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Abstract
Reducing radiation-induced side effects is one of themost important challenges in paediatric cancer
treatment. Recently, there has been growing interest in using spatial normalisation to enable voxel-
based analysis of radiation-induced toxicities in a variety of patient groups. The need to consider
three-dimensional distribution of doses, rather than dose-volume histograms, is desirable but not yet
explored in paediatric populations. In this paper, we investigate the feasibility of atlas construction
and spatial normalisation in paediatric radiotherapy.We used planning computed tomography (CT)
scans from twenty paediatric patients historically treatedwith craniospinal irradiation to generate a
template CT that is suitable for spatial normalisation. This childhood cancer population
representative template was constructed using groupwise image registration. An independent set of
53 subjects from a variety of childhoodmalignancies was then used to assess the quality of the
propagation of new subjects to this common reference space using deformable image registration (i.e.
spatial normalisation). Themethodwas evaluated in terms of overall image similaritymetrics, contour
similarity and preservation of dose-volume properties. After spatial normalisation, we report a dice
similarity coefficient of 0.95±0.05, 0.85±0.04, 0.96±0.01, 0.91±0.03, 0.83±0.06 and
0.65±0.16 for brain and spinal canal, ocular globes, lungs, liver, kidneys and bladder.We then
demonstrated the potential advantages of an atlas-based approach to study the risk of second
malignant neoplasms after radiotherapy.Ourfindings indicate satisfactorymapping between a
heterogeneous group of patients and the template CT. The poorest performancewas for organs in the
abdominal and pelvic region, likely due to respiratory and physiologicalmotion and to the highly
deformable nature of abdominal organs.More specialised algorithms should be explored in the future
to improvemapping in these regions. This study is thefirst step toward voxel-based analysis in
radiation-induced toxicities following paediatric radiotherapy.

1. Introduction

Radiation therapy (RT) is currently used to treat 40%–50%of childhood cancer cases in theUK (TheRoyal
College of Radiologists 2019).While the radiation is precisely targeted to destroy the cancer cells, itmay also
damage surrounding healthy cells leading to sequalae that can appear years to decades after treatment
(Armstrong et al 2009, Arain et al 2015). The higher risk of radiation-induced late effects in children is linked to
the increased sensitivity of developing tissues, where radiation induces both organ damage and impairment of
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maturational processes (Paulino et al 2010). Furthermore, with current survival rates reaching 75%at 10 years
(Cancer ResearchUK2015), most paediatric patients become long term survivors, allowing for late effects to
manifest. The long termharmful effects of radiotherapy include infertility, impaired physical growth and
pubertal development (Schwartz 1999), renal problems (Skinner 2018), neurocognitive deficits (Roddy and
Mueller 2016), as well as a range of other life-threatening issues. Second cancers are the leading cause of
mortality in long term survivors, followed by cardiac and pulmonary death (Armstrong et al 2009). Reducing
radiation-induced side effects is one of themost important ongoing challenges in paediatric cancer treatment,
but there is a lack of evidence-based dose/volume guidelines to inform treatment planning. This has recently
been recognised internationally with the establishment of the PaediatricNormal Tissue Effects in theClinic task
force (Constine et al 2019), which seeks to increase knowledge about paediatric radiotherapy dose constraints
using published data.

Predictivemodels of radiation-induced side effects are a powerful tool to guide treatment planning and
clinical decision-making. The development and validation of treatment toxicitymodels is however very
challenging, andwhen considering paediatric populations specific obstaclesmust be addressed (Constine et al
2019). Radiation dose to volume is the key predictive factor of radiation-induced effects. In adults, radiation-
induced effects occurmostly in organswithin the radiotherapy target volumes. In contrast, for children organs
and tissues outside the target volume are also important, as side-effectsmay develop in different regions
receiving lower doses at different timescales. It is common for treatments to encompass large volumes in
comparison to children’s body size (e.g. in craniospinal irradiation (CSI)), meaning awider range of organs and
tissues can receive a significant radiation dose. Smaller bodies also cause organs to be closer to the high-dose
regions, increasing dose due to secondary radiation. Tissues and organswhich are not directly irradiatedmay
still have a long-term risk of radiation-induced second cancers, as result of leakage and scattered radiation (Xu
et al 2008,Harrison 2013). Additionally, the quality of toxicitymodels depends on the quantity and quality of the
data. Collating large datasets for individual cancer types is challenging, as childhood cancers are both rare and
heterogeneous (Pappo et al 2015).Moreover, routine clinical data is not detailed and has limited delineations of
organs and tissues; likewise, anatomy remote from the target volume is not usually imaged. To achieve larger
sample sizes, it is desirable to identifymethodologies that can leverage all clinically existing anatomical and
dosimetric information from this heterogeneous cohort, including partial data. This can potentially be achieved
byfinding solutions to group patients according to organ at risk and not disease diagnosis (Constine et al 2019).
Radiotherapy delivery is rapidly evolving, with advanced techniques such as intensitymodulated radiotherapy,
intensitymodulated arc-therapy (IMAT), helical tomotherapy, passive scattering proton therapy, and pencil
beam scanning proton therapy (PBS-PT) becomingmore accessible (Sterzing et al 2009,Mesbah et al 2011,
Ludmir et al 2018, Padovani et al 2019). These not only change the characteristics of dose distribution in healthy
tissues (for example, low dose bath in IMAT and biological effectiveness of protons), but alsomake it evenmore
challenging to achieve larger sample sizes for assessment permodality.

To address these challenges and facilitate analysis of complex 3D imaging and treatment data from
heterogeneous patient groups, a possible solution to is to define a 3D common reference space and normalise
spatial information from individuals of the patient group into it. Image registration is used to propagate spatial
data (such as 3D imaging information and dosimetry) from the individuals onto the common reference space,
whichmay be defined as a representative subject or unbiased population atlases (Joshi et al 2004, Ghosh et al
2010). Spatial normalisation allows one tomove from region-of-interest to voxel-based analysis, which is
particularly desirable in radiotherapy research to understand dose-toxicity relationships (Palma et al 2020).
Spatial normalisation preserves the 3D information of the dose distributions (Monti et al 2018), unlike
traditional techniques that simplify volumetric dose into 2Ddose-volume histograms (DVHs). It is an
advantageous approach that allows one to identify heterogeneous regional radiosensitivity (i.e. sub-volumes of
organs and tissues)while not relying on a priori definition of volumes (Palma et al 2020). The need to consider
the actual spatial distribution of doses, rather than organDVHs, is recognised in late normal tissue damage
research for paediatric populations (Trott 2017). Spatial normalisation in radiotherapy has become a topic of
interest in recent years, with recent studies focusing on radiation-induced side-effects on prostate, head and
neck and lung (Acosta et al 2013,Dréan et al 2016, Palma et al 2016,Monti et al 2017, Beasley et al 2018,Mylona
et al 2019, 2020,Marcello et al 2020,McWilliam et al 2020) and to predict outcomes (Ibragimov et al 2019).

In this work, we investigate the feasibility of atlas construction and spatial normalisation in paediatric
radiotherapy to enable voxel-based analysis of radiation-induced toxicities. Themethodology was developed to
serve as a framework to facilitate the development, validation, and clinical translation of radiotherapy-induced
late effectsmodels in childhood cancer patients. The atlas-based approach allows one to spatially standardise a
heterogenous population in an unbiasedway, while preserving localised spatial anatomical, functional and
dosimetric information.
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2.Methods andmaterials

2.1. Paediatric atlas construction
To spatially normalise complex anatomical and treatment imaging data, image registration is used to propagate
information from individual subjects onto a common reference space. Thefirst key step is to define a reference
space representative of the population being studied. For our application, a simple, common, popular and
scalable approach is to choose as reference space the planning computed tomography (CT) scan of a
representative subject from the population (e.g. subject with average age or average height). However, the
selection of a single subject as reference space introduces bias to the registrations which propagates to
subsequent analysis. For example, if the selected reference volume has atypical anatomical features then all
registrations are potentiallymore challenging andwill estimate atypical and/or implausible transformations
(Namburete et al 2018). Choosing an adequate reference is a challenging problem, particularly for the paediatric
cancer population, known to be heterogeneous and prone to deviations in anatomy. Anatomical variations can
occur simply due to changes with age, butmore complex variations can occurwith the treatments used,
increasing the risk of individual subjects having atypical features. For example, some require invasive therapies
whichmay cause co-morbidities and require additional interventions that are visible onCT imaging (such as the
use of shunts or changed anatomy from surgical interventions). For such reasons, we opted to construct the
reference space using groupwise image registration and paediatric radiotherapyCT images. Groupwise image
registration is a process that iteratively alternates between co-registration of all subjects to a reference image and
updating this reference imagewith the averagemodel produced. Figure 1 provides a schematic overview of the
pipeline proposed, which is detailed in the following sections.

2.1.1. Patient data
The paediatric radiotherapy data used in our studywas requested in line with the internal information
governance procedures of theUniversity College LondonHospital (UCLH)RadiotherapyDepartment andwas
provided as fully-anonymised datasets. For atlas constructionwe used data from twenty children historically
treatedwith 3D conformal photonCSI. This included 10 boys and 10 girls with amedian age of 8 years (range:
3–15 years). All patients underwent aCT scan of the brain andwhole spine, immobilised in the treatment
position, for radiotherapy planning purposes. For simplicity, CSI CT scans are labelled aswhole-body (as all
major organs are visible), but limbs are usually partially out-of-field. Imaging resolution for all scanswas
0.98×0.98×2.5mm3. The following RT structures were used for validation purposes in the study: central
nervous system (CNS) (whole brain and spinal canal down to L3), ocular globes, lungs, liver, kidneys and
bladder. This set of contours was chosen to be clinically relevant and to cover different regions of the body.
Clinically available contours were used if possible, andmissing contours were additionally generated. Hence, the
segmentation dataset had inter-user variability. All new contours were reviewed to clinically acceptable
standards by an oncologist (EC) and/or physicist (CV).Manual segmentation and reviewwas performed using
the open-source software ITK-SNAP (Yushkevich et al 2006). Simple post-processingwas employed before
analysis to all contours to remove common segmentation errors (e.g. remove holes and discard small regions
outside organ).

Figure 1. Schematic of pipeline used to generate the paediatric common reference space. The pipeline is divided into threemain steps:
(1) data pre-processing: definition of inputs to be used in pairwise registrations (multichannel images and correspondingmasks); (2)
groupwise image registration: iterative process of registering a set of images together to a common reference space; (3)Atlas
construction: generate template CT and contours.
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2.1.2. Pre-processing
The following pre-processing stepswere applied to all CTs prior to atlas construction to generate the inputs for
image registration. TheCTswere corrected to exclude external elements (e.g. couch and anaesthesia equipment)
and to ignore shunts and high-intensity artefacts. External elements were defined as voxels outside the body
contour andwere overwritten as air (HU=−1000). High-intensity artefacts were replacedwith ‘NaN’ value so
that theywould not contribute to the average image constructed at each iteration. Furthermore, since the
location and volume of bowel gas is variable between patients and hence there is no true one-to-onemapping,
bowel gas regions (defined from the body, inferior to the lungs, asHU<−200)were overwrittenwithwater
intensity (HU=0). A binarymaskwas defined as a dilation of the body contour and used as input to speed the
registrations.

Inter-subject image registrationwas particularly challenging in theCSI paediatric population due to the
heterogeneous anatomy of children of both sexes aged 2–16 years. To guide the deformable registrations
between subjects with different body sizes, the input images were defined asmultichannel images. Thefirst
channel corresponded to the pre-processed CT image, while the second channel corresponded to the binary
mask of the individual’s skeleton (defined asHU>150). Allmultichannel CTs (and respectivemasks)were also
automatically cropped in the anterior-posterior direction to further reduce computation time andmemory
requirements.

The binary images used in the pre-processing were generated semi-automatically based on thresholding of
theCTs,morphological operations and existingmanual RT segmentations, and then visually inspected and
manually corrected (if needed) to remove gross labelling errors.

2.1.3. Groupwise image registration
Weconstructed a reference space representative of the paediatric radiotherapy population using groupwise
image registration. The output of interest was the final average intensity image produced, whichwe denominate
as the ‘template CT’ fromhere onwards.We havemodified themethod available inNiftyReg (https://github.
com/KCL-BMEIS/niftyreg) for groupwise registration, tailoring it for co-registration of whole-bodyCT images
of paediatric subjects. The process was initialised by automatically selecting the initial reference to be the subject
with closest age to the average age of the population. The pipeline then alternated between pairwise registration
of all images to the reference image and updating the reference image at the end of each iteration. The updated
reference was obtained by averaging the intensities of all the pairwise registration results whilst enforcing the
mean of all transformations to be the identity transform. The complexity of the transformationmodel increased
with iteration number, from rigid tofine deformable image registration (DIR). Coarser registrations allowed one
to initially capture the large global variations in subject height andweight, whichwere followed by finer
registrations to capture the smaller intra-patient variations in organ shape and size. This refinement process
hence facilitated the co-registration of subjects with different body sizes and reduced computation times. A total
of eleven iterations (one rigid-only, two affine and eight deformable)was empirically defined as further
iterationswere found to not provide sharpermean images.

Rigid and affine iterations used the blockmatching-based algorithm available inNiftyReg (Ourselin et al
2001,Modat et al 2014).Multichannel and cropped images were generated at the end of the last affine step and
used in the following iterations. TheDIR stepsmade use of the velocity fields parametrisation of the B-spline free
formdeformation based algorithm (Rueckert et al 1999,Modat et al 2012), guaranteeing transformations that
were diffeomorphic, symmetric and inverse-consistent. All pairwise deformable registrations used amulti-
resolution approachwithfive levels. Locally normalised cross correlation and sum squared difference were used
as similaritymetrics in theCT and skeleton channels, respectively. Bending energy and linear elasticity penalty
termswere used for regularisation in all registrations to encourage smooth deformations. The number of levels
to perform and control point spacingwere updatedwith iteration number to progressively recover finer
deformations. Thefinest registrations were carried out using five resolution levels and a control grid spacing of
12.5mm.

In addition to generating the average CT image, at the last iteration the corresponding average contours were
also generated by propagating and averaging the organ contours for all subjects (majority voting), using the same
transformations.

2.2. Evaluation experiments
To evaluate the constructed paediatric atlas for spatial normalisation, an independent set of 53 patients
historically treated atUCLHwas used. This evaluation dataset included 31 boys and 22 girls with amedian age of
5 years (range: 1–16 years) from a variety of disease cohorts, includingCSI (n=30), abdominal neuroblastomas
(n=18), brain tumours (n=3) and Ewing sarcomas (n=2). Similarly to the data described in section 2.1.1,
planningCT images and corresponding contours (CNS, ocular globes, lungs, liver, kidneys and bladder)were
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used for analysis. Clinical RT doses were also available for every subject, with prescription and fractionation
varying between patients. All subjects were registered to the template CTusing affine followed by non-rigid
registration. The registration parameters and pre-processing strategywere similar to those used for thefinest
pairwise registrations in the groupwise pipeline.

The quality of the spatial normalisation process was evaluated considering howwell the registrations aligned
organs at the common reference space and if dose-volume properties were preserved after registration;
furthermore, smooth deformationswere important to promote the preservation of dose-volume characteristics.
To evaluate themapping in regionswithoutmanual labels, intensity-based similarity and deformationmetrics
were calculated. Allmetrics of image quality, contour similarity and dose-volume characteristics usedwere
defined in table 1 and briefly described in the following paragraphs. The following nomenclature was used to
differentiate the different spaces where three-dimensional subject-specific information (i.e. CT, contours and
dose)were defined: s=information of each subject in its native coordinate system; t=information of the
template CT itself on its own coordinate system (common reference space); s t =information propagated
from the subject space into the template CT coordinate system via image registration.

Intensity-based similarity was assessed by calculating the normalised cross correlation (NCC) and the root
mean square error (HUrms) between the deformedCTs and template CT. To demonstrate the range of
deformations recovered, we also computed the average absolute local volume change (LVCavg) using the
determinant of the Jacobian of the pairwise deformations (Pilia et al 2019).

To describe the similarity between contours defined in the template space (Vt ) and the equivalent contours
propagated from each subject to this space via image registration ( Vs t ), we computed the dice similarity
coefficient (DSC), Jaccard coefficient (JC), average distance between surfaces (DTavg) (Mishchenko 2015) and
distance between centroids (DTR). These quantitiesmeasure accuracy of the registrations inmapping organ
volume, location and shape.

Spatial normalisation should preserve the dose-volume properties of each individual subject, such that
DVH-basedmodels of side-effects would be similar if performed on the subject or common reference space. The

Table 1.Quantities used in the evaluation of the spatial normalisation.

Quantity Equation Description

Normalised cross-correla-

tion (NCC)

[( ( ) ) ( ( ) )]

( ( ) ) ( ( ) )
= å
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- ´ -

- ´ -
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 
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( )I rA is the pixel intensity (HU) in imageA at voxel r, and IA is

themean intensity. NCC is ametric of the degree of similar-

ity between images. Ranges from−1 to 1with higher values

representing higher image similarity

Rootmean square error of

intensities (HUrms)
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1 2 DHUrms provides ameasure of disparity in image intensities.
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volume change (LVCavg)
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VA represents the voxels that define a volume of interestA. DSC
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contour overlap

Jaccard coefficient (JC) =
È
Ç 


JC V V

V V
t s t

t s t
JC ranges from0 to 1, with higher values representing better

contour overlap

Average distance between

surfaces (DTavg)
{ }=  DT max DT , DTs s t s t savg , , DTA B, is themean of the distribution of values for the distance

between each point on the surface of volumeA to the closest

point on the surface of volumeB.Units of DT :avg mm

Distance between cen-

troids (DTR)
 D = -R RTR s t t RA is the centroid of a volumeA. Units ofDTR:mm

Relative difference of areas

of DVHs (RDA) { }
∣ ∣ò
ò ò

=
-


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dx

dx dx

DVH DVH

max DVH , DVH

s t s

s s t

DVHA is dose-volume histogram for volumeA. RDA ranges

from0 and 1, with lower values representing better DVH

preservation. (Adapted fromAcosta et al 2013)
Dose-organ overlap (DOO) ( )

( )

ò

ò
Ç

È
= 






DOO
D x dx

D x dx

Vt Vs t
s t

Vt Vs t
s t

DA is the three-dimensional dosematrix inside volumeA.

DOO ranges from 0 and 1, with higher values representing

better DVHpreservation (Acosta et al 2013)

Note. Definitions:

• s=information of each subject in its native coordinate system;

• t=information of the template CT itself on its own coordinate system (common reference space);
• s t =information propagated from the subject space into the template CT coordinate system.
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differences in theDVHs computed in the subject (DVHs) and template ( DVHs t ) spaceswere assessed using the
relative difference of areas ofDVHs (RDA) and dose-organ overlap (DOO) (Acosta et al 2013).

It should be noted that not all patients included had planningCTs that covered the samefield-of-view, which
may impact in themetrics reported.When computing differentmeasures of registration quality, pixels outside
the body and the common field-of-viewwere excluded from analysis.

2.3. Critical evaluation of spatial normalisation for radiation-induced secondmalignant neoplasms
(SMNs) risk
Our aim in this part of the studywas to demonstrate the potential of the proposed atlas-based approach to
facilitate radiation-induced late effects research in childhood cancer treatment (figure 2). The risks of radiation-
induced SMNswere estimated for a group of patients using the common reference space ( s t ) and compared
the equivalent values using the original subject space (s). For this purpose, we used a subset of subjects for whom
clinically acceptable dual radiotherapy plans were available. This included fourteen patients fromdifferent
disease cohorts (from the n=53 evaluation cohort): CSI (n=3), abdominal neuroblastomas (n=7), brain
tumours (n=3) andEwing’s sarcoma (n=1). A photon plan and a pencil-beam scanning proton therapy plan
were available for risk estimation for each subject. As different patient groups and treatmentmodalities were
included, this subgroup had variability in the 3Ddose distributions considered. This was intentionally chosen
such that organswere located in both homogeneous dose regions andwithin dose gradients, andwith varying
position relative to the RTfield (i.e. inside the RT target, near-target and out-of-field). In the case of the proton
therapy plans, an estimation of homogeneous whole body neutron dosewas included (Schneider et al 2002). In
addition to assessingmean andmaximumorgan doses (Davg and Dmax), (i.e. linear dose-responsemodel), a
mechanisticmodel was used to estimate the excess absolute risk (EAR) of radiation-induced carcinomas in the
CNS, lungs, liver, and bladder (Schneider et al 2011). Thismodel accounts for cell killing, repopulation and
fractionation effects andwas developed for therapeutic exposures. EAR was estimated from the dose to volume
data using themechanistic dose-responsemodel (i.e. nonlinearmodel), and an age-dependentmodifying
function. Parameters depend on the tissues being irradiated, and are available in the original publication
(Schneider et al 2011).We reported the D ,avg D ,max and EAR for bothmodalities, as well as the risk ratio (RR)
betweenmodalities. For convenience, the RRwas defined to range between 0 and 1 such that it does not depend
onwhichmodality is estimated as superior:

⎧
⎨⎩

⎫
⎬⎭

=RR min
EAR

EAR
,

EAR

EAR
.

protons

photons

photons

protons

Figure 2.Diagram showing dataworkflow for spatial normalisation to facilitate radiation-induced late effects research.
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2.4. Implementation details and data analysis
The pipelines for atlas construction, subject propagation, validationworkflow and SMNmodels were
implemented inMatlab 2019a (Mathworks Inc.). Statistical analysis was also performed inMatlab, using the
Statistical Toolbox, with statistical significance set at 5%.Not every patient included had complete segmentation
sets due to variations in thefield-of-view covered by the planningCT. Therefore, the dimensions of the samples
usedwere variable.

3. Results

3.1.Overview of the template space
The atlas construction took approximately 35.5±0.5 h on a dual Intel® Xeon®Gold 6134CPU (3.20 GHz), 128
GBmemory (computationwas repeated three times). Figure 3 shows the atlas constructed using the twenty CSI
subjects, as well as segmentations, averageHUand volume differences per voxel. The deformable registration of
all subjects (n=73) to this template took 65±30 min (per subject) on the same system.

Figure 4 shows some examples of registrations for different disease cohorts, highlighting some of the
commonpitfalls of the spatial normalisation process. The registrationswere able to successfully align the overall
anatomy at the common reference space despite thewide variation in age, height, andweight between subjects.
Large local deformations were challenging to completely capture, and visually we could identify common

Figure 3. (a)Template CT generated using groupwise image registration on selected axial, sagittal and coronal views and (b)
corresponding contours. (c)Mapof local average intensity difference between template and subject CTs. (d)Mapof average absolute
value of the local volume changewhen co-registering subjects.Maps resulted from averaging over the twenty subjects used for atlas
construction, excluding pixels away from the body.
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patterns ofmisregistration such as localmisalignment of individual bones (e.g. individual vertebrae and ribs)
and poormatching at soft tissue boundaries (e.g. between right kidney and liver). Image quality was an
important source of registration variability contributing to fuzzier aspect in regionswithout consistently sharp
anatomical boundaries.

The average values for NCC was 0.97±0.01, indicating a goodmatch between deformed and template
CTs. HUrms was 94±10HU,which also indicates good global alignment. A level of difference in intensity was
expected due to the variability inCT intensities between patients and the fuzzier aspect of the template CT.We
also report a LVCavg of 0.38±0.16, which is indicative of themagnitude of volume changes thatmust be
captured by the registrations, with the largest values being attributed to variations in patient size across the
population studied.

3.2. Evaluation of anatomical and dosemapping
Figure 5 shows an example of the different CTs, contours and doses used in the evaluation of the anatomical and
dosemapping.

The quantities calculated for each organ are summarised in table 2. Details of the distribution in volume and
dose per organwithin the patient group are also provided. Figure 6 complements this information by displaying

Figure 4.Examples of registrations to the (f) template CT, including subjects from (a)–(c) craniospinal irradiation (CSI) and (d)–(e)
other disease cohorts. Top row: subject CT scans (rigid-only alignment).Middle row: deformedCT scans. Bottom row: difference
map between registered scans (deformable registration) and template CT. In general, the registrations can successfully align the
anatomy, but specific challenges arise in different body regions. Contrast in anatomical boundaries is fundamental to guide the
registration, but clinical scan qualitymay vary. The boundary between liver and kidneys is less sharp in (a) than in (b), for example (top
arrows), leading to poorer anatomicalmatching in this region; likewise, large deformations of the bladder are challenging to recover,
where filling varies from (a) full to (b) empty (bottom arrows). Imaging artefacts can also be problematic, such as (c)motion artefacts
(top arrow) and/or the use of contrast agents (bottom arrow). Note that high-intensity artefacts weremasked out during the
registration. Different disease cohorts have differences in image acquisition of parameters, patient positioning and imaged field-of-
view ((d) brain tumour versus (e) abdominal neuroblastoma). Arrows indicate examples ofmisregistration regions on the skeleton (d)
and soft tissues (e).
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the distribution of the DSC and RDA for all contours, chosen as representativemeasures of anatomical and dose
mapping results.

In general, bettermatchingwas found for organs in the head and thorax, than for those located in the
abdomen and pelvis. The poorest performancewas achieved in the bladder, the organ that exhibited the largest
inter-subject volume variation due to differences infilling (excluding cases where other organswere partially
imaged). Upon visual inspection of outliers for other regions of interest, theworst performances corresponded
to abnormal anatomies, such as individuals with enlarged kidneys or inflammation in the lungs. A common
error (affecting approximately 1 in 5 subjects) in CNS registration corresponded tomisregistration of individual
spinal vertebrae, which could lead tomismatch of the inferior end of the spinal canal (whichwas consistently

Figure 5.Example of data (images, contours and doses) used in the evaluation experiments. (a)CT, lungs contour (red) and dose
distribution for one of the subjects included in the analysis (Ewing sarcoma); (b) subject CT propagated to the template (affine
followed by deformable registration), and corresponding deformation grid; (c) template CT and lungs contour (blue), and overlaid
deformed lungs contour (red) and deformed dose distribution; (d) template CT by itself.

Table 2.Quantitative evaluation of contour and dose deformation for different organs, expressed asmean±standard deviation.

Volume of interest

Quantity CNS Ocular globes Lungs Liver Kidneys Bladder

DSC 0.95±0.05 0.85±0.04 0.96±0.01 0.91±0.03 0.83±0.06 0.65±0.16
JC 0.92±0.08 0.74±0.06 0.92±0.02 0.83±0.5 0.71±0.08 0.50±0.16

DTavg (mm) 0.7±1.0 0.9±0.4 0.8±0.3 2.7±1.1 2.5±1.3 7.1±3.8

DTR (mm) 2.9±5.7 1.7±0.8a 1.3±0.7a 4.9±2.7 7.0±4.5a 9.6±4.6

RDA 0.02±0.04 0.04±0.04 0.05±0.05 0.06±0.03 0.09±0.06 0.29±0.28
DOO 0.92±0.07 0.75±0.07 0.86±0.05 0.81±0.06 0.65±0.09 0.36±0.18
Number of subjects in analysis (no,%) 53 34 52 49 49 49

(100%) (64%) (98%) (92%) (92%) (92%)
Volume (ml), median (range) 1331 16 597 645 121 64

(29–1891) (10–21) (49–2834 (328–1632) (62–284) (10–350)
Meanorgan dose (Gy), median (range) 23.6 26.2 3.5 6.7 5.2 1.1

(1.3–38.9) (0.2–35.9) (0–16.4) (1.1–25.0) (1.4–14.1) (0–16.3)

Note. DSC=dice similarity coefficient

JC=Jaccard coefficient

DTavg=average distance between surfaces

DTR=distance between centroids

RDA=relative difference of areas of DVHs

DOO=dose-organ overlap
CNS=brain and spinal canal.
a For organs composed of two separate volumes,DTR reported is themaximumvalue of the individual sub-volumes.
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Figure 6.Boxplots for distribution of dice similarity coefficient (DSC) and relative difference of areas (RDA) after spatial
normalisation. Subjects with contours defined available for analysis:N={53, 34, 52, 49, 49, 49} for {CNS,OcularGlobes, Lungs,
Liver, Kidneys, Bladder}. Outliers fall outside the±2.7 standard deviation range.

Figure 7.Boxplots for distribution of dice similarity coefficient (DSC) after spatial normalisation comparing different common
reference spaces: proposed template CT, representative population individual, and templates CT generatedwith a different initial
template (youngest subject). Subjects with contours defined available for analysis:N={53, 34, 52, 49, 49, 49} for {CNS,Ocular
Globes, Lungs, Liver, Kidneys, Bladder}. Outliers fall outside the±2.7 standard deviation range. Note how similar results are achieved
for both template CTs, with highermetrics found relative to the representative subject.

10

Phys.Med. Biol. 66 (2021) 105005 CVeiga et al



defined at L3 for all subjects and template). Registrations also struggledwith the kidney superior/inferior
boundaries where contrast is poor, reflected in higher errorsmapping the structure centroid.

Registration quality was generally better for CSI than for other cohorts (abdominal neuroblastoma, brain
and Ewing’s sarcoma). For example, the averageDSC for the liver was 0.92±0.02 and 0.88±0.03 for CSI and
other cohorts, respectively.

Table 3.Quantitative evaluation of contour and dose deformation to different common reference spaces: proposed template
CT (evaluated in sections 3.1 and 3.2), population individuals (youngest, average and oldest in age), and template CTs
generated with different initial reference (youngest and oldest subjects). Data pooled for all organs and subjects. Expressed as
mean±standard deviation.Note how similar results are achieved for all template CTs; representative subject is associated
with poorermetrics but outperforms the less representative individuals.

Other common reference spaces

Individuals

Template CTwith different

initialisation

Quantity Template CT Average Youngest Oldest Youngest Oldest

DSC 0.86±0.13 0.83±0.15 0.75±0.23 0.81±0.14 0.86±0.13 0.86±0.13
JC 0.77±0.17 0.74±0.19 0.64±0.26 0.70±0.18 0.78±0.17 0.78±0.17

DTavg (mm) 2.5±2.8 2.7±3.1 3.9±3.8 4.6±4.3 2.5±2.8 2.4±2.9

DTR (mm) 4.6±4.8 5.6±6.0 8.4±7.1 9.4±8.2 4.6±4.8 4.5±4.8

RDA 0.09±0.15 0.11±0.17 0.12±0.17 0.10±0.13 0.10±0.15 0.10±0.15
DOO 0.73±0.21 0.69±0.07 0.62±0.27 0.66±0.21 0.73±0.21 0.73±0.21

Figure 8. (a)Average dose (Davg), (b)maximumdose (Dmax) and (c) excess absolute risk (EAR) calculated for CNS, lungs, liver and
bladder considering both photon and proton therapy plans, and corresponding (d) risk ratio (RR) between the twomodalities
calculated using the dose onto the template CT and contours (subject to common reference space), and by using the dose on the native
CTs and contours (subject space). Subjects with contours defined available for analysis:N={14, 13, 10, 10} for {CNS, Lungs, Liver,
Bladder}. Outliers fall outside the±2.7 standard deviation range. Asterisks indicate p< 0.05 forWilcoxon paired signed rank tests.
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Considering CSI subjects only, we also investigated the relationship between allmetrics and absolute age
difference (relative to the template CT).We did notfind any strong evidence that subjects with ages furthest away
fromaverage were better registered to the template CT.When pooling data for all organs and subjects, the
Pearson’s correlation coefficients were−0.05,−0.04, 0.08, 0.04, 0.04 and−0.04 (p>0.05) forDSC, JC, DT ,avg

DTR, RDA and DOO, respectively, showing aweak correlation between age similarity and quality of
anatomical and dose deformation to the template CT.

3.3. Additional evaluation experiments
Separately to the previous experiments, we also evaluated anatomical and dosemapping to the template for the
twenty subjects used in the atlas construction.We found no strong statistical evidence that themeasured

Figure 9.Two clinical cases demonstrating the advantages of dose analysis on the template CT (top: Ewing sarcoma; bottom:
neuroblastoma). Propagating dose from subject space (b) to the common reference space (c) allows to explore the spatial relationships
between dose and clinical end-points—for example, both cases irradiate comparable spinal volumeswith 20Gy ormore, but at
distinct anatomical regions. Furthermore, the template contour (blue) allows forDVH-based analysis in the absence of patient-
specific segmentations (red) and to account for volume effects when only partial volumeswere imaged. Finally, the template CTmay
be used to generate virtual phantoms to estimate out-of-field doses by, for example, using the patient-specific inverse deformations
(a).
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quantities were better for CSI subjects used for atlas construction than for those used only for evaluation
(p>0.05,Wilcoxon rank sum test).

The anatomical and dosemapping achievedwith other choices of common reference spacewas also
assessed, and compared to the proposed template CT. First, we calculated allmetrics when spatially normalising
to a population-representative individual. The chosen individual was the subject closest to the average age, also
used to initiate the atlas construction. Then, we repeated the same analysis but choosing as reference the
youngest and oldest subjects (proxy for least representative subjects) to highlight the importance of adequate
reference selection for spatial normalisation. Results are shown in table 3when pooling data for all organs and
subjects. Figure 7 showcases the differences inDSC for all organswhen comparing spatial normalisation to the
template CT and representative subject only. Spatial normalisation to a representative subject generally resulted
in poorermetrics achieved in comparison to the template CT but improved against using as reference space
subjects withmore dissimilar ages (and hence expected to be less representative of the population).

Finally, to evaluate the impact of initial reference selection in the atlas constructed, the atlas construction
process was repeated by iterating the initial reference selected over the remaining nineteen subjects. All atlases
generatedwere comparable to the proposed atlas after affine registration (NCC=0.993±0.003 and
HUrms=45±9HU), irrespective of which subject was used to initiate the process. Visually, the inter-atlas
anatomical variability was small in comparisonwith the inter-subject variability presented in the patient group.
Furthermore, all anatomical and dosemappingmetrics were recalculated on two (out of nineteen) of these
comparable atlases, the ones constructed using the youngest and oldest subjects as the initial reference. Similar
metrics were found on the three different template CTs analysed, demonstrating the robustness of the atlas
construction process. These results are also summarised in table 3 andfigure 7.

3.4. Evaluation of a common reference space to facilitate the study of radiation-induced SMNs
The radiation-induced SMN risk fromphoton and proton therapy treatments was estimated by propagating the
dose onto the template CT and contours (subject to common reference space), and by using the dose on the
native CTs and contours (subject space) (figure 8). Therewas no strong evidence of statistically significant
differences in the D ,avg D ,max EAR and RR calculated on the two spaces (Wilcoxon paired signed rank tests, p-
values> 0.05 for themajority of data pairs). This suggests that analysis on the common reference or subject
space is equivalent forDVH-based studies and the added uncertainties to dose-volume characteristics associated
with the spatial normalistion have a small impact on the population level.

Infigure 9we showcase examples of proton plans for paediatric Ewing sarcoma and neuroblastoma to
highlight the potential benefits of using the common reference space for SMN riskmodelling and analysis.While
prescription is very different between cohorts, both treatments irradiate the spine at similar dose levels
(estimatedV20 Gy to theCNS of 3.1%and 2.3%, respectively) but at distinct sub-regions. Propagating dose to a
common template space allows to explore how such spatial relationshipsmay impact the relationships between
dose and clinical end-points. Furthermore, the template CT and its contours (blue) allow forDVH-based
analysis in the absence of segmentations on the subject CT (red) and to account for volume effects when only
partial volumeswere imaged. For example, in the neuroblastoma case the absolute EAR for theCNSwould be
12.9 per 10 000 person-years if not properly accounting for partial imaging of this organ (i.e. brain is outside the
imaged region); 0.54 per 10 000 person-years is the estimated absolute value in the template space. Note that
when calculating EAR shown infigure 8, we only used the common field-of-view between subject and template
for a fairer comparison. Finally, the template CTmay be used to generate virtual phantoms to estimate out-of-
field doses. A possible way of doing this is by using the patient-specific inverse deformations to generate a
patient-specific phantom.

4.Discussion

In this study, we investigated the feasibility of atlas-construction and spatial normalisation to facilitate voxel-
based analysis of radiation-induced toxicities in paediatric radiotherapy patients. Thismethodology exploits
imaging and contour segmentation information fromaCSI cohort to spatially standardise the heterogeneous
paediatric population and facilitate subsequent analysis. Themethodology was applied to paediatric CSI,
abdominal neuroblastoma, Ewing sarcoma and brain tumour patients. The single synthetic template generated
was able to satisfactorily account for considerable variability in age and gender. This demonstrates the potential
of spatial normalisation of a heterogeneous population to facilitate subsequent analysis of varied clinical end-
points in larger paediatric populations. To the best of our knowledge, this is the first-time atlas construction and
spatial normalisationwere investigated forwhole-body images of paediatric cancer patients who underwent
radiotherapy.
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Wechose for atlas construction theCSI patient group for its potential as a reference frame, as the radiation
fields used covermany organs and tissues. CSI is routinely used in the treatment ofmedulloblastomas, a
relatively common tumour type that can occur across all ages of development which also facilitates data
availability. Treatment positioning is supine and consistent across patients, reducing variability in pose. In this
cohort the gross tumour is usually resected prior to radiotherapy and hence not visible onCT,minimising
potential issues that variable gross tumour positions could cause on the atlas construction. A limitation is that
shunts and, particularly for younger patients, intubation are commonly used, adding external elements and
artefacts to theCTs.While we have demonstrated that other cohorts can be satisfactory overlaid on the template
CT, registration qualitymetrics were higher for CSI subjects likely due to the increased similarity in terms of
setup and presentation. The patients in non-CSI cohorts were also younger on average and hence it is possible
that larger deformations had to be captured.Other cohorts will also have unique characteristics not commonly
found in theCSI cohort. For example, excessive gas in the bowel is observed commonly in abdominal
neuroblastoma patients (Lim et al 2020), increasing the challenges in co-registering these images to aCSI-based
template.

Themethodology’s success in spatially normalising radiotherapy data depends on the accuracy achieved in
inter-subject DIR. The paediatric population is particularly challenging to co-register. Large deformationsmust
be captured to co-register subjects across development stages, which poses a complex challenge toDIR due to
inter-subject variability across sex, age, height, weight, internal anatomy and abnormalities caused by disease.
These challenges differ between anatomical regions. Volumes in the abdomen and pelvis are highly deformable
and, due to physiologicalmotion, one-to-onemapping does not always exist,making the registrations very
challenging. Indeed, we found better spatialmapping for organs in head and thorax (DSCof 0.95±0.05,
0.85±0.04 and 0.96±0.01 for CNS, ocular globes and lungs) than in other regions (0.91±0.03, 0.83±0.06
and 0.65±0.16 for liver, kidneys and bladder). The poorest performance was in the bladder, a highly
deformable organ: 50%of the subjects had aDSCbelow 0.7. For reference, AmericanAssociation of Physicists in
Medicine Radiation TherapyCommittee TaskGroup 132 suggest aDSCof 0.8–0.9 as being good performance
for image registration (Brock et al 2017). However, itmust be noted thatDSC is higher for larger volumes and
interpretation of the absolute valuesmust always consider the absolute organ volumes. RDA andDOO ranged
between 0.02±0.04–0.29±0.28 and 0.36±0.18–0.92±0.07, respectively, for the same contours. These are
comparable to values reported in other studies. In a recent study, Pilia et al report DSCof 0.80±0.11,
0.44±0.23, and 0.58±0.14 for liver, kidneys and bladder, respectively, when using Elastix groupwise to co-
register adults whole bodyMRIs (Pilia et al 2019). Acosta et al report RDA andDOOof 0.09±0.05 and
0.64±0.1 for spatial normalisation of rectumdose (Acosta et al 2013).Monti et al report aDOO in the range
0.39±0.11–0.58±0.10 for dose to brain sub-volumes (Monti et al 2020).

We consider our results promising, particularly when taking into consideration that we are using a general-
purpose registrationmethodology, the task of inter-subject registration is very challenging, and the fact that we
are dealingwithwhole-body images. Nevertheless,more specialised approaches should be explored in the
future, particularly to improvematching in highly deformable organs (e.g. bladder) orwhen there is no true one-
to-onemapping (e.g. regions of bowel gas). For example, by using additional a priori structural information (i.e.
landmarks or contours) to guide the registration such that large local deformations can be better captured
(Johnson andChristensen 2002, Rivest-Hénault et al 2014). Further work is also needed to evaluate the atlas
constructed usingmore comprehensive datasets, withmore organs and numbers of patient per cohort, ideally
frommultiple institutions.

One of themost promising applications of spatial normalisation is to develop voxel-based riskmodels of late
effects that account for heterogeneous spatial radiosensitivity, which can potentially be used to develop
personalised risk-guided therapies. This is an emerging area in radiation toxicities research (Palma et al 2020).
Other groups have investigated voxel-based analysis to identify radiosensitive subregions of organs (such as
bladder, rectum, lungs and head and neck) in adult cohorts, which can then be avoided during RTplanning
(Acosta et al 2013, Palma et al 2016,Monti et al 2017,McWilliam et al 2017, Beasley et al 2018). Palma et al
introduced recently the concept of comprehensive normal tissue complication probability (NTCP)models that
include full spatial information of the dose distributions (Palma et al 2019a). The present study is the first step
toward voxel-based analysis in radiation-induced toxicities after paediatric radiotherapy. Our next step is to use
the proposedmethodology to explore the dose-response relationships for paediatric late effects.

The spatial normalisation process was evaluated in our study at the organ level, which is the level of accuracy
historically used in radiation-induced toxicity analysis. Our results indicate similarNTCPmodels can be
generated using the common reference or native spaces. For voxel-based analysis applications, validation of
spatialmapping at sub-structures and/or voxel level is required but it is a challenging problem, particularly for
homogeneous organswith few imaging features. Further work is therefore required to evaluate and improve
registrations atfiner resolutions. For example, this could be done by evaluating the accuracy ofmapping
anatomical landmarks, or by dividing organs intowell-defined sub-structures that can be analysed separately.
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Improving localisedmapping is increasingly relevant for clinical endpoints such as brain injury (Gunther et al
2015, Viselner et al 2019), lung fibrosis (Veiga et al 2018) and heart failure (McWilliam et al 2017).We
recommend that in clinical studies investigating organ-specific end-points additional validation is performed
accordingly. Better soft tissuemappingmay be achievable by incorporating complementarymultimodal
imaging such asMRI (Monti et al 2020), or by digitally enhancing theCT images to improve contrast.
Furthermore, wewould like to highlight that achieving adequate voxel-levelmapping allows one to potentially
develop radiation-induced toxicity predictivemodels that consider simultaneously with the local dose, the
localised tissue radiosensitivity which can bemeasuredwith co-registeredmultimodal functional imaging
(Yankeelov et al 2014). In the paediatric population, accounting for patient-specific radiosensitivity is
particularly important as spurts of growth are occurring as part of the normal development into adulthood.

While themethodology is not specific to this clinical endpoint and can be adapted to other endpoints, in our
opinion it is very promising in the study of radiation-induced SMNs. The use of the template CT for analysis
addresses some of the challenges associatedwith this end-point:

(1) Spatial normalisation brings the opportunity to understand the SMN dose-response as function of the local
dose instead of dose to volume (e.g. average dose) and potentially identify sub-regions of increased
radiosensitivity.

(2) The methodology generates standardised whole-body organ segmentations that are often missing from
routine clinical data (i.e. atlas-based segmentation). This has advantages even for traditional DVH-based
modelling wheremanual segmentation becomes prohibitive for large numbers of subjects.Manual
segmentation is associatedwith variability between clinicians and is challenging to deploy practically on
larger datasets as several organs relevant to SMN risk are not segmented clinically due limited clinical
resources.

(3) The template CT can be used to account for missing anatomical information, as it can be used to estimate
out-of-field doses and volumes (i.e. population-representative virtual phantom). Typically, the planning
CT images do not cover thewhole-body (only treated regions), which complicates studying out-of-field
effects. The template CT built from theCSI cohort covers all organs and therefore can be used as
radiotherapy-specific synthetic phantom to estimate of anatomy and out-of-field doses. In this case, it is
increasingly important to investigate age and gender-specific templates. The use of computational and/or
physical phantoms is common in radiation dosimetry, although these are usually built fromhealthy
individuals (Christ et al 2009, Segars et al 2009, Lee et al 2015, Xie et al 2017).

(4) The template CT is whole-body and hence allows us to harness routine dose-volume information from
patient groupswhichwere irradiated at different sites,making themost of partial information and allowing
to understand the dose-response at different dose levels (i.e. inside theRT target, near-target and out-
of-field).

Choosing a representative common reference space is a key step for spatial normalisation. The template CT
proposedwas constructed using groupwise image registration to reduce bias associatedwith the choice of the
common reference space in subsequent analysis. The choice of image used to initialise the atlas construction
process can still bias thefinal template generated (Agier et al 2020); however, the differences we foundwhen
varying the initialisationwere small. To the best of our knowledge, using population-specific average atlases for
radiotherapy applications, as in our study, had not been investigated before in the literature of radiation-induced
toxicities. The typical approach is to define an individual from the population as the single template. This can be
empirically performed—for example,manually by visual inspection (Beasley et al 2018) or choosing a subject
withmean/median anatomical features (Palma et al 2016,Monti et al 2017,Mylona et al 2019).We report
poorer anatomical and dosemappingmetrics using this simpler approach than for the average atlas. Another
method is to use less biasedmethods of identifying the population’smost representative individual—for
example, using clustering approaches (Acosta et al 2013,Marcello et al 2020). There are a variety ofmethods
proposed for optimal atlas selection developed in the context atlas-based segmentation (Rohlfing et al 2004,
Aljabar et al 2007, Zhou et al 2014, Iglesias and Sabuncu 2015). Others have usedwell-established anatomical
atlases developed for neuroimaging applications (Monti et al 2020) or virtual anatomies (Palma et al 2019b).
These templates are theoretically easier to share between institutions and facilitate standardisation of how spatial
analysis is performed across studies; however, they are not necessarily representative of the populations
analysed.With this inmind, we aim tomake ourmodel available in the future to facilitate other studies in
paediatric late effects (https://cmic-rt.github.io/RT-PAL/). The bias in atlas selection and subsequent voxel-
based analysis of toxicity can bemitigated by repeating analysis onmultiple references to verify if similar spatial
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patterns arise evenwhen the common reference space varies (Dréan et al 2016,Marcello et al 2020,McWilliam
et al 2020).

We used a general-purpose, well-established groupwise registration tool, tailored to better deal with the
challenges in co-registering theCSI paediatric cancer population.More efficient approaches could be explored,
both in terms ofmemory requirements and to better deal with co-registering heterogenous datasets. Groupwise
image registration is a popularmethodology in human brain studies (Dickie et al 2017); whole-body studies like
ours are still rare due to challenges in registering heterogeneous large datasets of high resolution images (Pilia
et al 2019, Agier et al 2020).While the template constructed effectively represented both genders and awide
range of ages for demonstration purposes, it is admittedly a simplified approach not able to fully account for the
anatomical variation in heterogeneous populations.Multiple (age and gender-specific) templatesmay be
constructedwith larger datasets. Accounting for anatomical differences between genders is relevant as side-
effects can be gender-specific (for example, second breast cancers (Inskip et al 2009)). The benefits of age-
appropriate atlases have been demonstrated in neuroimaging applications (Fonov et al 2011).While the quality
ofmappingmay be improved by splitting the population into sub-groups using several,more refined atlases, this
will also reduce how generalisable themethodology and subsequentfindings are. Hence a single representative
template is an attractive approach, particularly in rare populations (such as paediatric cancers)where it ismore
challenging to gather large datasets. Alternatively, atlas synthesis has been proposed using hierarchical imaging
clustering to form a pyramid of classes (Wang et al 2010). Alternative strategiesmay helpwith the challenges in
co-registeringwhole-body images and scaling to larger datasets, by using deep-learning to speed up the
processes (Ahmad et al 2019) or by avoiding dense registration (Agier et al 2020).

Despite the associated challenges,methodologies focused onwhole-body imaging have the potential of
enabling risk prediction in big data studies. Examples of the potential applications that leverage three-
dimensional whole-body population data are discussed in detail by Strand et al and include anomaly detection,
group comparisons, longitudinal analysis and correlation analysis (Strand et al 2017). Similar ideas were recently
explored in the context of radiotherapy toxicity predictivemodelling for liver stereotactic ablative radiotherapy
(Ibragimov et al 2018, 2019). These studies harnessed the potential of artificial intelligence and spatial
normalisation to a common reference space to combine complex three-dimensional imaging and non-imaging
data to build predictivemodels of radiotherapy outcomes.

Finally, detailed long-termdata collection is essential to understand andminimise adverse effects of
radiotherapy. Single institutions have limited ability to gather adequate data due to the rarity of childhood
cancers. Late effects such as SMNs have long latency periodswhichmake data collection challenging (Armstrong
et al 2009, Bhakta et al 2017). The need for comprehensive,multi-institutional collection of dosimetry and
followup data is recognised by the paediatric radiotherapy community, with on-going initiatives to combine
efforts to accelerate outcomes-based research toward patient benefit (Berrington deGonzalez et al 2017). An
example of such initiatives is the paediatric proton/photon consortium registry, a consented registry with 15
institutions that has been collating detailed baseline, treatment and follow-up information since 2012, including
planningCT images and dosimetry (Lawell et al 2019). Themethodology developed in this work aims to leverage
complex 3Ddata and facilitate analysis in such emerging rich datasets and clinical trials data.

5. Conclusions

In this work, we proposed and evaluated atlas construction and spatial normalisation in paediatric radiotherapy
CTs. An atlas-based template CTmodel representative of the paediatric cancer populationwas developed using
groupwise image registration. Spatial normalisation to this template CTwas evaluatedwith promising results,
indicating it is possible to spatially standardise the paediatric radiotherapy populations despite considerable
variability in age and gender. The proposed framework leverages DIR to facilitatemodelling and validation of
predictivemodels of radiation-induced late effects after childhood cancer radiotherapy. This study is the first
step toward voxel-based analysis in radiation-induced toxicities following paediatric radiotherapy.
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