
Effect of Acute Negative and Positive Energy Balance on
Basal Very-Low Density Lipoprotein Triglyceride
Metabolism in Women
Elena Bellou1, Maria Maraki1, Faidon Magkos1,2, Helena Botonaki1, Demosthenes B. Panagiotakos1,

Stavros A. Kavouras1,3, Labros S. Sidossis1,4*

1 Department of Nutrition and Dietetics, Harokopio University, Athens, Greece, 2 Department of Internal Medicine, Center for Human Nutrition and Atkins Center of

Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America, 3 Department of Health, Human Performance and

Recreation, University of Arkansas, Fayetteville, Arkansas, United States of America, 4 Department of Internal Medicine, Sealy Center on Aging, Institute for Translational

Sciences and Shriners Hospital for Children, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America

Abstract

Background: Acute reduction in dietary energy intake reduces very low-density lipoprotein triglyceride (VLDL-TG)
concentration. Although chronic dietary energy surplus and obesity are associated with hypertriglyceridemia, the effect of
acute overfeeding on VLDL-TG metabolism is not known.

Objective: The aim of the present study was to investigate the effects of acute negative and positive energy balance on
VLDL-TG metabolism in healthy women.

Design: Ten healthy women (age: 22.062.9 years, BMI: 21.261.3 kg/m2) underwent a stable isotopically labeled tracer
infusion study to determine basal VLDL-TG kinetics after performing, in random order, three experimental trials on the
previous day: i) isocaloric feeding (control) ii) hypocaloric feeding with a dietary energy restriction of 2.8960.42 MJ and iii)
hypercaloric feeding with a dietary energy surplus of 2.9160.32 MJ. The three diets had the same macronutrient
composition.

Results: Fasting plasma VLDL-TG concentrations decreased by ,26% after hypocaloric feeding relative to the control trial
(P = 0.037), owing to decreased hepatic VLDL-TG secretion rate (by 21%, P = 0.023) and increased VLDL-TG plasma clearance
rate (by ,12%, P = 0.016). Hypercaloric feeding increased plasma glucose concentration (P = 0.042) but had no effect on
VLDL-TG concentration and kinetics compared to the control trial.

Conclusion: Acute dietary energy deficit (,3MJ) leads to hypotriglyceridemia via a combination of decreased hepatic VLDL-
TG secretion and increased VLDL-TG clearance. On the other hand, acute dietary energy surplus (,3MJ) does not affect
basal VLDL-TG metabolism but disrupts glucose homeostasis in healthy women.
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Introduction

Elevated plasma triglyceride (TG) concentration is an indepen-

dent risk factor for coronary heart disease, especially in women

[1]. Long-term energy imbalance can lead either to weight gain,

associated with an increase in plasma TG concentrations [2], or

weight loss, associated with a decrease in plasma TG concentra-

tions [3]. However little is known about the acute effect of positive

or negative energy balance, independently of changes in body

weight and composition, on TG metabolism.

Very low density lipoprotein (VLDL) is the major carrier of TG

in plasma during postabsorptive conditions [4]. It has been shown

previously that long term dietary energy restriction leading to

weight loss decreases fasting total TG and VLDL-TG concentra-

tions after a period of weight stabilization, and this effect is

mediated by a reduction in VLDL-TG secretion rate from the

liver without changes in VLDL-TG plasma clearance rate [3,5].

Recent data indicate that decreasing dietary energy intake for a

short period of time (5 days; energy deficit of 3.8 MJ per day) can

decrease fasting plasma TG concentrations [6], and we have

shown previously that even a single day of dietary energy
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restriction (energy deficit of 2 MJ) mildly reduces fasting and

postprandial plasma TG concentrations [7]. However, in a

subsequent study, we failed to observe any changes in basal

VLDL-TG kinetics, which may have been due to the energy

deficit (2 MJ) being inadequate in these subjects [8].

On the other hand, positive energy balance induced by

increasing dietary energy intake also affects plasma TG homeo-

stasis independently of weight gain [9,10,11,12]. However the

effect of hypercaloric feeding on TG concentrations appears to

depend on the macronutrient that is ingested in excess:

carbohydrate and particularly fructose overfeeding for a short

period of time (4–6 days) increases total plasma TG and VLDL-

TG concentrations [11,13,14], whereas fat overfeeding for a few

days decreases total plasma TG and VLDL-TG concentrations

[9,10,15]. The mechanisms responsible for these acute effects of

overfeeding remain elusive, however, under conditions of isoca-

loric feeding, both an increase in hepatic VLDL-TG secretion rate

[16] and a decrease in VLDL-TG plasma clearance rate [17] have

been suggested to be responsible for the increase in plasma TG

concentration after short-term (2–5 weeks) high-carbohydrate diets

relative to diets with greater fat content. Nevertheless, the effect of

hypercaloric feeding with a mixed diet on VLDL-TG metabolism

is not known.

Therefore, the aim of the present study was to assess the acute

effects of negative and positive energy balance on VLDL-TG

metabolism in healthy women.

Subjects and Methods

Subjects
Ten healthy, lean, sedentary women volunteered for the study

(Table 1). Exclusion criteria included irregular menses, amenor-

rhea, polycystic ovary syndrome, pregnancy, acute or chronic

illness, use of medications (including oral contraceptives) or dietary

supplements, smoking, regular alcohol consumption (.1drink per

day), regular exercise participation (.1 time per week), and being

on a special diet or having experienced weight fluctuations $2 kg

at any time during the last 6 months. The Ethics Committee of

Harokopio University approved the study protocol and all subjects

gave written informed consent.

Preliminary testing
All preliminary tests were carried out during screening,

approximately 1–2 weeks before the beginning of the experiment.

Weight and height were measured and an overnight fasting blood

sample was drawn for hematological and biochemical evaluations.

Subjects were healthy on the basis of medical examination and

routine laboratory tests; all were normoglycemic and normolipi-

demic. Total body fat mass and fat-free mass were determined

with dual energy x-ray absorptiometry (model DPX-MD; Lunar,

Madison,WI). Resting energy expenditure (REE) was measured by

indirect calorimetry (Vmax229D; Sensormedics, Yorba Linda,

CA) in the morning, after subjects remained rested for at least

30 min [18].

Experimental protocol
We used a paired cross-over design, in which all subjects were

evaluated after three one-day trials (isocaloric diet, hypocaloric

diet, and hypercaloric diet) in random order and at least one week

apart. The phase of the menstrual cycle was not taken into account

in scheduling the studies because we have previously shown that

VLDL-TG kinetics are not affected by menstrual cycle phase [19].

A stable isotopically labeled tracer infusion was performed on the

day after each trial, following an overnight fast. Subjects were

instructed to keep a record of their diet and to refrain from

exercise for 2 days before each trial, and to avoid alcohol and

caffeine consumption for 1 day before each trial. They were also

instructed to replicate their diet on the day preceding the first trial

during the subsequent trials (i.e. purchase the same type and brand

of food, use the same cooking methods and portions, etc.), in order

to ensure the same pre-trial energy and macronutrient intakes.

Food records were analyzed by using Diet Analysis Plus 8

(Cengage Learning, Florence, KY).

Isocaloric diet. Subjects were instructed to follow a pre-

scribed isocaloric diet which provided their estimated daily energy

needs for weight maintenance, calculated by multiplying the

measured REE with an activity factor of 1.4 representative of their

very light to light physical activity habits [20]. Subjects were thus

assumed to be on zero energy balance during the control trial.

Hypocaloric diet. Subjects were instructed to follow a

prescribed hypocaloric diet, which provided their estimated daily

energy needs for weight maintenance minus 3 MJ.

Hypercaloric diet. Subjects were instructed to follow a

prescribed hypercaloric diet, which provided their estimated daily

energy needs for weight maintenance plus 3 MJ. In order to

achieve maximum adherence to the prescribed diet, the energy

surplus was provided with the use of two high-caloric (6 KJ/ml),

fiber-free energy drinks (200 ml/drink; 50% of energy from

carbohydrate, 15% from protein and 35% from fat; Fresubin,

Fresenius Kabi).

All diets were designed to provide 50% of energy from

carbohydrate, 20% from protein and 30% from fat. The

macronutrient content of the experimental diets is shown in

Table 2. For each trial subjects were asked to abstain from exercise

and carry out only the activities of daily living.

Tracer infusion study
The morning following each of the three experimental trials,

subjects arrived at the laboratory at approximately 0800 h, after

an overnight fast. A catheter was inserted in a forearm vein to

administer stable isotopically labeled tracers and a second catheter

was inserted in a contralateral hand vein for blood sampling,

which was kept warm with a heating pad until the end of the

metabolic study. Subjects were given 1 h to relax and familiarize

with the catheters. During this time, a 24-hour diet recall was

taken to examine their adherence to the prescribed diet on the

previous day. At 0900 h, a baseline blood sample was obtained

and immediately after a bolus of [1,1,2,3,3-2H5]glycerol (75 mmol/

kg body weight; Goss Scientific Instruments, Essex, UK), dissolved

in normal saline, was administered through the catheter in the

forearm vein. Blood samples were obtained at 15 min and then

Table 1. Baseline characteristics of subjects (n = 10).

Mean±SD

Age (yrs) 22.062.9

Weight (kg) 58.966.9

Height (m) 1.6760.07

Body mass index (kg/m2) 21.261.3

Lean body mass (kg) 38.063.7

Body fat mass (kg) 18.564.4

Body fat (%) 31.264.5

Resting energy expenditure (MJ) 5.060.6

doi:10.1371/journal.pone.0060251.t001
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every hour after tracer administration for a total of 6 hours.

Catheters were flushed with saline every 30 min to maintain

patency. Subjects remained fasted (except for water) in a sitting

position until the end of the metabolic study.

Sample collection, processing, and analysis
Blood samples were collected in precooled potassium-EDTA

Monovettes (Sarstedt, Leicester, UK), and immediately placed on

ice. Plasma was separated by centrifugation within 30 minutes of

collection. A 3-ml aliquot of plasma was transferred into plastic

culture tubes and kept in the refrigerator for immediate isolation of

VLDL, and the remaining plasma samples were stored at 280uC
until analyses. The VLDL fraction was prepared by density-

gradient ultracentrifugation, VLDL-TG were isolated by thin-

layer chromatography, hydrolyzed, and VLDL-TG-bound glyc-

erol was derivatized with heptafluorobutyric anhydride, as

previously described [21,22]. The tracer to tracee ratio (TTR) of

glycerol in VLDL-TG was measured by gas chromatography-mass

spectrometry (MSD 5973 system; Hewlett-Packard, Palo Alto, CA)

by selectively monitoring the ions at mass-to-charge ratios 467 and

472 [21,22].

Determination of plasma glucose, total plasma TG and VLDL-

TG concentrations was performed by enzymatic colorimetric

methods using commercially available kits (Alfa Wassermann

Diagnostics, Woerden, The Netherlands) on an automated

analyzer (ACE Schiapparelli Biosystems, Fairfield, NI). A separate

blood sample was collected into non-heparinized serum tubes

(Sarstedt, Leicester, UK), allowed to clot, spun in a centrifuge and

then aliquoted and frozen immediately at 280uC, until measure-

ment of insulin with a commercially available immunoenzymetric

fluorescent method (ST AIA-PACK IRI, Tosoh Medics, San

Francisco, CA) on an automated analyzer (Tosoh AIA 600II,

Tosoh Medics, Inc., San Francisco, CA). All samples from each

subject’s trials were analyzed in the same batch.

Calculations
The fractional turnover rate (FTR, pools?h21) of VLDL-TG

was determined by monoexponential analysis of VLDL-TG-

glycerol TTR data [23,24]. The hepatic secretion rate of VLDL-

TG ( mmol?min-1) was calculated as FTR 6C 6PV/60, where C

is the concentration of VLDL-TG in plasma and PV is the plasma

volume (55 ml per kg of fat-free mass [25]). It was assumed that

VLDL-TG volume of distribution equals PV because VLDL

particles are restricted to the plasma compartment [26]. The

plasma clearance rate of VLDL-TG (ml?min-1), which is an index

of the efficiency of VLDL-TG removal from the circulation via all

possible routes, was calculated by dividing the rate of VLDL-TG

disappearance (which equals the secretion rate at steady state) by

the plasma concentration of VLDL-TG. The mean residence time

(MRT, min) of VLDL-TG in the circulation was calculated as 60/

FTR. Insulin resistance was assessed by HOMA index as follows:

fasting serum insulin ( mU/mL) 6 fasting plasma glucose (mmol/

L)/22.5 [27].

Statistical Analysis
All datasets were tested for normality by using the Kolmogorov-

Smirnov criterion. Normally distributed variables are presented as

mean6SD, whereas non-normally distributed variables were log-

transformed for analyses and back-transformed for presentation as

means with 95% confidence intervals. Generalized estimating

equations (GEE) were fitted to evaluate differences among the

three experimental trials (encoded as dummy variables). For all the

dependent variables, the normal distribution was used for fitting

GEE, with the identity as the link function. The unstructured

formation of the correlation matrix was used after comparing

various scenarios using the corresponding QIC (Quasi likelihood

under the Independence criterion for model’s goodness-of-fit).

Post-hoc analysis for comparing mean values among trials was

applied by using the Bonferroni correction rule to adjust for the

inflation of type-I error due to multiple comparisons. All statistical

analyses were carried out with SPSS 19 for Windows (IBM SPSS,

Chicago, IL).

Results

Dietary energy intake and nutrient content of
experimental diets

There were no significant differences among trials in energy and

macronutrient intakes during the two days preceding the

experimental feeding day (all P-values .0.05). Compared with

the control condition (isocaloric diet; zero energy balance), subjects

were in a negative energy balance of ,3 MJ during the

hypocaloric diet and a positive energy balance of ,3 MJ during

the hypercaloric diet (Table 2).

Metabolic profile
Fasting plasma glucose concentration was significantly greater

after hypercaloric than after isocaloric (P = 0.042) or hypocaloric

(P = 0.001) feeding; serum insulin concentration was also greater

after hypercaloric compared to hypocaloric feeding (P,0.001)

(Table 3). Total plasma TG and VLDL-TG concentrations were

significantly lower after hypocaloric compared to isocaloric

(P,0.05) and hypercaloric (P,0.01) feeding, but not different

between the hypercaloric and isocaloric trials (P = 1.000) (Table 3).

VLDL-TG kinetics
The fractional turnover rate of VLDL-TG was 0.6160.08

pools?h21 after isocaloric feeding (control); it increased after the

hypocaloric diet (0.6960.14 pools?h21, P = 0.014 vs. control,

Table 2. Dietary energy intake and macronutrient content of the experimental diets.

Isocaloric Diet Hypocaloric Diet Hypercaloric Diet

Dietary energy intake (MJ) 6.7961.30 3.9161.10*{ 9.7061.34*

Energy balance (MJ) 0 22.8960.42*{ 2.9160.32*

Carbohydrate (g) 216634 127634*{ 307633*

Protein (g) 80618 47615*{ 100635*

Fat (g) 52618 31615*{ 73618*

Values are means 6 SD (n = 10). * Significantly different from isocaloric diet, P,0.05. { Significantly different from hypercaloric diet, P,0.05.
doi:10.1371/journal.pone.0060251.t002
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P,0.001 vs. overfeeding) but did not change after the hypercaloric

diet (0.5860.17 pools?h21, P = 1.000 vs. control). Compared with

the control condition, hepatic VLDL-TG secretion rate was

reduced by ,21% after the hypocaloric diet (P = 0.023) but was

not different after the hypercaloric diet (P = 1.000) (Figure 1),

whereas the plasma clearance rate of VLDL-TG was increased by

,12% after the hypocaloric diet (P = 0.016) but was not different

after the hypercaloric diet (P = 1.000) (Figure 2). Accordingly, the

MRT of VLDL-TG in the circulation was shortened after

hypocaloric feeding (P = 0.044) but was not different after

hypercaloric feeding (P = 0.850) relative to the control trial

(Figure 3).

Discussion

We evaluated the acute effects of dietary energy restriction

(hypocaloric diet) and energy surplus (hypercaloric diet) on basal

VLDL-TG kinetics in healthy, lean, sedentary women. Compared

with a control day of isocaloric feeding, we found that a single day

of dietary energy restriction decreases fasting plasma VLDL-TG

concentration by ,26%, owing to a 21% reduction in hepatic

VLDL-TG secretion rate and a 12% increase in the plasma

clearance rate of VLDL-TG, whereas dietary energy surplus for a

single day has no effects on VLDL-TG concentration and kinetics.

The findings from our study indicate that hypotriglyceridemia

induced after a single day of dietary restriction in women manifests

through a different mechanism (decreased secretion and increased

clearance of VLDL-TG) than that described previously after long-

term dietary restriction leading to weight loss (decreased secretion

of VLDL-TG without changes in VLDL-TG clearance) [3,5]. The

mechanisms underlying the reduction in plasma VLDL-TG

concentration after diet-induced energy deficit are therefore the

same as those after acute exercise-induced energy deficit in women

[8] although at a higher energy cost.

It has been shown previously that long term energy restriction

leading to a ,10% weight loss is accompanied by a 40–50%

reduction in hepatic VLDL-TG secretion rate from the liver with

no change in VLDL-TG plasma clearance rate in obese women

and hypertriglyceridemic men [3,5]. These effects were apparent

after a period of weight stabilization, and were therefore

independent of the acute effect of negative energy balance. In

another study performed in hypertriglyceridemic subjects, VLDL-

TG kinetics were evaluated during active weight loss, and it was

shown that 1 month of calorie restriction (energy intake of ,4 MJ

per day) resulted in a marked decrease in the VLDL-TG secretion

rate from the liver and a smaller increase in the clearance rate of

VLDL-TG from the circulation [28]. Our findings indicate that

even a single day of calorie restriction, without the confounding

effect of weight loss, also results in a decrease in VLDL-TG

secretion rate and an increase in VLDL-TG clearance rate.

Collectively, these observations suggest that acute and chronic

negative energy balance have the same effects on VLDL-TG

metabolism, predominantly decreasing hepatic VLDL-TG secre-

tion and mildly augmenting VLDL-TG clearance. The increase in

VLDL-TG plasma clearance rate is not evident when the resulting

weight loss is allowed to stabilize (new zero energy balance),

Table 3. Effects of the experimental diets on basal metabolic profile.

Isocaloric Diet Hypocaloric Diet Hypercaloric Diet

Glucose (mmol?L21) 5.3260.16 5.2960.32{ 5.5060.28*

Insulin (pmol?L21) 5.40 (4.19, 6.95) 4.41 (3.03, 6.42) { 6.27 (4.67, 8.40)

HOMA-IR index 1.28 (0.98, 1.67) 1.03 (0.69, 1.54) { 1.53 (1.11, 2.10)

Total triglyceride (mmol?L21) 0.7360.18 0.6360.19*{ 0.7360.27

VLDL-triglyceride (mmol?L21) 0.3560.13 0.2660.14*{ 0.3960.22

Values are means 6 SD or means with 95% CI (n = 10). *Significantly different from isocaloric diet, P,0.05. { Significantly different from hypercaloric diet, P,0.01.
Abbreviations: HOMA-IR, Homeostasis Model of Assessment - Insulin Resistance; VLDL, very low density lipoprotein.
doi:10.1371/journal.pone.0060251.t003

Figure 1. Effects of hypocaloric or hypercaloric feeding relative
to isocaloric feeding on the hepatic secretion rate of very low
density lipoprotein triglyceride (VLDL-TG). Data are means 6 SD
(n = 10). *Significantly different from isocaloric diet, P = 0.023.{ Signifi-
cantly different from hypercaloric diet, P = 0.036.
doi:10.1371/journal.pone.0060251.g001

Figure 2. Effectsof hypocaloric or hypercaloric feeding relative
to isocaloric feeding on the plasma clearance rate of very low
density lipoprotein triglyceride (VLDL-TG). Data are means 6 SD
(n = 10). *Significantly different from isocaloric diet, P = 0.016.{ Signifi-
cantly different from hypercaloric diet, P,0.001.
doi:10.1371/journal.pone.0060251.g002
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implying that the increase in the clearance rate of VLDL-TG is

directly linked to negative energy balance.

In a previous study we found that acute calorie restriction of

2 MJ had no effect on basal VLDL-TG concentration and

kinetics, although a single bout of moderate intensity aerobic

exercise eliciting the same energy deficit lowered fasting plasma

VLDL-TG concentrations via both a decrease in VLDL-TG

secretion rate and an increase in VLDL-TG clearance rate, in

healthy young women [8]. Others have shown that negative

energy balance is a critical factor for exercise-induced TG

lowering because when dietary energy intake is increased to

compensate for the energy expended during exercise, the

reduction in fasting total plasma TG concentration is abolished

[29]. Our findings suggest that a greater calorie restriction

(,3 MJ) lowers VLDL-TG concentration by the same mecha-

nisms as aerobic exercise in women. However exercise is a more

potent stimulus than hypocaloric diet as it requires a lower energy

deficit (2 vs 3 MJ) to induce changes in VLDL-TG kinetics leading

to hypotriglyceridemia.

In contrast to calorie restriction, the results from the present

study indicate that a single day of positive energy balance induced

by overfeeding does not have any acute effects on VLDL-TG

concentration and metabolism. Our study is the first to evaluate

the effects of a single day of hypercaloric feeding with a mixed diet

on basal VLDL-TG kinetics. Previous studies reporting changes in

VLDL-TG concentration following hypercaloric feeding involved

longer periods of overfeeding (4–6 days, usually resulting in mild

weight gain) and furthermore examined the effect of hypercaloric

feeding with a specific macronutrient (carbohydrate or fat)

[9,10,11,12,13,14,15,30]. These studies have shown that excess

fat intake decreases VLDL-TG concentrations [9,10,15], whereas

excess carbohydrate intake [13], particularly fructose [11,15,31],

increases VLDL-TG concentrations. Overfeeding with both

carbohydrate and fat has no effect on VLDL-TG concentrations

[15,30]. This is in agreement with our results showing that

increased caloric intake in a manner mimicking free-living

conditions (i.e., overconsumption of all macronutrients) has no

effect on basal VLDL-TG metabolism. Nevertheless, we observed

that a single day of dietary energy surplus disrupted basal glucose

homeostasis. Our finding is in agreement with previous studies

showing that 4–5 days of hypercaloric feeding with either fructose

[11] or fat [10] result in an increase in fasting plasma glucose

concentration [10,11], and suggests the deleterious effect of

overfeeding on glucose homeostasis manifests rapidly. Although

this could simply be the result of the greater carbohydrate/glucose

load ingested during the hypercaloric diet, the mechanisms for

these observations need to be investigated further.

Our findings have several important implications. First, diet-

induced negative energy balance can improve TG and VLDL-TG

concentrations independently of weight loss; thus people who start

on a hypocaloric diet aiming to lose weight will have beneficial

effects on TG concentration at a very early stage, even before

weight is lost. Second, our findings highlight the importance of

weight stabilization (net energy balance) after a period of weight

loss in order to evaluate the true effects of weight loss per se on

VLDL kinetics [3,5], because effects attributed to weight loss

during the active phase may actually be due to acute negative

energy balance. Finally, our results suggest that calorie restriction,

like exercise, can acutely improve VLDL-TG concentrations

although at a higher energy cost, so both interventions can be

utilized to regulate triglyceridemia. An important limitation of the

present study is that we only studied healthy lean young women

with relatively low plasma TG concentrations, so we cannot

generalize our conclusions for men, obese, or hypertriglyceridemic

subjects. Nevertheless, hypocaloric feeding decreased VLDL-TG

concentrations even further in these subjects, whereas hypercaloric

feeding had no effect. Also, we did not evaluate VLDL-

apolipoprotein B-100 kinetics in this study, which is indicative of

the metabolic behavior of the VLDL particle itself, as opposed to

the metabolic behavior of core TG. It has been shown previously

that VLDL-TG and VLDL-apoB-100 kinetics are independently

regulated, and may be differentially affected by the same

intervention, e.g. exercise [32], macronutrient composition of

the diet [33], and weight loss [3]. Thus we cannot exclude the

possibility that hypocaloric and hypercaloric feeding could affect

VLDL-apoB-100 kinetics and thereby lipoprotein metabolism.

This possibility needs to be addressed in future studies.

In conclusion, we found that negative energy balance induced

by decreasing caloric intake for a single day lowers fasting plasma

VLDL-TG concentrations in women via a combination of

reduced VLDL-TG secretion from the liver and increased

VLDL-TG clearance from plasma. Positive energy balance

induced by increasing caloric intake for a single day has no effects

on VLDL-TG concentration and kinetics. Collectively, results

from the present study indicate that positive and negative energy

balance cannot be considered as opposite sides of the same coin in

regards to VLDL-TG metabolism.
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