peptides, while extensive
studies are needed to improve the potency [57,119]. Developing linear peptides active
against the ZIKV protease will be challenging, while a small protein bovine pancreatic
trypsin inhibitor (BPTI) is active against proteases from several viruses [58]. Despite efforts
being made in drug discovery, there are still no peptidic inhibitors suitable for further stud-
ies, which is due to the fact that the charged residues at the P1 and P2 positions cannot be
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replaced [116]. Therefore, the peptidic inhibitor exhibited potent inhibitory activity against
ZIKV protease while challenges in stability in vivo and penetrating the cell membrane
make them difficult for clinical studies. Peptides that can be utilized in clinical studies
need to be developed [10,119].

Although it is challenging to develop peptidic inhibitors, quite a few completive and
noncompetitive peptidic inhibitors are available. The following strategies might be useful
to develop antivirals derived from peptides. First, adoption of unnatural amino acids in
inhibitors. Second, exploring cyclic peptidic inhibitors is a feasible strategy to improve the
properties of the inhibitors. Third, linking peptidic inhibitors with small molecules might
be a promising strategy while extensive structural studies are needed. Lastly, allosteric
peptidic inhibitors are of great interest while structural studies are important for elucidating
the mechanism of action.

3.2. Small-Molecule Inhibitors

Strategies, such as virtual screening and HTS campaigns, have been applied to identify
small molecule inhibitors [129,150]. Although quite a few inhibitors are available [150,151],
no compound has reached clinical studies. Due to the hydrophilic nature of the protease,
these small-molecule inhibitors that bind to the active site are not as potent as peptidic
inhibitors, unless they form a covalent bond with the protease. The following types of
small molecules are developed. First, some small-molecule inhibitors are developed using
conventional methods, such as HTS and structure-based design. Quite a few fragments
were identified and shown to bind to the substrate-binding site while further fragment
optimization is needed to improve the potency [57,102]. Second, developing irreversible
inhibitors is a strategy to identify competitive inhibitors. An irreversible inhibitor was
shown to be effective in inhibiting the Zika protease by forming covalent interactions
with Ser135 [59,152]. Structural studies and mass spectrometry analysis revealed that a
portion of the compound formed a covalent bond with S135. Despite its potency against
protease activity, this compound is still difficult for clinical studies due to its stability. Third,
allosteric inhibitors can be developed targeting ZIKV protease. Several inhibitors were
reported to inhibit protease inhibitors through allosteric or noncompetitive manners. These
inhibitors were predicted to interact with a druggable site [50,118,153]. Recent reports show
that a series of 2,5.6-trisubsitituted pyrazine compounds are potent Zika protease inhibitors
by regulating the enzymatic activity through an allosteric mechanism. The nanomolar IC50
observed in the biochemical assay and low micromolar EC68 observed in the cell-based
assay suggested that these compounds have great potency to be applied in clinical stud-
ies [50]. The available crystal structure of an allosteric inhibitor bound to dengue protease
proves its mode of action [50,52]. An assay was developed to screen allosteric inhibitors.
This assay was based on the presence of the open and closed conformations in ZIKV pro-
tease. As the C-terminal region of NS2B exhibits conformational changes, a conformational
switch assay was developed. Several allosteric inhibitors were screened using this assay.
An identified inhibitor-NSC135618 was shown to be an allosteric inhibitor with a broad
spectrum [154]. The allosteric inhibitors have great potential to be developed into antivirals
as they exhibited activity in cell-based assays. Structural studies and biophysical studies
are still required to understanding their binding modes. Lastly, drug repurposing was
applied to identify ZIKV protease inhibitors [52]. Several drugs were shown to be active
against the ZIKV protease, while it is challenging to further optimize these drugs without
structural information.

Protease inhibitors can be developed using strategies, such as HTS, fragment-based
drug design, drug repurposing, and structure-based drug design. Due to the hydrophilic
nature of the substrate-binding site, designing allosteric inhibitors is a feasible strategy
to develop antivirals against ZIKV infection. It important to have an assay available to
identify noncompetitive/allosteric molecules. Structures and dynamics of the protease in
complexes with compounds will be critical for optimization. With novel strategies utilized
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in compound screening and compound optimization, more potent Zika protease inhibitors
will be obtained [104,133,141,155–157].

4. Strategies in Inhibitor Design

Several ZIKV protease inhibitors have been designed while no compound has been
reached into clinical studies. Different types of screening strategies including HTS using
biochemical and cell-based assays, fragment-based screening, drug repurposing and virtual
screening and structure-guided drug design have been utilized to identify potent protease
inhibitors [10,11,158–160]. Nonetheless, some compounds active in biochemical assays did
not exhibit any activity in cell-based assays [161]. Although this can be attributed to the
chemical properties of the compounds, suitable assays in evaluating protease activity and
probing protein–ligand interactions will be important in this field. There are three artificial
constructs available for ZIKV protease [33], but the native form of ZIKV protease might be
needed for evaluating the activity of the inhibitor and the screening of a compound from
the compound library. An assay that can measure the protease and ligand binding in living
cells is also helpful for evaluating and identifying new inhibitors [154].

The protease contains some regions with exchanges, which are important for the
protease function and for designing potent compounds [154,162]. The P1–P4 residues at
the native protease cleavage site at the joint of NS2B and NS3 is dynamic in solution, giving
rise to empty the protease pocket for interacting with other sites. Therefore, developing
a compound that can stabilize the active form with the active site occupied is a good
strategy to develop inhibitors [10,11,52]. As aforementioned, this strategy is challenging
due to the low druggability of the protease active site. The dynamic feature of the protease
makes it possible to develop allosteric inhibitors, which are able to stabilize the inactive
conformation and destabilize the active conformation. A recent study demonstrated the
feasibility of this strategy [50,52,118,153]. With the availability of structural information by
X-ray crystallography, dynamic analysis by solution NMR spectroscopy, computational
analysis, biochemical assays, and cell-based assays, developing allosteric inhibitors is an
effective and promising strategy in antiviral development.

5. Conclusions

Quite a few viral proteins, such as ZIKV protease, possess regions that are dynamic
in nature, which is critical for their functioning. Such dynamic information provides a
clue for rational inhibitor design. To obtain accurate structural and dynamic information,
the following factors need to be considered: a suitable construct for in vitro studies, an
appropriate assay for measuring activity, a sensitive analytical tool to understand dynamics,
and a cell-based assay to validate the observations. With the accumulated structural
information of viral proteins and developed computational methods, the dynamics of
viral proteins will be considered in rational drug design. More allosteric inhibitors can be
developed by rational design.
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