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Production of reactive oxygen species can positively contribute to

immune responses

Reactive oxygen species (ROS) can elicit extreme biological damage by modifyingDNA, pro-
teins, and lipids. However, ROS also play diverse and beneficial roles, including involvement in
the innate immune response. Mechanisms by which ROS affect innate immunity include direct
killing of bacterial and fungal pathogens. The classic example is the destruction of microbes
that occurs in the phagolysosome of innate immune cells when superoxide, produced by
NOX2, is converted into the potent cytotoxic molecule hypochlorous acid by myeloperoxidase
[1]. ROS can additionally play roles in innate immune signaling and in the formation of protec-
tive barriers [2].
While generated endogenously as a byproduct of aerobic respiration, ROS productionmust

be tightly regulated in a spatial and temporal manner if it is to be efficiently utilized in host physi-
ology. However, the main function of certain enzymes, such as the NADPH oxidase/dual oxidase
(NOX/DUOX) family, is to produce ROS for specific purposes. Electrons fromNADPH are uti-
lized by these enzymes to catalyze the reduction of molecular oxygen, usually into superoxide
anion. DUOXs are a subgroup of the NOX family that have an additional peroxidase homology
domain and produce hydrogen peroxide. Intriguingly, however, human DUOXs are reported to
lack peroxidase activity and often pair with peroxidase enzyme partners [3,4].
The mammalian NOX family encodes five NOX (Nox1–5) and two DUOX (Duox1–2)

enzymes [4]. While it is clear that these enzymes play important physiological roles in humans,
the presence of sevenNOX family enzymes complicates the study of their individual roles and
importance. Over the last two decades, the tiny roundworm Caenorhabditis elegans has emerged
as a sophisticatedmodel organism to study aspects of innate immunity, including its utilization
of a single DUOX, called Ce-Duox1/BLI-3, to generate ROS during infection [5,6]. Therefore, the
worm represents a unique opportunity to study, in isolation, the contribution of a single DUOX
in the ROS-dependent elimination of pathogens in a natural, whole-organism context.

C. elegans produces ROS via Ce-Duox1/BLI-3 during the immune

response

The C. elegans genome encodes two NOX family enzymes, the DUOXs Ce-Duox1/BLI-3 and
Ce-Duox2 [7]. However, only BLI-3 has characterized functional roles. Specifically, BLI-3 is
required for proper development of the cuticle and is expressed in the hypodermis, pharynx,
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and intestine [7,8]. Partial loss of bli-3 results in a severe blistering of the cuticle, while com-
plete loss results in a nonviable animal [7,9]. Independent of the cuticle blistering, partial loss
of bli-3 has also been associated with pathogen susceptibility [5].
In response to infection by both bacterial and fungal pathogens, BLI-3-generated ROS play

a role in both intestinal and epidermal immunity [5,10,11]. The intestinal lumen of the worm
can be colonized by pathogens such as Enterococcus faecalis and Candida albicans, while the
epidermis is subject to infection and wounding by other pathogens, such as the fungiDrech-
meria coniospora [12–14]. The BLI-3-dependent production of ROS is critical for worm sur-
vival, and reducing the level of expression of bli-3 significantly impairs its ability to survive
infectionwith these pathogens [5,8,10]. During intestinal infectionwith E. faecalis, it has been
demonstrated that the NADPH oxidase domain of BLI-3 is critical for this protective function;
the peroxidase domain does not appear to have a role [5,8]. While it is known that BLI-3 is not
regulated at the mRNA or protein level, the infection-dependent signals and corresponding
regulatory components that control the stimulation of BLI-3 during intestinal-specific infec-
tion remain unclear [8,15], though there is some evidence that bacterial-deriveduracil modu-
lates the process [16]. In the case of epidermal infection by D. coniospora, the IP3-ITR-1Ca2+

pathway stimulates BLI-3 to release ROS, ultimately activating a protective immune response
through Ste20-like kinase/CST-1-controlled activation of DAF-16 [10].

Possible mechanisms by which ROS produced by BLI-3 are

protective

Recall that DUOXs possess a peroxidase homology domain in addition to an NADPH oxidase
domain. Unlike the mammalian DUOXs, BLI-3 exhibits low levels of peroxidase activity,
which is important for worm cuticle biogenesis [7,17]. Moreover, similar to the functionally
cooperative relationship betweenNOX2 and myeloperoxidase, cuticle biogenesis relies on an
association between BLI-3 and a C. elegans peroxidase,MLT-7 [18].
Interestingly, however, the peroxidase activity of BLI-3 is not required for its role in the

innate immune response. During bacterial infection, two strains harboring independent point
mutations in the peroxidase domain of bli-3 produced wild-type levels of ROS and did not
exhibit the reduced survival characteristic of reduced bli-3 levels [5,8]. Current evidence sug-
gests that BLI-3 might rely on peroxidase partners during infection, the best characterized
being SKPO-1. skpo-1mutants exhibit reduced survival during pathogen challenge. Addition-
ally, significantly higher levels of hydrogen peroxide are produced in skpo-1 mutants in a bli-3-
dependent manner, consistent with SKPO-1 utilizing hydrogen peroxide produced by BLI-3.
SKPO-1 and BLI-3 colocalize to the hypodermis, raising the possibility that their apparent
functional interactionmay involve a direct interaction [19]. A major unanswered question is,
what is SKPO-1 utilizing hydrogen peroxide for during infection?One possibility is the genera-
tion of more potent antimicrobials, similar to the role of some mammalian peroxidases that
generate hypochlorous acid or hypothiocyanite [1,20]. Second, SKPO-1 may utilize BLI-3-gen-
erated ROS to strengthen the cuticle of the worm, by cross-linking collagen proteins, similar to
the role MLT-7 and the peroxidase domain of BLI-3 play during cuticle development [18].

Alternative sources of ROS are protective during infection

In addition to NOX family enzymes producing ROS, increasing evidence suggests that other
host-derived sources of ROS are important components of innate immunity. Bothmouse and
zebrafish models of infection demonstrated that elevation of mitochondrial ROS (mtROS) is a
critical component of innate immunity, as loss of this capability results in sensitivity to patho-
genic bacteria [21,22]. Recently, mtROS have been shown to play important roles in C. elegans
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immunity. Microarray analysis indicates that increased expression of several innate immune
genes occurs as a result of genetic inhibition of mitochondrial respiration, which is known to
result in elevated ROS levels. Concordantly, the ROS release stimulated upon inhibition of
mitochondrial respiration promotes worm resistance to several bacterial pathogens, including
E. faecalis, Pseudomonas aeruginosa, and pathogenic Escherichia coli. While little is known
regarding the downstream effectors of mtROS, their survival-enhancingeffect depends on the
hypoxia-inducible factor 1 (HIF-1) transcription factor and 50 adenosinemonophosphate-acti-
vated protein kinase (AMPK) cellular energy sensor [23]. In addition to an importance in
immunity, mtROS have also recently been shown to play an important role in epidermal
wound repair, which can occur during pathogen infection [24]. Elevated calcium levels signal
actin accumulation to occur at wound sites by an unclear mechanism. Using both pharmaco-
logical and genetic methodologies,Xu et al. demonstrated that a wounding-dependent increase
in calcium stimulates mtROS release, facilitating the oxidation, and subsequent inhibition, of
RHO-1 guanosine-50-triphosphatase (GTPase,) a negative regulator of actin ring closure.
Therefore, the mtROS-dependent oxidation of this small GTPase ultimately promotes actin-
basedwound repair [25]. Given that wounding can result from pathogen infection, it is possible
that, in addition to HIF-1/AMPK-dependent resistance to pathogens, the worm innate
immune response utilizesmtROS to repair the damage elicited by invading pathogens.

ROS are signaling molecules that induce protection during

infection

There is precedence for ROS being utilized as signalingmolecules during the immune response.
For instance, hydrogen peroxide acts as a long-range signalingmolecule important for attract-
ing leukocytes to wound sites in zebrafish [26]. Additionally, ROS are signalingmediators
important for the activation of nuclear factor kappa B (NF-κB) and p38 mitogen-activated pro-
tein kinase (MAPK), crucial regulatory components of many mammalian processes, including
immunity [27,28]. While ROS signaling has been implicated in playing important roles in sev-
eral pathways that influence aging and metabolism, the role of ROS-dependent signaling on
innate immune response activation is understudied in the worm [29]. There is mounting evi-
dence, however, that ROS play a signaling role in the activation of protective responses.
An unfortunate consequence of utilizing ROS as an antimicrobial is the collateral damage to

the host that occurs if redox homeostasis is not properly maintained [30]. Therefore, during
infection, the worm employs transcription factors, such as SKN-1 and DAF-16, to increase the
expression of oxidative stress enzymes [31–33]. Initial studies did not observe a role for the C. ele-
gansmajor oxidative stress response transcription factor SKN-1 during infection [34,35], but fur-
ther work, with additional controls, carried out by two independent laboratories discovered
SKN-1 to be protective [32,33]. During infection, SKN-1 activation increases the expression of
antioxidants in a BLI-3-dependentmanner enhancing survival.Moreover, the p38 MAPK path-
way is responsible for relaying the signal to activate SKN-1 during infection [32,33]. Recently, a
neuronally encoded thioredoxin, TRX-1,was demonstrated to impact SKN-1 subcellular localiza-
tion, suggesting that this transcription factor may be cell nonautonomously regulated [36]. In
this manner, SKN-1 maintains host redox homeostasis during infection. The increased sensitivity
of skn-1mutants, and increased resistance of strains that overexpress skn-1, to pathogen infection
underscores the physiological relevance of this regulation [33].
Overall, recent findings support a role for ROS in the immune response of C. elegans by

stimulating critical signaling pathways that elicit protection as summarized in Fig 1. ROS may
also be used for generating potent antimicrobials and/or reinforcing barrier functions; defini-
tive answers await future work.
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and AMPK-dependent immunity. (F) Alternatively, during infection, wounding-dependent release of calcium causes mtROS release, relieving repression of

protective actin assembly via oxidation of RHO-1.
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