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Finding electrophysiological features that are similar across patients with epilepsy may

facilitate identifying treatment options for one patient that worked in patients with

similar brain activity patterns. Three non-linear iEEG (intracranial electroencephalogram)

embedding methods of finding similar cross-patient iEEG records in a large iEEG dataset

were developed and compared. About 1 million iEEG records from 256 patients with

drug-resistant focal onset seizures who were treated in prospective trials of the RNS

System were used for analyses. Data from 200, 25, and 31 patients were randomly

selected to be in the train, validation, and test datasets. In method 1, ResNet50

convolutional neural network (CNN) model pre-trained on the ImageNet dataset was

used for extracting feature maps from spectrogram images (ImageNet-ResNet) of

iEEG records. In method 2, ResNet50 custom trained on an iEEG classification task

using ∼138,000 manually labeled iEEG records was used as the feature extractor

(ESC-ResNet). Feature maps were passed through dimensionality reduction and k

nearest neighbors were found in the reduced feature space. In method 3, a 256

dimensional iEEG embedding space was learned via contrastive learning by training a

ResNet50 model with triplet training sets generated using within-patient iEEG clustering

(CL-ResNet). All three methods had comparable performance when identifying iEEG

records from the search dataset similar to test iEEG records of baseline (non-seizure)

and interictal spiking activity. Epileptic interictal spikes are represented by vertical

(broadband) edges in spectrogram images, and hence even generic features extracted

using models trained on everyday images appear to be sufficient to represent iEEG

records with similar levels of interictal spiking activity in close proximity. In the case of

electrographic seizures, however, the ESC-ResNet model, identified cross-patient iEEG

records with electrographic seizure morphology features that were most similar to the

test iEEG records. For nuanced electrographic seizure iEEG representation learning,

domain specific model training with manually generated labels had the advantage. Finally,

representative iEEG records were selected from every patient using an unsupervised

clustering method which effectively reduced the number of iEEG records in the search

dataset from∼750,000 to 2,148, thus substantially reducing the time required for finding

similar cross-patient iEEG records.
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INTRODUCTION

Identifying patients with epilepsy who share similar clinical

and electrocorticographic features may help to identify effective
treatment approaches (Geller et al., 2017; Jobst et al., 2017;
Nune et al., 2019). For example, studies have shown that

patients with mesiotemporal lobe epilepsy who have similar
electrographic features have similar clinical outcomes when
treated with responsive direct brain stimulation (Desai et al.,
2019a,b). Another recent study in patients with epilepsy who have

similar anatomical abnormalities (i.e., periventricular nodular
heterotopia) found predominantly low voltage fast electrographic

activity at the seizure onsets (Nune et al., 2019). In another
study, grouping epileptic patients into high or low risk states
based on electrographic activity helped to identify effective

stimulation frequencies (Chiang et al., 2021). Collectively, these
studies demonstrate the usefulness of grouping patients with
similar electrographic activity, and suggest that there is an
association between electrographic activity patterns, anatomical
abnormalities, and effective therapy approaches.

To the best of our knowledge, a systematic study for
identifying similar iEEG (intracranial electroencephalogram)
patterns in a large multi-patient dataset has not been performed.
Implantable neurostimulators capable of capturing chronic time-
series iEEG data have been approved by the FDA only within
the last decade (Skarpaas et al., 2019), and large cross-patient
ambulatory iEEG datasets were previously not available. In
comparison, other domains, such as e-commerce, have had
access to large datasets for several years (Krizhevsky et al., 2012)
which has led to the development of advanced computer vision
techniques for finding similar objects (Deselaers and Ferrari,
2011; Wu et al., 2013; Wang et al., 2014). For example, e-
commerce websites such as Amazon.com and Baidu.com suggest
products that are visually similar to those queried by customers.
Google’s “Search by image” feature uses these methods to find
images visually similar to an example provided by the user. In
the healthcare domain, a few studies have applied analogous
computer vision techniques for clustering and identifying similar
images from multiple patients. For example, in one study,
similar skin cancer images from multiple patients were clustered
together (Esteva et al., 2017), and in another study, similar
cross-patient diabetic retinopathy images were clustered together
(Dondeti et al., 2020). Inspired by these studies, this study
evaluates computer vision techniques for finding similar cross-
patient brain activity using spectrogram images of time-series
iEEG records.

One method of learning image representations for identifying
similar images is through self-supervised learning (Chen et al.,
2020a; Grill et al., 2020), a deep learning approach where the
CNN (convolutional neural network) is trained to learn similarity
metrics directly from images by leveraging underlying structure
in data. For example, this may be performed using triplet training
sets generated via an unsupervised clustering technique (Wang
et al., 2014). Triplets contain an anchor image, a positive image
and a negative image, where the positive image is more similar
to the anchor image compared to the negative image. The deep
learning model is trained using the hinge loss metric to minimize

the Euclidean distance between the query and positive image,
and to maximize the Euclidean distance between the query and
the negative image (Wang et al., 2014; Chiang et al., 2021). In
this way, the model’s weights and biases are explicitly trained to
embed similar images close to each other in an n-dimensional
space. In this analysis, an unsupervised clustering method for
generating iEEG triplet training examples was explored by
leveraging the observation that electrographic activity patterns
within a patient are generally stereotypical (Manford et al., 1996).

Another common image representation learning technique
is to embed the images in a low dimensional space using
pre-trained CNNs as feature extractors followed by PCA
(Principal Component Analysis), and t-SNE (t-distributed
stochastic neighbor embedding) or UMAP (Uniform Manifold
Approximation and Projection) for dimensionality reduction
(Desai et al., 2019b; Barry et al., 2021). Then, kNN (k nearest
neighbors) is typically used to find neighbors nearest to the
input/query images in the low dimensional space. In a previous
study, we demonstrated that a similar approach works well
for clustering within-patient iEEG records with long trains of
abnormal epileptiform events (Barry et al., 2021). However, iEEG
patterns from different patients can be very different (Haas et al.,
2007), and the effectiveness of this method on cross-patient
iEEG records was not yet explored. Here, we used a pre-trained
ResNet50 model trained on the ImageNet dataset (ImageNet-
ResNet) as a feature extractor for finding similar cross-patient
iEEG records.

In contrast to using CNNs pre-trained on images from a
different domain, CNNs trained on images from the same
domain may serve as better feature extractors for the intended
problem, since the learned features may be more relevant (Cui
et al., 2018). For this reason, a recently-developed custom-trained
ResNet50-based electrographic seizure classifier (ESC-ResNet)
trained and tested on ∼138,000 manually labeled iEEG records
obtained by the RNS System (Barry et al., 2021), was explored as
a feature extractor. Since this model was trained using iEEG data
captured from a 113 patients, we hypothesize that it may have
learned relevant cross-patients iEEG features that might transfer
effectively to the task of clustering similar iEEG records across
patients (Barry et al., 2021). We tested this hypothesis by using
the ESC-ResNet model (Barry et al., 2021) as a feature extractor
for finding similar cross-patient iEEG records with different
levels of epileptic activity, and comparing its performance to a
ResNet50 model trained on the ImageNet dataset.

Irrespective of the method used for finding similar patients,
model inference time needs to be reasonably fast, a matter
of seconds, for it to be practically useful in a production
system. Since electrographic activity within a patient tends to
be stereotypical (Manford et al., 1996), it may be sufficient to
search through representative iEEG records in each patient,
instead of searching through every iEEG record in every patient.
Consequently, within-patient clustering of iEEG records was
performed using pre-trained CNN features, and its performance
was compared to spectral power based methods.

For several reasons, this work is unique and substantially
adds to existing literature on using deep learning techniques
for mining large brain activity datasets. First, it introduces the
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novel problem of finding similar patients based on iEEG data.
Second, it discusses a generic unsupervised clustering method
for identifying representative iEEG records within a patient.
Third, it demonstrates the usefulness of converting time-series
iEEG waveforms to spectrogram images for leveraging advances
in computer vision image processing techniques. Fourth, it
describes three different methods of embedding iEEG records
in low dimensional spaces to identify similar cross-patient iEEG
records, each method with a different level of developmental
complexity. Finally, it shows that even a generically pre-trained
model such as ImageNet-ResNet finds similar cross-patient
iEEG records with baseline, interictal spiking, and noise events,
whereas domain specific training may be needed to identify
iEEG records with finer details such as patterns at the onset of
electrographic seizures.

METHODS

Data for this study were obtained from the NeuroPace R© RNS R©

System clinical trials (Nair et al., 2020). All study protocols were
approved by the US FDA and the institutional review boards of
the participating investigation sites. All participants gave written
informed consent. The RNS System Feasibility, Pivotal and
LTT studies are registered on clinicalTrials.gov (NCT00079781,
NCT00264810, and NCT00572195, respectively).

The RNS System
Details about the RNS System are described in several previous
publications (Sun and Morrell, 2014; Skarpaas et al., 2019).
In brief, the RNS System is an FDA approved closed-loop
responsive brain stimulation device that continuously monitors
brain activity and sends electrical pulses when patient-specific
abnormal patterns are detected. The device can be connected to
up to 2 strip leads, or 2 depth leads, or a combination of 1 strip
and 1 depth lead. Each lead contains 4 electrode contacts that
are used for brain activity sensing and for delivering electrical
stimulation pulses to the brain. Figure 1A shows an illustration
of the NeuroPace RNS System connected to a strip lead and a
depth lead.

iEEG Records
Approximately 1 million 4-channel iEEG records have been
recorded from 256 patients enrolled in the NeuroPace RNS
System clinical trials (Nair et al., 2020). iEEG records typically
contain 4 channels of iEEG data where each channel’s data is
differentially recorded between two adjacent electrode contacts
on leads. The iEEG activity on each channel is recorded at
250 samples per second. The durations of iEEG records are
selected by the physician and are typically 90 seconds (range:
30–240 s) long. Storage of iEEG records can be triggered by
a number of different events, including detection of long
trains of abnormal activity (long episode; “LE”), and pre-
programmed by time-of-day (scheduled). LE iEEG records
frequently contain electrographic seizures, whereas scheduled
iEEG records typically contain baseline, non-seizure activity.
Long episode and scheduled iEEG records together make up over
90% of all stored iEEG records. Some other types of iEEG records

include “saturation” records which are stored when the sensed
brain activity saturates the recording amplifiers, and “magnet”
records which are stored when the patient/caregiver swipes a
magnet over the implanted neurostimulator.

In the remainder of this paper, the term “iEEG record” refers
to 4-channel iEEG data files captured by the RNS System, and
the term “iEEG channel” refers to each channel of data in
iEEG records.

Within-Patient Data Splits
iEEG data from all 256 clinical trial patients were used for the
analysis (Nair et al., 2020). A standard 60-20-20 train-validation-
test split would have resulted in 164 patients in the training
set. However, to increase the likelihood of finding similar cross-
patient iEEG records to query iEEG records, a larger search
dataset was desired; and hence, a custom data split of 78-
10-12 was used. Subsequently, 200 patients’ data were in the
search/train dataset and 31 patients’ data were in the test/query
dataset. The remaining 25 patients’ data were in the validation
dataset and were used to guide training of the deep ranking
model. In the remainder of the paper, the terms “search” and
“training” are used interchangeably to refer to data from the 200
patients in the training set. The terms “query” and “test” are used
to refer to data from the 31 test patients. Figure 1B shows the
patient splits in the training, validation and test datasets.

Pre-processing iEEG Records
Each iEEG channel was converted to an RGB (3 color-channel)
spectrogram image of dimensions 224 x 224 x 3 (image height
x image width x number of color channels) using the methods
described in a previous publication (Barry et al., 2021). Briefly,
iEEG records were preprocessed to be of similar lengths (in
the range of 80–100 s). iEEG records <80 s and >100 s were
repeated or cropped to 90 s, respectively. iEEG records shorter
than 80 s had a portion equal to the disparity duplicated from
the beginning of the record and concatenated onto the beginning
of the record. iEEG records longer than 90 s were cropped to
include only 30 s before and 60 s after the storage trigger time.
Stimulation artifact rejection was performed on all iEEG records.
Matplotlib’s built-in function matplotlib.pyplot.specgram with
window size 256 and step size 128 was used for creating the
spectrograms (0–125Hz on the frequency axis), and saved as
RBG images using the jet colormap. An example 4-channel time-
series iEEG record and its corresponding spectrogram images are
shown in Figure 2.

Within-Patient Clustering to Identify
Representative iEEG Records
To improve the practical usability of identifying patients
with similar ECoG records, representative iEEG records were
identified from each patient in the search dataset. The ResNet50
model (tf.keras.applications.resnet50.ResNet50; see TensorFlow
documentation https://www.tensorflow.org/) trained on the
ImageNet dataset (ImageNet-ResNet) was used to extract feature
maps from the spectrogram images of each iEEG channel. The
resulting feature maps (dimensions 7 x 7 x 2048) for each of the
four iEEG channels were concatenated to produce a combined
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FIGURE 1 | (A) Illustration of the NeuroPace RNS System. (B) Training, validation, and test data splits. iEEG records in the validation dataset were only used by one of

the three methods evaluated in this paper.

FIGURE 2 | (A) An example 4-channel time-series iEEG record. (B) 224 x 224 x 3 spectrogram images of each iEEG record channel.

feature matrix (dimension 4 x 7 x 7 x 2048) for each iEEG
record. Vectors of zeros were used to substitute for missing
iEEG channels. Patient-specific dimensionality reduction was
performed with PCA (principal component analysis) to reduce
the feature matrix to the top 50 principal components for each
iEEG record. Then, t-SNE (t-distributed stochastic neighbor
embedding) was applied to the 50 principal components to
further reduce them to two features for each iEEG record.
Finally, BGMM (Bayesian Gaussian Mixture Model) clustering
was applied to each patient’s 2-dimensional iEEG feature sets
to cluster iEEG records within each patient. The BGMM
technique was selected over other clustering techniques because it
automatically inferred the number of clusters within each patient.
Within each cluster, the single iEEG record at the centroid
of the cluster was identified. These centroid iEEG records are
considered representative of the entire cluster, and iEEG records
more distant from the centroid are considered less representative.
The output of the within-patient clustering technique is used
for creating the search dataset. Therefore, 2,148 cluster centroids
from 200 patients were selected to be the search/training dataset
and for generating triplets for the contrastive learning method

described in Methods Section CL-ResNet Method for Identifying
Similar Cross-Patient iEEG Records (Method 2).

The quality of the embedding space produced by the pre-
trained ResNet50 model was explored by comparing feature
maps extracted by intermediate layers of the pre-trained
ResNet50 model with feature maps extracted by the final layer.
Comparisons were also made with feature maps extracted by a
ResNet50 model with randomly initialized parameters.

Additional embedding and clustering comparison studies
were performed with spectral power features. Spectral power
in seven frequency bands (0–4, 4–8, 8–12, 12–25, 25–50,
50–125, 0–125Hz) were extracted from each iEEG channel
using the scipy.signal.periodogram python function. The seven
power features from each of the four iEEG channels were
concatenated to produce a vector containing 28 spectral power
features. Vectors of zeros were substituted for missing iEEG
channels. PCA and t-SNE were applied to the resulting
spectral power features within each patient. Finally, BGMM
was used to cluster the 2-dimensional feature sets in each
patient. Centroid iEEG records were identified for these clusters,
as well.
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ImageNet-ResNet for Identifying Similar
Cross-Patient iEEG Records (Method 1)
Methods Section Within-Patient Clustering to Identify
Representative iEEG Records describes using the ImageNet-
ResNet model for embedding within-patient iEEG records,
however the performance of this model on embedding iEEG
records captured from multiple patients is yet to be explored.
To this end, the ImageNet-ResNet50 model was used for
identifying similar cross-patient iEEG records (Figure 3A).
Note that feature extraction and dimensionality reduction
was performed on all iEEG records from each of the 256 RNS
System patients (i.e., PCA was performed once in each of the
256 patients); in this section, on the other hand, the feature
extraction and dimensionality reduction steps were performed
on representative cross-patient iEEG records in the search
dataset (i.e., PCA was performed once on 2,148 ECoGs from
200 patients). Additionally, unlike in Section Within-Patient
Clustering to Identify Representative iEEG Records, where
BGMM clustering was performed on the reduced feature sets
within each patient for identifying representative within-patient
iEEG records, in this section k-nearest neighbors was used
instead for identifying similar cross-patient iEEG records. To
elaborate, first, the pre-trained ImageNet-ResNet50 model was
used to extract features from spectrogram images of iEEG
channels from cluster centroids (n= 2,148) of the 200 patients in
the training/search dataset. The resulting features were processed
by principal component analysis (PCA), returning 50 principal
components. The resulting PCA model was saved for use during
model inference.

During inference, the spectrogram images from a test/query
iEEG record and its channel permutations were passed through
the saved PCA model. The resulting 50 principal components
from each training/search centroid iEEG record, the query iEEG
record, and its channel permutations were reduced to two
dimensions using t-SNE.

K-nearest-neighbors method (python function:
sklearn.neighbors) was used to find the 5 neighbors
nearest to the test/query iEEG record and its channel
permutations. The final ranking order for each test/query
iEEG record was determined by ranking the search results
for the original query/test iEEG record and all its channel
permutations, and selecting the top 5 unique training/search
iEEG records.

CL-ResNet for Identifying Similar
Cross-Patient iEEG Records (Method 2)
In method 2, a ResNet50 model was trained via contrastive
learning using a triplet loss function as shown schematically
in Figure 3B. Images used for this method were tiled (2 x 2)
spectrograms (112 x 112 x 3) of the four channels in each iEEG
record, resulting in a single image of dimension 224 x 224 x 3
representing all four channels. Triplets of training data consisting
of an anchor image, a positive image and a negative image were
generated for each cluster centroid iEEG record from the 200
training patients. The goal of training was to learn an image
embedding function such that similar images are embedded

closer than dissimilar images (Cui et al., 2018). This can be
mathematically expressed as:

D
(

f (a) , f
(

p
))

< D
(

f (a) , (n)
)

,

Here, D is the Euclidean distance between the two points, f is
the embedding function to map the image to a vector, a is the
anchor image, p is the positive image, n is the negative image.

The hinge loss for the triplet is defined as:

l
(

a, p, n
)

=

max
{

0, margin+ D
(

f ((a) , f
(

p
)

)
)

− D
(

f ((a) , (n))
)}

Where l is the hinge loss for the triplet, margin is a
gap parameter that regularizes the gap between the distance
of the two image pairs (a, p) and (a, n). The model is
optimized to achieve D

(

f ((a) , f
(

p
))

∼ 0 and D
(

f ((a) , (n)
)

>

D
(

f ((a) , f
(

p
))

+ margin.
Triplets can be classified into three types depending on the

embedding of the negative image with respect to the positive and
anchor images.

(1) An easy triplet has a hinge loss values of zero because the
embedding for the negative image is further away from the
anchor than the positive image by a distance greater than the
margin, i.e., D

(

(f (a) , f
(

p
)

)
)

+margin < D
(

f ((a) , (n ))
)

.
(2) A hard triplet has a positive hinge loss value because its

negative image is closer to the anchor than the positive
image, i.e. D

(

f ((a) , (n))
)

< D
(

f ((a) , f
(

p
)

)
)

.
(3) A semi-hard triplet has a positive loss value because

the negative image is further from the anchor than the
positive image, but not by more than the margin value, i.e.,
D

(

f ((a) , f
(

p
)

)
)

< D
(

f ((a) , f (n))
)

< D
(

f ((a) , f (n))
)

+

margin

Triplet selection had a major impact on model training, with
experiments demonstrating successful training with semi-hard
triplets. Inspired by previous studies (Parkhi et al., 2015; Schroff
et al., 2015; Yu et al., 2018), and to include a combination of easy
and semi-hard triplets, same-cluster (semi-hard) and different-
cluster (easy) triplets were generated from within-patient 2D
embeddings of iEEG records generated using method 5. All
cluster centroid iEEG records were selected as anchors. For
each anchor, same-cluster triplets were generated by selecting
the three iEEG records closest to the anchor as positive images,
and for every anchor and positive image pair, five more distant
iEEG records in the same cluster were selected as negative
images. Different-cluster triplets were generated using the same
anchors, the five iEEG records closest to the anchor as positive
images, and for every anchor and positive image pair, ten iEEG
records in other clusters within the same patient were selected
as negative images. Figure 4A shows within-patient clusters of
iEEG records in one example patient. Arrows indicate regions
within the 2D embedding space from which iEEG records for
positive, easy negative and semi-hard negative were selected for
one cluster centroid anchor iEEG record. Figures 4B,C shows
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FIGURE 3 | Outline of methods for identifying similar cross-patient iEEG records. (A) ESC-ResNet and ImageNet-ResNet methods. #1: Each channel of a time-series

iEEG record is converted to a 3-color channel spectrogram image. The spectrogram images are passed through a CNN feature extractor. #2: The resulting features

from all search iEEG records are analyzed by PCA. The resulting PCA mapping function is saved. #3: At inference time, the feature map of the query image and its

channel permutations are passed through the previously saved PCA mapping function. #4: The 50 principal components of all search images and the query image

(and its channel permutations) are passed through t-SNE. #5: K-nearest neighbors is used to find the 5 iEEG records closest to the query image and its channel

permutations. (B) CL-ResNet method. #1: Spectrogram images of 4-channel iEEG records are tiled to form a single 224 x 224 x 3 spectrogram image for each iEEG

record. Triplets were used to train a deep ranking model using the hinge loss function to embed similar images closer than dissimilar images. #2: The embeddings of

all search images are generated. #3: At inference time, the embeddings of the query iEEG record and its channel permutations are generated. #4: The five highest

ranked iEEG records from the search dataset are identified by computing the Euclidean distance between the search embeddings and query embeddings.

example different-cluster and same-cluster triplets generated for
this patient.

A number of training hyperparameters were explored
including length of the final image embedding vector (range
2–256), batch size of training (range 8–32) and learning rate
(range 10−3-10−6). Different and same cluster training examples
generated from the 25 patients in the validation dataset were used
to determine the number of training epochs, and for guiding the
selection of training hyperparameters.

ESC-ResNet for Identifying Similar
Cross-Patient iEEG Records (Method 3)
In method 3, a ResNet50 model previously trained to classify
iEEG channel spectrogram images into seizure and non-
seizure classes was used. Detailed methods for developing the
electrographic seizure classifier (ESC) are described in Barry et al.
(2021). Briefly, iEEG channels in 138,000 iEEG records from
113 patients were manually labeled as seizure and non-seizure.
Six different CNN model architectures were trained using five
folds of training, validation, and test datasets with 72, 18 and
23 patients, respectively. A ResNet50 based model produced the
highest iEEG channel classification accuracy of 95.7% (F1 score:
94.3%). This ESC-ResNet model was used as feature extractor in

method 3 of the current study for finding similar cross-patient
iEEG records.

Cluster centroids in 200 patients in the training dataset were
selected for precomputing a PCAmodel. The ESC-ResNet model
was used to extract features from spectrogram images of iEEG
channels in the cluster centroids (n= 2,148). The feature vectors
from all four channels in each iEEG record were concatenated
to form an iEEG record-level feature matrix which was passed
through a PCA computation step. The resulting PCA model
was saved for use during model inference on the test/query
data. Model inference was performed using the steps shown in
Figure 3A.

Table 1 summarizes the development effort for the 3 methods.

Query Image Selection and Channel
Permutations
The performance of three methods for finding similar cross-
patient iEEG records for 10 query/test iEEG records with
varying levels and types of epileptic activity is shown in Table 2.
Each method returned a ranked list of similar iEEG records
from patients in the training/search dataset when presented
with an iEEG record from a patient in the query/test dataset.
Table 2 summarizes the activity patterns observed in each
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FIGURE 4 | (A) 2D embeddings of all iEEG records from one example patient. All cluster centroid iEEG records were selected as anchors. iEEG records closest to the

anchor were selected as positive images. iEEG records further away from the centroid in the same cluster were selected as negative images. iEEG records from other

clusters within the same patient were also selected as negative images. (B) Example triplets with negative images from different clusters. (C) Example triplets with

negative images from the same cluster.

of 10 query iEEG records. Query iEEG records 1–6 contain
electrographic seizure activity or clear epileptiform activity on
one or more iEEG channels. Query record 7 contains interictal
spiking activity. Query records 8 and 9 contain baseline non-
seizure electrographic activity. Query record 10 contains frequent
stimulation artifact on all four iEEG channels. The top five ranked
iEEG records returned by each method from the training/search

dataset for the 10 query iEEG records are shown in the
Section Results.

Because the training and test images were vertically
concatenated to produce four-channel iEEG spectrogram
images, and similar iEEG records could have similar channels in
any order, channel permutations were performed for each test
iEEG record, and images based on all 8 permutations (including
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TABLE 1 | Development effort for the 3 non-linear iEEG embedding methods explored.

Method 1 (ImageNet-ResNet) Method 2 (CL-ResNet) Method 3 (ESC-ResNet)

Labeling effort None None ∼4 months

Amount of training data None Number of centroids = 2,148

Number of triplets used for training = 31,750

Number of seizure class examples

= 108,277

Number of non-seizure class

examples = 108,277

Code development effort Minimal: Existing model used as

feature extractor.

Moderate: Generating positive and negative

training examples for triplet datasets. Model

training, model architecture exploration, and

hyperparameter optimization.

Moderate: Developing training and

validation datasets. Model training,

model architecture exploration, and

hyperparameter optimization.

TABLE 2 | Brief descriptions of the 10 test/query iEEG records.

Query iEEG

record

number

Short description of activity

1 Electrographic seizure with long (∼35 s duration) high

frequency band (50–75Hz) on all 4 channels. Ictal activity

more prominent on channels 1 and 4, compared to 2 and 3.

2 Electrographic seizure with short (∼15 s duration)

high-frequency band (50–75Hz) on channels 1, 2 and 3.

Increased spectral power at relatively lower frequency

(<50Hz) on channel 4.

3 Electrographic seizure with prominent frequency harmonics in

spectral power near the seizure onset on all 4 channels.

4 Interictal spiking activity on channels 1 and 2, electrographic

seizure activity on channels 3 and 4 with harmonics at

frequencies < 50Hz.

5 Short burst of high amplitude activity on all 4 channels

6 Electrographic seizure on all 4 channels with harmonic bands

throughout the seizure, especially on channels 1 and 2.

Seizure termination on all 4 channels.

7 Interictal spiking activity on all 4 channels

8 Baseline activity on all 4 channels

9 Baseline activity on channels 1 and 2, very low amplitude

broadband baseline activity on channels 3 and 4.

10 Evident stimulation artifact on all 4 channels.

the original iEEG record) were used. These equivalent images
were used to search the centroid iEEG records from the 200
search patients. An example iEEG record and its seven other
channel permutations are shown in Figure 5.

Training and Inference Hardware and
Software
An n1-standard-4 virtual machine with Nvidia Tesla K 80
on Google Cloud Platform was used for running all training
and inference experiments described in this paper. Python
3 with Tensorflow 2.0 was used for training and inference
code development.

RESULTS

Finding Within-Patient Representative
iEEG Records
iEEG features extracted using a CNN pre-trained on a generic
image dataset (ImageNet) was found to produce meaningful

clustering of within-patient interictal and ictal iEEG records
(Figures 6A–C column 1). The ImageNet-ResNet model, which
presumably extracts points, edges and other generic non-linear
patterns, was sufficient to distinguish the finite number of distinct
electrographic seizure morphologies captured within individual
patients. Further, clustering with a pre-trained ResNet50 model
(ImageNet-ResNet) far outperformed spectral power-band based
clustering. Comparison of iEEG clustering with the ImageNet-
ResNet feature maps and spectral power features in three
example patients are shown in Figures 6A–C. The first column
shows the output of the BGMM clustering method using
ImageNet-ResNet, the second column shows the output of
BGMM clustering in the same patient, but with spectral power

features instead of ImageNet-ResNet features. The third column

shows the overlap between the two clustering methods, with

ImageNet-ResNet based 2 dimensional embedding and spectral
power based cluster color coding.

With spectral power based clustering, iEEG records with

similar spectral power content but completely different iEEG
patterns were often embedded close to each other in the 2-
dimensional space. For example, Figure 6D shows iEEG records
in one patient in whom electrographic seizure onsets and offsets
were embedded close to each other (Figure 6, box D). However,
in the same patient, ImageNet-ResNet features resulted in better
embedding of iEEG records, with visually different seizure onsets
embedded in different clusters (Figure 6E and box E; Figure 6F
and box F).

Since it appeared that generic CNN features were able to
distinguish within-patient iEEG activity, iEEG record embedding
produced using a randomly initialized ResNet50 model was
studied to examine if features extracted by an untrained CNN can
also produce meaningful clusters. A ResNet50 model initialized
with random weights and biases returned feature maps that
produced clusters with substantially worse separability compared
to the pre-trained ResNet50 model (Figure 7A) indicating that
CNN training is necessary for producing reasonable spectrogram
image embeddings.

Clusters produced from feature maps extracted using the
ImageNet-ResNet at intermediate depths (i.e., with 122 layers,
and 60 layers respectively removed from the end of the model)
are also shown in Figure 7A. In most patients, the intermediate
layers did not appear to produce better cluster separability
compared to feature maps extracted using all layers of ImageNet-
ResNet. Hence, all layers of ImageNet-ResNet model were used
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FIGURE 5 | An example iEEG record (highlighted in red) and its seven iEEG channel permutations.

for extracting feature maps from the train (n = 200), test (n =

35) and validation (n = 21) patients. Clusters produced using
the BGMM method were robust to the value of input parameter
(n_components), provided that the value of n_components
was set to be sufficiently high. While the other clustering
techniques (spectral clustering, dbscan, and kmeans) produced
clusters comparable to BGMM when initialized with appropriate
parameters (Figure 7B), the clusters returned by the other
methods were very sensitive to the input parameters (Figure 7C
and Supplementary Figure S2). Since it is not feasible to
manually determine appropriate input parameters in each of
the 256 patients, the BGMM technique was used in all patients
with the input parameter, n_components, set to be equal to the
maximum of (number of iEEG records in the patient divided by
500, and 15). For example, in a patient with 2,000 iEEG records,
n_components would be set to be 15; and for a patient with
20,000 iEEG records, n_components would be set to be 40.The
BGMM method would determine the appropriate number of
clusters in the patient, a number ≤ n_components.

Using the ImageNet-ResNet feature maps, 2,759 clusters of
iEEG records were identified within the 256 patients. Cluster
centroids in 200 (n = 2,148 cluster centroids), 31 (n = 337) and
25 (n = 274) randomly selected patients formed the training,
test and validation datasets respectively. The numbers and shapes
of clusters differed vastly from patient to patient, with the
minimum, maximum and median number of clusters across the
256 patients being 1, 30, and 12 respectively.

CL-ResNet Model Training and Validation
Loss
Contrastive learning was sensitive to training hyperparameters,
with small changes to hyperparameter values having substantial
effects on the model training behavior. In particular, changes
to the batch-size parameter had a large influence on model
training. After exploring a range of hyperparameter values, the
best results were a batch size of 16 triplets (or 48 iEEG records),
embedding vector size of 256, learning rate of 10−5. Every layer
of the ResNet50 model with ImageNet features was allowed to

train. Weights and biases of all layers of the ResNet50 model
changed after training. The training and validation loss dropped
rapidly over the first few training epochs, demonstrating model
learning that generalized to held-out patient’s data. Training was
stopped at 43 epochs because no improvements in validation loss
were observed after this point. Supplementary Figure S1 shows
changes in training and validation loss over training epochs.

Top 5 Ranked Search iEEG Records for 10
Query iEEG Records
Figure 8 shows the top five iEEG records returned by each
of the three methods evaluated in this paper. For test/query
iEEG records that contained electrographic seizures and short
bursts of epileptiform activity (test/query records 1–6), the ESC-
ResNet method generally returned results with nuanced seizure
morphology features that lookedmost similar to the query image.

In the query iEEG records with baseline and interictal
spiking activity, on the other hand, all three methods returned
equivalent results.

A qualitative description of the query results returned by each
of the 3 methods is provided below.

Query 1: Bands of high frequency activity between 50 and
75Hz were present in all 5 results returned by ESC-ResNet, with
the shape of the high frequency bands being similar to band in
the query. With the CL-ResNet, rank 3 did not have a clear high
frequency band. With the ImageNet-ResNet model, ranks 4 and
5 did not have clear high frequency bands.

Query 2: Short bands of high frequency activity were seen in
all top-ranked results returned by ResNet-ESC and CL-ResNet.
With ImageNet-ResNet, search ranks 1 and 5 did not contain
such activity.

Query 3: Electrographic seizure activity with strong
harmonics at seizure starts, similar to query, were observed
in all search results returned by ESC-ResNet. Harmonics at
seizure starts were not observed in 1 (rank 2) and 2 (rank 3 and
5) iEEG records returned by CL-ResNet and ImageNet-ResNet
models respectively.
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FIGURE 6 | Each row (A–C) contains iEEG records from one individual patient represented in a 2 dimensional space. Column 1: ImageNet-ResNet was used as the

feature extractor. The resulting features were passed through a dimensionality reduction technique consisting of PCA followed by t-SNE. Bayesian Gaussian Mixture

Models (BGMM) was then applied to find clusters in the 2-dimensional dataset. Column 2: Spectral power in seven frequency bands was extracted and these features

were passed through dimensionality reduction and clustering. Column 3: Overlap between the approaches in columns 1 and 2 is demonstrated by showing the

2-dimensional representation from column 1 with cluster membership colors from column 2. (D) Examples of iEEG records clustered together in box D using the

spectral power feature extraction method. These records are spectrally similar but visually different. (E,F) Example iEEG records from two clusters in boxes E and F

generated using the ImageNet-ResNet feature extraction method.

Query 4: ESC-ResNet returned substantially better results
for the query with spiking activity on channels 1 and 2, and
electrographic seizure activity with evident bands on channels
3 and 4. All 5 iEEG records returned by the ESC-ResNet were
similar to the query. The CL-ResNet model returned iEEG
records with interictal spiking on all four channels, whereas
the ImageNet-ResNet model returned one iEEG record with
electrographic seizure activity on channels 3 and 4. The other
four results were dissimilar to the query.

Query 5: Short bursts of epileptiform activity was returned by
all three methods. However, the activity was most similar in iEEG
records returned by ESC-ResNet. Rank 5 returned by CL-ResNet
did not have the bursting activity on channels 3 and 4. Rank 5
returned by ImageNet-ResNet contained electrographic seizure
activity on all four channels, and the bursting activity seen in rank
1 and 2 looked different from the query.

Query 6: Harmonics in electrographic seizure with abrupt
ending, similar to query, was seen in ranks 4 and 5 returned
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FIGURE 7 | (A) Embedding of iEEG records in one patient with feature maps extracted by ImageNet-ResNet model containing all layers, ImageNet-ResNet with 122

layers removed from the end, ImageNet-ResNet with 60 layers removed from the end, and a ResNet50 model with randomly initialized weights. (B) Comparison of

clusters identified by BGMM method with input parameter, n_components, set to 15, spectral clustering method with n_clusters set to 10, dbscan with epsilon set to

4, and kmeans with n_clusters set to 10. (C) Comparison of clusters identified by BGMM method with a range of input parameter values (n_components =

15,5,30,50) and spectral clustering method with n_clusters = 10,5,30,50. Note that spectral clustering here does not refer to clustering with hand-engineered spectral

power features as discussed in Figure 6, rather it refers to a clustering method that uses a normalized Laplacian (see sklearn.cluster.spectralclustering). Comparable

clustering with the dbscan method (epsilon = 4,2,3,5), and kmeans clustering method (n_clusters = 10,5,30,50) are shown in the Supplementary Figure S2.

by ESC-ResNet, with ranks 1–3 containing abrupt seizure
beginnings. The CL-ResNet model returned electrographic
seizure with harmonics similar to the query, but 4/5 results did
not have abrupt seizure endings. Out of the three methods, search
results returned by the ImageNet-ResNet model looked least
similar to the query.

Query 7: iEEG records with interictal spiking activity were
returned by all three methods.

Query 8: iEEG records with baseline activity were returned by
all three methods.

Query 9: iEEG records with baseline activity on channels 1 and
2, and very low amplitude baseline activity on channels 3 and 4
were returned by all three methods.

Query 10: iEEG records with evident stimulation artifact were
returned by all three methods.

DISCUSSION

The work in this paper is unique and significant for several

reasons. (1) Identifying patients with similar brain activity

patterns may have important clinical applications such as
identifying potential treatment options that are effective in

similar patients. In a previous study (Wu and Gotman, 1998),
hand-crafted features and string matching techniques were

explored for identifying similar electrographic seizures in a
small EEG dataset (with 7 electrographic seizures) from five

patients (three with intracerebral electrodes, and two with scalp
electrodes). Although several high-level concepts are shared

between the previous study and the present study (including
within-patient clustering of EEG), the previous study was limited
by the amount of data used for developing the methods. To
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FIGURE 8 | The 5 highest ranked iEEG search records for each of the 10 query iEEG records and their channel permutations.

the best of our knowledge, a systematic study for identifying
similar cross-patient iEEG records in a large multi-patient iEEG
dataset (from >100 patients) has not been previously performed.
(2) Brain activity patterns within patients are often stereotypical
(Manford et al., 1996). Hence, searching a relatively small number
of representative iEEG records per patient will speed up the
process of identifying similar cross-patient iEEG patterns in large
multi-patient iEEG datasets, making the resulting search tool
more useful in production environments. Manually selecting
representative iEEG records would be subject to selection bias,
with different humans picking different sets of representative
iEEG records. This research presents a fully unsupervised
method of selecting within-patient representative iEEG records
using pre-trained CNNs. This approach results in a more
comprehensive and objective use of brain activity features in
iEEG spectrograms to select representative iEEG records. The
viability of this method was demonstrated by comparing the
clustering performance of pre-trained CNN features with hand-
engineered spectral power features. (3) Three different methods
of identifying cross-patient iEEG records were discussed. The
first method, ImageNet-ResNet, used a pre-trained CNN trained
on the generic ImageNet dataset as the feature extractor.
The second method, CL-ResNet, involved training a ResNet50
model with triplets generated using an unsupervised within-
patient iEEG clustering technique. The final method, ESC-
ResNet, involved using a custom pre-trained ResNet50 model as
feature extractor. The search rankings of the three methods were
compared on 10 query images.

The ESC-ResNet method, in which a custom-trained
ResNet50 model was used as a feature extractor, empirically
outperformed the other twomethods on query images containing

electrographic seizures. The ResNet50 used in this method was
trained on 108,000 seizure spectrogram images and 108,000
non-seizure spectrogram images from 72 patients, with the
trained model having a classification accuracy of 95.7% and
F1 score of 94.3% on iEEG spectrogram images from held-out
test patients (Barry et al., 2021). Additionally, gradient-based
saliency maps revealed that the model learned relevant iEEG
features, with pixels associated with electrographic seizures
clearly highlighted when spectrogram images were correctly
classified as seizures. The features learned by this model
transferred effectively to the task of embedding similar cross-
patient iEEG records with electrographic seizures close to each
other in a low-dimensional space (Cui et al., 2018). This is
demonstrated by the visually similar search results returned
by the ESC-ResNet method even on complex query images
containing two channels of interictal spiking activity and two
channels of electrographic seizure activity. The superiority
of this method with query images containing electrographic
seizures may be attributed to the fact that a large number
of electrographic seizure iEEG records from 72 patients
were used for training. Even though it has been theorized
and shown in computer vision tasks that models trained on
auxiliary tasks serve as good feature extractors for solving
other problems in the same or a similar domain (Cui et al.,
2018), this is first study to systematically demonstrate it
on human brain recordings by converting iEEG records to
spectrogram images.

These findings should encourage future studies to convert
time series physiological recordings to spectrogram images to
leverage image-based CNN techniques for solving similar cross-
patient data clustering problems.
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In image recognition tasks where the objective is to find
similar everyday objects such as cars, lamps, and human
faces, training using a deep ranking approach with triplets
consisting of anchor, positive and negative images, has produced
better results than using pre-trained CNNs trained on generic
datasets as feature extractors (Wang et al., 2014; Schroff et al.,
2015; Chen et al., 2020a,b). These findings motivated the
contrastive learning method explored in the present study with
triplets of iEEG spectrogram images generated from time-
series iEEG records. Even though reductions in training and
validation losses were observed during the training process
(Supplementary Figures S1,S2), this method failed to produce
better results than using an electrographic seizure classifier
as feature extractor in electrographic seizure query images.
Marginal to moderate improvement in search results were seen
compared to the baseline approach of using a ResNet50 pre-
trained on the generic ImageNet dataset as feature extractor.

A few modifications to the training process could possibly
improve the CL-ResNet model’s performance. First, in many
previous studies, CL-ResNet model training was performed
using triplet images generated from well-defined, human-labeled
classes, with anchor and positive images selected from within
the same class, and negative images selected from a different
class (Wang et al., 2014). To emulate this, spectrogram images
of iEEG records within patients were clustered using pre-trained
CNNs as feature extractors. For easy triplets, all cluster centroids
were selected as anchors, with close neighbors within the same
cluster selected as positive images and images from different
clusters within the same patient selected as negative images. For
semi-hard triplets, the same anchors and positive images were
used, but same-cluster images further away from the anchor than
the positive images were selected as negative images. Semi-hard
triplets, where positive images embed closer to the anchor than
the negative with a positive loss function, have been shown to
produce the best training results (Parkhi et al., 2015; Schroff et al.,
2015; Yu et al., 2018). Future studies should explore training
using only semi-hard triplets. One way of achieving this could
be through an online triplet generation technique where triplets
are not pre-selected before training, but are generated during
the training process (Yu et al., 2018). Second, the CL-ImageNet
training process was very sensitive to hyperparameter selection,
with small changes in certain hyperparameters (for example,
the batch size) leading to substantial differences in model
training and validation performance. Even though a range of
hyperparameters was explored, the unexplored hyperparameter
space is still very large. Future studies could use automated
hyperparameter exploration techniques such as AutoML to
more efficiently search the hyperparameter space (He et al.,
2021). Third, since in epilepsy, the query images will likely
contain electrographic seizures, the number of triplets with
electrographic seizure iEEG records used for training could be
increased. An electrographic seizure classifier could be used to
guide the generation of triplets (Barry et al., 2021). Finally, in this
study only within-patient triplets were used for training because
it was straightforward to cluster patient-specific iEEG records. In
future studies cross-patient triplets could also be included. The
ESC-ResNet method, for example, could be used for generating

cross-patient triplets. In this case, for every query image, the first
few ranked iEEG records from other patients could be used as
positive images, and iEEG records with lower ranks could be used
as negative images.

Even though the ESC-ResNet method outperformed the
other two methods on electrographic seizure query images,
it is noteworthy that the iEEG records returned by all three
methods were comparable in similarity to the query iEEG
records containing baseline, interictal spiking, and stimulation
artifact. Since interictal spiking activity and stimulation artifact
are essentially transformed to broadband vertical edges in
spectrogram images, the problem of finding cross-patient iEEG
records with similar levels of interictal spiking activity and
stimulation artifact is essentially a computer vision problem of
identifying similar numbers and widths of distinct vertical edges
in 2 dimensional images. We hypothesize that the ImageNet-
ResNet model, trained on over 10 million images in 1,000
categories of everyday objects and animals, has learned to
successfully identify edges and other generic patterns. Hence,
the ImageNet-ResNet model is able to identify iEEG records
with similar levels of interictal epileptiform events. However,
domain specific training with manually labeled iEEG records
appears to be important for finding cross-patient iEEG records
with similar finer spectrogram-image details such as the presence
of high frequency oscillation bands at the onset of epileptic
seizures. In summary, if the goal is to search through large multi-
patient datasets to find iEEG records with visually similar noise
or interictal spiking activity, a CNN trained on a generic image
dataset such as ImageNet could suffice.

Hybrid methods combining the results of the three methods
could be explored in future studies. In cases where one of the
three methods fails to find similar iEEG records, the top 5–10
ranked iEEG records by different methods could be displayed to
the end-user who could then select visually similar iEEG records
produced by all three methods. A hybrid approach could also be
useful for weeding out outliers that are highly ranked by only one
of the methods.

Ultimately, this effort demonstrates that it is possible
to identify epilepsy patients whose iEEGs are similar
to other patients and that this can be achieved in a
computationally efficient way. Currently, patients with
epilepsy are treated empirically. The typical course for a
patient with severe focal onset seizures is one antiepileptic
medication after another, followed by a lengthy evaluation
to determine whether brain resection or laser ablation
could be of benefit and, if neuromodulation is selected,
years of exploring a variety of stimulation parameters.
In the RNS System trials of patients with drug-resistant
focal epilepsy, the average patient had endured 20 years
of ineffective treatment (Nair et al., 2020). The potential
clinical application coming from this work is that complex
electrophysiological multi-patient clinical and iEEG data sets
could be utilized to identify patients whose epilepsies are
similar, evaluate the response in each to previous therapies,
and thus, identify therapeutic approaches most likely to be
effective, sparing the patient of decades of therapeutic trials
and disappointments.
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