
Research Article
Comparison of the BCI Performance between the
Semitransparent Face Pattern and the Traditional Face Pattern

Jiao Cheng, Jing Jin, and XingyuWang

Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education,
East China University of Science and Technology, Shanghai, China

Correspondence should be addressed to Jing Jin; jinjingat@gmail.com

Received 18 October 2016; Revised 26 January 2017; Accepted 16 March 2017; Published 9 April 2017

Academic Editor: Mikhail A. Lebedev

Copyright © 2017 Jiao Cheng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Brain-computer interface (BCI) systems allow users to communicate with the external world by recognizing the brain activity
without the assistance of the peripheral motor nervous system. P300-based BCI is one of the most common used BCI systems
that can obtain high classification accuracy and information transfer rate (ITR). Face stimuli can result in large event-related
potentials and improve the performance of P300-based BCI. However, previous studies on face stimuli focused mainly on the
effect of various face types (i.e., face expression, face familiarity, and multifaces) on the BCI performance. Studies on the influence
of face transparency differences are scarce.Therefore, we investigated the effect of semitransparent face pattern (STF-P) (the subject
could see the target character when the stimuli were flashed) and traditional face pattern (F-P) (the subject could not see the target
character when the stimuli were flashed) on the BCI performance from the transparency perspective. Results showed that STF-P
obtained significantly higher classification accuracy and ITR than those of F-P (𝑝 < 0.05).

1. Introduction

Brain-computer interface (BCI) is a technology that allow
users to communicate with others or control external devices
via brain activity alone [1–3]. BCI directly measures brain
activities usually based on electroencephalography (EEG)
recorded noninvasively through electrodes placed on the sur-
face of the head [4]. The intention of users can be recognized
by analyzing the EEG signals of various mental tasks [5, 6]
which can help these users directly control external devices
through brain activities.

P300-based BCI is one of the most common used BCI
systems presented by Farwell and Donchin [7], and this
systemuses the flash letter pattern.Over the past two decades,
the “flash only” paradigm in which the target reverses color
or is briefly masked by a solid box [8] is usually used as
stimulus to elicit P300 potentials. However, recent studies
are focused mostly on a new stimulus that the target is
overlapped with a famous face. Such stimuli actually yield
better performance compared with the conventional flash
only pattern through numerous experiments [8–12]. This

result is due to that the face stimuli can elicit other event-
related potential (ERP) components not restricted to the
P300 components (such as vertex positive potential (VPP),
N170, N200, and N400), and these potentials also contribute
to the classification accuracy. Zhang et al. [11, 12] reported
that VPP and N170 can help improve classification accuracy
with stimuli that change to faces. Jin et al. [8, 9, 13] also
reported that N400 significantly contributes to improving the
classification accuracy in ERP-based BCI system. Currently,
a variety of face patterns have been proposed by numerous
researchers. Jin et al. [8, 10] presented various types of
face paradigms (neutral face, smiling face, shaking neutral
face, and shaking smiling face paradigms) and compared
multifaces using various familiar faces with single faces.
The results indicated that the performance of the ERP-
based BCI is enhanced by these face stimuli. Kaufmann et
al. [9] introduced face stimuli transparently superimposed
on characters in comparison with the flash pattern. Their
result showed that such stimuli can generate higher ERP
amplitudes and obtain higher classification accuracy than
those of the flash letter pattern. However, previous studies
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Figure 1:The display presented to subjects. (a) 6 × 6 matrix displayed in the monitor; (b) face pattern (F-P); (c) semitransparent face pattern
(STF-P).

on face stimuli focused mainly on the effect of various face
types (i.e., face expression, face familiarity, and multifaces)
on the BCI performance [8, 10, 14]. Studies on the influence
of face transparency differences are scarce. Therefore, we
investigated the effect of semitransparent face pattern (STF-
P) (the subject could see the target character when the stimuli
were flashed) and traditional face pattern (F-P) (the subject
could not see the target character when the stimuli were
flashed) on the BCI performance. Semitransparent faces can
increase the psychological salience of the stimulus and allow
for uninterrupted attention. Thus, we hypothesized that the
persistent visible target character could help subjects focus on
the target, increase N200 and N400 amplitudes, and improve
the performance of ERP-based BCI using semitransparent
face stimuli.

2. Methods

2.1. Subjects. Ten healthy subjects (2 females and 8 males,
aged 22–26 years with the mean age of 23.5) participated in
this study. The native language of the subjects is Mandarin
Chinese. In addition, these subjects are all right-handed and
have no known neurological disorders. They signed written
consent form prior to the experiment, and the local ethics
committee approved the consent form and experimental
procedure before any subjects participated. Furthermore, all
subjects had no previous BCI experiences.

2.2. Stimuli and Procedure. The subjects sat in a chair in
front of the monitor, which displayed a 6 × 6 matrix
with characters and numbers (Figure 1(a)) [10]. They were
required to silently count the number of times the target
flashed and avoid unnecessary movements. In this study, two
paradigms were presented to the subjects. The parameters

of the two paradigms (i.e., character size, intercharacter
distance, background color, and stimulus brightness) were
kept constant, except stimulus transparency. Accordingly,
the counterbalance of the paradigm presentation could be
obtained. In the first paradigm, the face stimulus concealed
the target character, and the subject could not see the target
character during the time the stimulus was on (Figure 1(b)).
We called this paradigm as the traditional face pattern (F-
P). In the second paradigm, the face stimulus was made
semitransparent, and the subject could see the target char-
acter during the time the stimuli were on (Figure 1(c)). We
called this paradigm as semitransparent F-P (STF-P). The
subjects were tasked to count the number of times the
target flashed.The flash configuration was based on binomial
coefficients [15, 16]. The binomial coefficients were based
on 𝐶(𝑛, 𝑘) = 𝑛!/(𝑘!(𝑛 − 𝑘)!), 0 ≤ 𝑘 ≤ 𝑛, where 𝑛
represents the number of flashes per trial and 𝑘 represents
the number of flashes per trial for each element in the matrix.
We chose the combination of 𝐶(12, 2) to denote the 12-
flash pattern. Table 1 shows the configuration of the 12-flash
pattern combinationwith 36 flash pattern pairs.Thepositions
in Table 1 corresponded to the positions of the 36 characters
in a 6 × 6 matrix.

Each subject was required to complete two paradigms (F-
P and STF-P) on the same day. Each paradigm contained
one offline block and one online block. The order of the
paradigms F-P and STF-P was counterbalanced throughout
the experiment (five of ten subjects did the F-P first). During
the offline period, each paradigm consisted of three offline
runs called one offline block, and each offline run contained 5
target characters that would be spelled by the subjects without
any rest.The subjects had 3min rest between each offline run.
In addition, each target character was identified through 16
trials, and each trial was composed of 12 flashes. No feedback
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Table 1: Configuration of the 12-flash pattern combination.

1,4 1,5 1,6 1,7 1,8 1,9
2,10 2,5 2,6 2,7 2,8 2,9
3,10 3,11 3,6 3,7 3,8 3,9
4,10 4,11 4,12 4,7 4,8 4,9
5,10 5,11 5,12 1,10 5,8 5,9
6,10 6,11 6,12 3,12 2,11 6,9
Notes. We named these 12-flash groups as “flash1, flash2, . . . , flash12.” The
numbers in the table represent the target character of the 12 flashes. The
same number in the configurationwould simultaneously present stimuli. For
example, letter “A” was flashed in flash1 and flash4. The italicized numbers
represent the positions that simultaneously presented face stimuli during
flash11.

would be presented to the subjects in the offline experiment.
However, during the online period, each paradigm only
had one online run called one online block. The number
of trials for recognizing each target character was selected
automatically by an adaptive strategy [17, 18], and each trial
was also composed of 12 flashes. The subjects were required
to spell 36 target characters without any rest during the online
period, and the system would promptly present the online
result whenever the classifier recognized the target character.
The stimulus on time was 100ms and the stimulus onset
asynchrony was 250ms throughout the offline and online
experiments. Moreover, an italicized number was used to
prompt the subjects of the next target character before each
run started, and they had 4 s for target selection. In addition,
after finishing the offline experiment, subjects had 4min rest
to prepare for the following online experiment. Copy spelling
task was used in the offline and online experiments.

2.3. Calibration. We acquired the EEG signals recorded with
g.USBamp and g.EEGcap (Guger Technologies, Graz, Aus-
tria) with a sensitivity of 100 𝜇V, band-pass filtered between
0.5 and 30Hz, and sampled at 256Hz. A total of 16 cor-
responding electrode positions were selected in the experi-
ments according to the International 10-20 System (Figure 2)
[8].These positions were Fz, FC1, FC2, C3, Cz, C4, P3, Pz, P4,
O1, Oz, O2, P7, P8, F3, and F4. FPz was used as the ground
electrode, while right mastoid (A) was used as the reference
electrode. These selected electrodes were used to keep track
of the EEG signals.

2.4. Feature Extraction Procedure. Feature extraction is an
effective method for reducing dimensionality and amount
of required computations [18]. In this study, the third-order
Butterworth band-pass filter was used to filter the EEG
signals; the high pass was 0.5Hz and low pass was 30Hz. In
addition, we downsampled the EEG signals from 256Hz to
36.6Hz by selecting every seventh sample from the filtered
EEG. Consequently, we obtained the feature vector with the
size of 16 × 29 (16 represents the number of the channels
and 29 denotes the time points). In addition, winsorizing was
used to remove the electrooculogram interference signals.
The 10th and 90th percentileswere computed for each sample.
Amplitude values lying below the 10th percentile or above the
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Figure 2: Configuration of the selected electrode positions (FPzwas
used as the ground electrode; right mastoid (A) was used as the
reference electrode).

90th percentile were then replaced with the 10th percentile or
the 90th percentile, respectively [19].

2.5. Classification Scheme. Bayesian linear discriminant anal-
ysis (BLDA) was used to build the classifier model for the
online experiment. BLDA can effectively solve the problems
of high-dimensional data sets or noise fitting owing to its
regularization method. Hoffmann et al. [20] applied such a
method to the classification of P300 BCIs and achieved good
results.

2.6. Adaptive System Settings. The system was used to judge
whether the results of two consecutive outputs were consis-
tent. Accordingly, the final results of system output could be
determined. If the results of two consecutive outputs were
consistent, then the system exported the result as a feedback.
Otherwise, the system would not provide any response until
16 trials were completed. When 16 trials ended, the classifier
would automatically select the last output [21].

2.7. Statistical Analysis. We chose paired-samples 𝑡-tests
(one-sample Kolmogorov-Smirnov test) for normal distri-
bution to investigate the differences in mean amplitudes
averaged from each ERP peak point ±20ms between the F-P
and STF-P paradigms.We also used such amethod to explore
the differences in online classification accuracy and bit rate
between the two paradigms. The nonparametric Wilcoxon
signed-rank test was used to compare the responses from
the report of the subjects, as these data obey an uncertain
distribution. The alpha level was 𝛼 = 0.05.

2.8. Subjective Report. After finishing the tasks of two para-
digms, we conducted a questionnaire survey of three ques-
tions. The three questions were answered by the subjects
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Figure 3: Grand averaged ERPs of target flashes across subjects 1–10 over 16 electrode sites.

on a 1–3 scale. A high score indicated a high degree of
tiredness, difficulty, and annoyance (1: minimum; 2: medium;
3: maximum). The questions were as follows:

(1) Did this paradigm make you tired?
(2) Was this paradigm difficult?
(3) Did this paradigm make you annoyed?

3. Results

Figure 3 shows the grand averaged ERPs of target flashes
after being baseline corrected by 100ms prestimulus interval
across subjects 1–10 over 16 electrode sites [21]. The two
paradigms had similar VPP components over frontal and
central areas. However, a few differences were found in
N200 and P300 over parietal and occipital sites. STF-P had
relatively higher peak values across N200 and P300 than
those of F-P over parietal and occipital sites. We explored

the differences of VPP, N200, P300, and N400 between STF-
P and F-P; for this purpose, we selected Cz for VPP, P8 for
N200, Pz for P300, andCz forN400; these electrode positions
typically contain the largest corresponding ERP components
[7, 12, 22, 23] and are thus the best examples. Figure 4 shows
the mean amplitudes of VPP at Cz, N200 at P8, P300 at Pz,
and N400 at Cz for each subject and the N400 amplitude of
the first and the third runs at Cz from the two paradigms
[8]. The mean amplitude was averaged from each ERP peak
point ±20ms. The N200 amplitude at P8 from STF-P was
significantly larger than that of F-P (𝑡 = 2.49, 𝑝 < 0.05, df =
9, Figure 4(b)). Furthermore, no significant difference was
found between the two paradigms across VPP and P300 (𝑡 =
0.35, 𝑝 > 0.05, df = 9 for VPP, and 𝑡 = 1.45, 𝑝 > 0.05, df =
9 for P300, Figures 4(a) and 4(c)). Meanwhile, the value of
P300 was smaller than that of the P300 reported in other
studies [19, 24]. Although theN400 at Cz from STF-P showed
no significant difference compared with that from F-P (𝑡 =−0.65, 𝑝 > 0.05, df = 9; Figure 4(d)), the stability of N400
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Figure 4: Six panels presenting the mean amplitudes averaged from each ERP peak point ±20ms for each subject, and the differences in the
amplitudes of N400 between the first and third offline runs from the two paradigms. These panels indicate the averaged amplitude of VPP
at Cz (a); the averaged amplitude of N200 at P8 (b); the averaged amplitude of P300 at Pz (c); the averaged amplitude of N400 at Cz (d);
the difference of N400 at Cz from the first and third offline run of the F-P (e); the difference of N400 at Cz from the first and third offline
run of the STF-P (f). In addition, “Avg” is the average, “STD” is the standard deviation, and the error bars in the figure represent a standard
deviation of each data set.
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Figure 5: Absolute 𝑅-squared values of ERPs from these two patterns at 0–1000ms averaged from subjects 1–10.
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Figure 6: Classification accuracy and raw bit rate based on the offline data.

from STF-P (𝑡=−1.70,𝑝 > 0.05, df = 9; Figure 4(f)) was better
than that from F-P (𝑡 = −2.69, 𝑝 < 0.05, df = 9; Figure 4(e)).
Figure 5 shows the absolute 𝑅-squared values of ERPs from
the two paradigms at 0–1000ms averaged from subjects 1–10
on 16 electrodes. 𝑅-squared values of ERPs reflected the time
energy of the signals. The definition is as follows:

𝑟2 = ( √𝑁1𝑁2𝑁1 + 𝑁2 ⋅
mean (𝑋1) −mean (𝑋2)

std (𝑋1 ∪ 𝑋2) )
2

, (1)

where 𝑋1 and 𝑋2 are the features of classes “1” and “2,”
respectively and𝑁1 and𝑁2 are the number of samples.

Figure 6 shows the classification accuracy and raw bit
rate based on the offline data [8]. The values were obtained
from 15-fold cross-validation.The classification accuracy and
bit rate of STF-P were better than those of F-P when 1–16
numbers of trials were used for averaging.

Figure 7 shows the contributions of N200 (between 150
and 300ms), P300 (between 300 and 450ms), and N400
(between 450 and 700ms) on the BCI performance [8]. The
two graphs indicated that N200 and P300 components were
crucial in the classification accuracy. In addition, the N400
component also contributed to the classification accuracy.

Table 2 shows the online classification accuracy, bit rate,
andmean number of trials for each subject.The classification
accuracy and bit rate of STF-P were significantly higher than
those of F-P (𝑡 = 2.89, 𝑝 < 0.05, df = 9 for classification
accuracy, 𝑡 = 4.03, 𝑝 < 0.05, df = 9 for bit rate). Moreover,

the number of trials for averaging of STF-P was significantly
less than that of F-P (𝑡 = −2.33, 𝑝 < 0.05, df = 9).

Table 3 presents the responses of the subjects to the three
questions for each paradigm. We further investigated the
differences between the two paradigms. For this purpose,
we chose the Wilcoxon signed-rank test method owing to
the fact that the data satisfy an uncertain distribution. No
significant differenceswere foundbetween the twoparadigms
in terms of the degree of tiredness (𝑝 > 0.05), degree of
difficulty (𝑝 > 0.05), and degree of annoyance (𝑝 > 0.05).
4. Discussion

This study aimed to survey whether any difference would be
found between STF-P in which the subject could see the tar-
get character during the time the stimuli were on and F-P in
which the target character was concealed during the time the
stimuli were on.The results showed that the STF-P could elicit
larger N200 component and improve the classification accu-
racy and bit rate of the BCI system compared with the F-P.

The Eriksen flanker task [25] is a commonly used exper-
imental design to obtain N200 and is a kind of a mismatch
paradigm [21]. In the present study, the STF-P elicited larger
N200 component than the F-P. On the one hand, semitrans-
parent face stimuli may lead to a high mismatch, thereby
resulting in a large N200. On the other hand, the psycholog-
ical salience of the stimuli can be exploited to elicit high ERP
components not confined to the P300 components [9].
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Figure 7: The contributions of N200, P300, and N400 time windows on the classification accuracy.

Table 2: Online classification accuracy, bit rate, and average number of trials for each subject.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 AVG ± STD
ACC (%) F-P 94.4 94.4 91.7 94.4 80.5 100 94.4 77.8 91.7 100 91.9 ± 7.3

STF-P 97.2 94.4 97.2 100 88.9 97.2 97.2 83.3 94.4 100 95.0 ± 5.2
RBR (bit/min) F-P 32.9 42.7 36.3 44.5 32.3 44.3 43.9 29.4 28.6 44.8 38.0 ± 6.7

STF-P 41.0 44.5 43.0 50.3 39.3 43.0 42.5 36.1 36.6 49.6 42.6 ± 4.8
AVT F-P 2.78 2.14 2.39 2.06 2.14 2.33 2.08 2.22 3.03 2.31 2.35 ± 0.32

STF-P 2.36 2.06 2.25 2.06 2.08 2.25 2.28 2.03 2.50 2.08 2.20 ± 0.16
ACC = classification accuracy, RBR = raw bit rate (bit/min), AVT = average number of trials used to classify each character, STF-P = semitransparent face
pattern, F-P = face pattern, AVG = average, and STD = standard deviation.

Table 3: Subjects’ responses to three questions for each pattern.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 AVG ± STD
Tired F-P 2 2 2 1 2 2 1 2 1 1 1.6 ± 0.52

STF-P 1 2 1 2 1 1 1 1 1 1 1.2 ± 0.42
Difficult F-P 2 1 1 2 1 1 2 2 1 2 1.5 ± 0.53

STF-P 1 2 1 1 1 2 1 2 1 1 1.3 ± 0.48
Annoyed F-P 1 2 1 2 1 1 1 2 1 1 1.3 ± 0.48

STF-P 1 1 1 2 1 1 1 2 1 1 1.2 ± 0.42
F-P = face pattern; STF-P = semitransparent face pattern. AVG is average and STD is standard deviation.

The difference of P300 amplitude between two paradigms
in this paper was not clear and no significant difference
was found. This phenomenon may be attributed to the low
luminosity contrast when the background is black (the gray
value of face was set 110, while the background was 255).
However, low luminosity contrast leads to low visual fatigue.
Li et al. [26] studied the effects of various luminosity contrasts
on the BCI performance and found that low luminosity
contrast produces small amplitude for P300 on average. A
high luminosity contrast can result in bright, noticeable

infrequent stimuli; as a result, subjects can easily concentrate
their attention and efficiently identify the target characters.
Therefore, low brightness may lead to increased effort or
attention deployment in subjects. This finding may have an
important implication for clinical application.

The effects of repetition can decrease the amplitude of
N400, especially for long-term offline data recording [8].
In STF-P, given that the target differed, the stimulus also
differed when the subject shifted their focus from one target
to another. Since the significant difference of N400 between
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the first and third offline runwas found in the F-Pwhile not in
the STF-P (see Figures 4(e) and 4(f)), it indicated that STF-P
contained less repetition effects compared to the F-P.

Classification accuracy and ITR are the important indexes
of BCI performance. In previous studies, face paradigms
themselves have had good performances in accuracy (mean
accuracy was higher than 90%) [8]. Therefore, even 1%
increment in accuracy would be a good improvement. In
this study, the averaged classification accuracy and bit rate
of the STF-P were 95.0%, 42.6 bit/min, while those of the
F-P were 91.9%, 38.0 bit/min, and were 3.1%, 4.6 bit/min,
higher than those of the F-P. Figure 4(b) showed that the
N200 at P8 of the STF-P was significantly higher than that
of the F-P. Figure 7 showed that N200 could contribute to
classification accuracy. Kaufmann et al. [27] reported that
the potential of N200 can enhance the classification accuracy.
Jin et al. [8] proved that other components can contribute to
the classification accuracy under the condition of small P300
amplitudes. Table 2 showed that the classification accuracy
and information transfer rate of the STF-P were significantly
higher than that of the F-P (𝑝 < 0.05). As in all, the STF-P
could obtain superior performance compared to the F-P.

This research studied two paradigms only (semitrans-
parency and nontransparency) and focused less on the differ-
ent transparent degrees based on the state of being transpar-
ent. However, this research provided a new idea on the studies
of face stimuli and demonstrated that other distinct compo-
nents could contribute strongly to the BCI performance.

5. Conclusion

In this study, wemeasured the performance of STF-P and F-P
on BCI. The result indicated that STF-P was superior to F-P.
In future studies, we will further verify the performance of
the STF-P pattern on patients.
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[5] A. Kübler, B. Kotchoubey, J. Kaiser, J. R. Wolpaw, and N. Birba-
umer, “Brain-computer communication: unlocking the locked
in,” Psychological Bulletin, vol. 127, no. 3, pp. 358–375, 2001.

[6] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller,
and T. M. Vaughan, “Brain-computer interfaces for communi-
cation and control,” Clinical Neurophysiology, vol. 113, no. 6, pp.
767–791, 2002.

[7] L. A. Farwell and E. Donchin, “Talking off the top of your head:
toward a mental prosthesis utilizing event-related brain poten-
tials,” Electroencephalography and Clinical Neurophysiology, vol.
70, no. 6, pp. 510–523, 1988.

[8] J. Jin, B. Z. Allison, Y. Zhang, X. Wang, and A. Cichocki, “An
erp-based bci using an oddball paradigm with different faces
and reduced errors in critical functions,” International Journal
of Neural Systems, vol. 24, no. 8, Article ID 1450027, 2014.

[9] T. Kaufmann, S. M. Schulz, C. Grünzinger, and A. Kübler,
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