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Abstract

Exploring useful prognostic markers and developing a robust prognostic model for patients with prostate cancer are crucial for clinical
practice. We applied a deep learning algorithm to construct a prognostic model and proposed the deep learning-based ferroptosis score
(DLFscore) for the prediction of prognosis and potential chemotherapy sensitivity in prostate cancer. Based on this prognostic model,
there was a statistically significant difference in the disease-free survival probability between patients with high and low DLFscore in
the The Cancer Genome Atlas (TCGA) cohort (P < 0.0001). In the validation cohort GSE116918, we also observed a consistent conclusion
with the training set (P = 0.02). Additionally, functional enrichment analysis showed that DNA repair, RNA splicing signaling, organelle
assembly, and regulation of centrosome cycle pathways might regulate prostate cancer through ferroptosis. Meanwhile, the prognostic
model we constructed also had application value in predicting drug sensitivity. We predicted some potential drugs for the treatment

of prostate cancer through AutoDock, which could potentially be used for prostate cancer treatment.
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Introduction

Prostate cancer is a malignant tumor that affects millions of men
around the world, and patients are concentrated mainly in rel-
atively developed regions.! More than 1.2 million new cases are
diagnosed each year, and prostate cancer-related deaths exceed
350 000 worldwide, making it one of the leading causes of cancer-
related deaths.’:? In addition, prostate cancer is the second most
common cancer in men and accounts for 7% of new cancer di-
agnoses in males worldwide. Since the prognosis of patients with
prostate cancer is highly variable, doctors mainly depend on tu-
mor grade and stage to predict the prognosis of patients. Although
several biomarkers have been reported to predict the prognosis of
prostate cancer patients, few of them could finally be used in clin-
ical practice?

Ferroptosis is a kind of programmed cell death mode caused
by intracellular lipid peroxidation and the accumulation of re-
active oxygen species of lipids, which is widely studied and pro-
vides new ideas for cancer treatment.* Ghoochani et al. have found
that ferroptosis induction could be used as a new treatment strat-
egy for advanced prostate cancer by single therapy or in combi-
nation with second-generation anti-androgen therapy* Further-
more, some researchers have found that the hyperactive mutation
of phosphoinositide 3-kinase protein kinase B-mammalian target
of rapamycin (phosphoinositide 3-kinase (PI3K)-AKT-mTOR) sig-
naling protects cancer cells from oxidative stress and ferropto-
sis through sterol regulatory element binding factor 1/stearoyl

CoA desaturease 1 (SREBP1/SCD-1)-mediated adipogenesis.® At
present, the prognostic models based on ferroptosis-related genes
mainly depend on the least absolute shrinkage and selection op-
erator (LASSO) Cox regression model, with notable shortcomings
of low accuracy and low application value.>” A neural network-
based deep learning analysis of ferroptosis regulators for clinical
prognosis in prostate cancer has not been reported yet.

In this study, we used ferroptosis-related genes as raw mate-
rial and used deep learning algorithms to construct a prognostic
model for patients with prostate cancer. We verified the robust-
ness of the prognostic model and analyzed the possible biological
mechanisms involved in the prediction of targeted drugs.

Materials and methods

Patient cohorts and data sources

Two patient cohorts with prostate cancer were included in this
study: The Cancer Genome Atlas (TCGA, https://portal.gdc.cance
r.gov/) cohort and the GSE116918 (https://www.ncbi.nlm.nih.gov
/geo) cohort.® Only patients with complete gene expression data
and clinical information were included in the study. In total, 491
patients with prostate cancer were included in the TCGA cohort,
and their mRNA sequencing data and the corresponding clini-
cal information were downloaded from the TCGA database. In
the GSE116918 cohort, a total of 248 prostate cancer patients
with mRNA sequencing data and corresponding clinical informa-
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Figure 1. The workflow of this study.

tion were recruited from the Gene Expression Omnibus (GEO)
database. The basic clinical characteristics of the included pa-
tients are described in Table S1, see online supplementary ma-
terial. We also included a cohort of pan-cancer patients of 32
malignancies, including normalized RNA-seq data and survival
information from 10 144 patients. Simultaneously, we recruited
ferroptosis-related genes according to previous studies,”® which
had been proved to be valid candidates for the prediction of
clinical prognosis of malignant tumors. After eliminating genes
with very low expression in prostate cancer, 54 ferroptosis-related
genes were finally selected for further analysis (Table S2, see on-
line supplementary material).

Prognostic model construction based on deep
learning

The network framework of the deep learning algorithm is shown
in Fig. 1, and was developed based on a high-level neural network
(https://keras.rstudio.com) with Tensorflow. The prediction model
was defined using the sequential application programming inter-
face. There were three dense layers with a rectified linear unit ac-
tivation function in the framework. For the first dense layer with
units of 256 and activation of the rectified linear unit, the input
tensor was defined as 54, since the input file contained the ex-
pression of 54 ferroptosis-related genes. A dropping rate of 0.4 was
set for the first dropout layer. The second dense layer was defined

with units of 128 and activation of the rectified linear unit, which
was followed by the second dropout layer with a dropping rate
of 0.3. The loss function was set as a sparse categorical cross-
entropy, with an optimizer of RMSprop and metrics of accuracy
according to our previous study.!* In the third dense layer (the
output layer), the output result was directly taken as the deep
learning-based ferroptosis score (DLFscore). 54 ferroptosis-related
core genes were included in the calculation of DLFscore. The out-
put result was calculated via superimposed calculation of the pre-
dicted value according to the weight coefficient and expression
value of each gene.

Cox regression analysis and survival analysis

Cox regression analysis was implemented through the dplyr and
survival packages. The survival analysis in this study was imple-
mented through survival and survminer packages. Data visual-
ization was achieved through the ggplot2 package. The analysis
process and visualization were completed in the R environment.

Analysis of tumor immune microenvironments
The CIBERSORT algorithm was applied to evaluate the landscape
of immune cells and the difference of immune cell infiltration.
The settings of specific parameters can be found in our previously
published article.’”


https://keras.rstudio.com

Functional enrichment analysis

To explore the possible mechanism related to the DLFscore and
prognosis, we used weighted gene co-expression network anal-
ysis (WGCNA) based on differentially expressed genes (|fold
change|>1, P < 0.05) in prostate cancer patients.'> Correlation
analysis was performed to find the best module that was most
relevant to the DLFscore. Finally, using the Kyoto Encyclopedia of
Genes and Genomes (KEGG) and genetic ontology (GO) analysis,
we explored the potential biological mechanisms of ferroptosis-
related genes that could participate in Metascape.**

Exploration of potential drugs and semiflexible
docking analysis

The 13 potential drug targets and their RNA composite expres-
sion data were obtained from the CellMiner database (https://
discover.nci.nih.gov/cellminer/home.do). Association analysis of
ferroptosis regulator RNA complex expression was performed us-
ing the mean compound activity z score (DTP NCI-60). AutoDock
Vina software was used for semi-flexible docking to study the in-
teraction between PI-103 and ferroptosis regulatory factors such
as AKRIC3." The 3D structure information of the AKRIC3 protein
was obtained from the PubChem database (https://pubchem.nc
bi.nlm.nih.gov). In docking analysis, PI-103 was flexible and the
protein was rigid. When using AutoDock Vina for docking, the en-
tire protein surface served as AKRIC3 binding targets. Finally, we
visually docked the model with PyMOL.'®

Construction of a predictive nomogram based on
DLFscore

To conveniently and intuitively predict patient outcomes, we con-
structed a predictive nomogram model combining the DLFscore
and the clinicopathological characteristics of the patients. The
method of constructing the nomogram is available in our previous
research.'?17

Statistical analysis

In this study, we used the Mann-Whitney U test to analyze
the difference between continuous variables and the Analysis
of Variance (ANOVA) test for continuous variables of more than
two groups. Kaplan-Meier curve analysis was used to compare
disease-free survival (DFS) with the log-rank test. Comparisons
between different areas under the curve (AUCs) were performed
through a nonparametric approach reported by Delong et al.'®
All statistical analyses were performed in R (4.0.0) and GraphPad
Prism 8.

Results

Development and verification of the deep
learning-based prognosis model

The DLFscore was obtained by deep learning of 54 ferroptosis-
related genes in the TCGA cohort. The AUC values obtained by the
receiver operating characteristic (ROC) curve analysis for predict-
ing 1, 3, and 5-year DFS by the prognostic model were 0.843, 0.816,
and 0.811, respectively (Fig. 2A). At the same time, we applied the
confusion matrix to evaluate the prediction model based on deep
learning (Fig. 2B). Meanwhile, we constructed a prognostic model
based on LASSO Cox regression, which was significantly less ac-
curate than deep learning in predicting the prognosis (Table S3,
see online supplementary material). In the GSE116918 validation
cohort, deep learning also showed very good performance in pre-
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dicting 3, 5, and 10-year DFS (Fig. S1, see online supplementary
material). According to the cutoff value of DLFsore (0.1411) in the
TCGA cohort, the patients were divided into the high-score group
and low-score group. There was a significant difference in the DFS
[hazard ratio = 5.804, 95% confidence interval (CI): 3.672-9.176,
P < 0.0001] between the high-score group and the low-score group
(Fig. 2C). Then we validated this model in the GSE116918 cohort
(Fig. 2C) with the same cut-off value, and the result showed that
the DFS of different score groups also had a strongly significant
difference (hazard ratio = 2.597, 95% CI: 1.002-6.599, P = 0.02).
Collectively, these results suggested that the prognostic model
we constructed was strongly correlated with the prognosis of the
patient. Further, Cox regression analysis indicated that DLFscore
could be used as a prognostic factor for prostate cancer patients
(Fig. 2D).

Evaluation of the robustness of the prognostic
model

The presence of a positive surgical margin was associated with
biochemical recurrence-free survival, cancer-specific survival,
overall survival, cancer-specific mortality, and overall mortality
in patients with prostate cancer.’® Therefore, we further explored
whether the constructed prognostic model could stratify the sur-
vival of patients with different surgical margin statuses. We found
that in the surgical margin-negative group, patients with high
DLFscore tended to have a lower probability of DFS, and patients
with low DLFscore tended to have a higher probability of DFS
(Fig. 3A). In the surgical margin-positive group, the DLFgcore could
also distinguish different clinical prognosis between patients with
high DLFscore and low DLFscore (Fig. 3B). These results suggested
that the DLFscore had a significant stratification effect on the DFS
of patients with different surgical margin characteristics. In ad-
dition, we found that the DLFs.ore Was related to the progress
of prostate cancer. With the increase of T stage and Gleason
score, the DLFscore also increased, which was consistent in the two
prostate cancer cohorts (Fig. 3C-F), indicating that the DLFscore
could reflect the progress of prostate cancer.

Subsequently, we applied the prognostic model to pan-cancer
analysis and found that it could also play a prognostic role in a
pan-cancer cohort (Fig. 3G). Cox regression analysis showed that
DLFscore could be used as an independent risk factor for multiple
tumors (Fig. 3H). In conclusion, the DLFs.oe had strong robust-
ness and specificity in predicting the prognosis of patients with
prostate cancer.

Exploration of immune infiltration characteristics
among patients with different DLFgcore

To explore whether the proportion of immune cells of patients
with different scores was different, we carried out an analysis of
immune infiltration. We analyzed and evaluated the landscape
of various immune cells in the tumor microenvironment in the
TCGA cohort (Fig. 4A). We found that the top three cell types in
the prostate cancer microenvironment were CD4 memory rest-
ing cells, plasma cells, and M2 macrophages (Fig. 4B). In addition,
we compared the proportion of various immune cells among pa-
tients with different DLFgqore. Our results revealed that more M2
macrophages, Treg cells, and CD8 T cells were found in patients
with higher DLF¢.ore (Fig. 4C). Therefore, it is concluded that pa-
tients with higher DLFscore had more immunosuppressive cells in
the tumor microenvironment, which was consistent with a pre-
vious study that reported the immunosuppressive function in
prostate cancer.'?
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Figure 2. Prognosis model based on ferroptosis-related genes for prostate cancer. (A) Receiver operating characteristic curve analysis of 1-, 3- and
5-year disease-free survival prediction through the prognostic model. (B) Confusion matrixes for the evaluation of the deep learning-based prediction
model. The profile of coefficients in the model at varying levels of penalization is plotted against the log (lambda) sequence. (C) Kaplan-Meier survival
analysis of disease-free survival stratified by DLFscore fOr prostate cancer patients in the TCGA cohort and validation GSE116918 cohort, respectively.
(D) Univariate Cox regression analysis of DLFscore and clinicopathological factors in the TCGA cohort and the GSE116918 validation cohort. TCGA, The
Cancer Genome Atlas; AUC, area under curve; DL, deep learning-based ferroptosis score.

WGCNA revealed that DLF.ore is related to DNA
repair and RNA splicing

Based on WGCNA, we performed a functional enrichment anal-
ysis of differentially expressed genes in prostate cancer patients
(Fig. 5A). Firstly, we modularized the enriched genes (Fig. 5B). Sub-
sequently, by associating the modular genes with the clinical char-
acteristics and DLFsqore, we found that the blue module has the

highest correlation with the DLFscqre (Fig. 5C). Finally, we analyzed
the blue module genes through GO and KGEE, and we found that
the enriched genes were related to DNA repair, RNA splicing, or-
ganelle assembly, and regulation of the centrosome cycle pathway
(Fig. 5D). Collectively, these results demonstrated that ferroptosis-
related genes may regulate tumor progression through these sig-
naling pathways.
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Figure 3. Evaluation of the deep-learning model based on ferroptosis-related genes. Kaplan-Meier survival analysis of disease-free survival stratified
by DLFscore fOr prostate cancer patients (A) without and (B) with positive surgical margin in the TCGA cohort. Different distributions of DLFs.ore among
patients with different Gleason scores in (C) the TCGA cohort and (D) the GSE116918 cohort. Distribution of DLFs.oe among patients with different
tumor stages in (E) the TCGA cohort and (F) the GSE116918 cohort. (G) Kaplan-Meier survival analysis of disease-free survival stratified by DLFscore for
pan-cancer patients from the TCGA data set. (H) Cox regression analysis of the deep learning-based model in different kinds of malignancies. TCGA,
The Cancer Genome Atlas; DLFscore, deep learning-based ferroptosis score; HR, hazard ratio.

Prediction of therapeutic drugs regulating
ferroptosis based on DLFscore

Next, we explored the possibility of applying our prognostic model
to the prediction of drugs targeting the regulation of prostate can-
cer. We found five ferroptosis regulatory genes in two prostate
cancer cohorts, and their expression levels were strongly corre-
lated with the DLFsore (Fig. 6A). We performed a correlation anal-
ysis of drug complex activity and ferroptosis-related gene expres-
sion in the NCI 60 cell line (Fig. 6B). We compared the differences

in drug sensitivity among different DLFsqe in the cell line and
found that DLFscore could be used to predict the sensitivity of the
cell line to drugs, including PI-103, 6-mercaptopurine, fenretinide,
curumin, and lapachone (Fig. 6C). We used drug PI-103 and pro-
tein AKR1C3 as an example for docking simulation of drug and
protein binding sites. Figure 6D shows the 3D structure of PI-103.
The molecular docking sites of the PI-103 and AKR1C3 proteins
are illustrated in Fig. 6E. The binding energy obtained from the
docking of AKR1C3 with PI-103 was —6.74 kcal/mol on Autodock
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Figure 4. Tumor microenvironment analysis in the TCGA cohort. (A) Different immune cells in the tumor microenvironment. (B) Different abundances
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trated that the AUCs of the nomogram for survival prediction of 1-,

group. TCGA, the cancer genome atlas; DLFscore, deep learning-based ferroptosis score; HR, hazard ratio. *P < 0.05; **P < 0.01; ***P < 0.001; ***P

< 0.0001; ns: no significance.

Vina. Together, these results revealed a critical role of DLFscope in
drug sensitivity prediction.

Construction of a nomogram based on DLFgcore
for prostate cancer patients

To apply our prognostic model to predict the survival time of
prostate cancer patients, we constructed a nomogram prognos-
tic model (Fig. 7A). Through the nomogram, we could intuitively
predict the DFS probability of patients for 1-, 3-and 5-years. The
calibration analysis indicated that the survival rate predicted by

the nomogram had excellent agreement with actual observations

at 1-, 3-and 5-year follow up (Fig. 7B). ROC curve analyses illus-

3- and 5-years reached 0.84, 0.86, and 0.90, respectively (Fig. 7C).

When our model was combined with clinicopathological informa-
tion, the accuracy of patient prognosis prediction was significantly
improved. These results further confirmed the role of DLFscgpe in

predicting the survival of prostate cancer patients.

Discussion

Currently, ~700 000 patients may be subjected to metastatic
prostate cancer, which causes >400 000 deaths each year.??:?!
Given the high incidence and mortality of prostate cancer, it is
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cancer for WGCNA. (B) Gene dendrogram with different colors showing the modules identified by WGCNA. (C) The relationship between gene modules
and clinical characteristics. (D) Potentially enriched pathways of the co-expressed genes in the blue module. WGCNA, weighted gene co-expression

network analysis; DLFscore, deep learning-based ferroptosis score.

extremely important to develop prognostic models for patients
with prostate cancer. In addition, current prognostic models based
on simple machine-learning methods may be restricted by their
drawbacks of unsatisfied accuracy and limited application value.

In this study, we performed a deep learning-based integrative
analysis of ferroptosis regulators for clinical prognosis of patients
with prostate cancer. Our previous study preliminarily proved the
superiority of the deep learning-based prognostic model over the
LASSO-based method.'! In this study, the AUC value of the deep
learning-based prognostic model was significantly higher than
that of the LASSO-based prognostic model.®” The model we con-
structed could effectively stratify the survival probability of pa-
tients. We also found that DLFscore could be a useful prognostic
factor for prostate cancer.

Traditional tumor node metastasis (TNM) staging for predict-
ing the prognosis is limited to the macroscopic characteristics
of the tumor, and its prediction of the prognosis does not meet
the precision requirement for individuals. Prostate-specific anti-
gen (PSA) is influenced by many factors, and it is also very unsta-
ble in predicting prognosis. Deep learning-based prognostic mod-
els are significantly more effective than traditional TNM, Gleason
score, and PSA (Fig. 2D). Apart from that, the prognostic model

based on deep-learning algorithms is more robust than other tra-
ditional machine-learning algorithms in terms of predicting prog-
nostic accuracy.'! It fully takes into account the intrinsic connec-
tion between all genes. However, the disadvantages of deep learn-
ing are obvious, such as the large amount of data required and the
complexity of the algorithm, which makes clinical application rel-
atively complicated.

The development of prostate cancer is associated with acquired
somatic genetic alterations and complex interactions in the mi-
croenvironment. Some studies have pointed out that chronic in-
flammation and infection drive the occurrence of prostate cancer
through the production of oxidative stress and reactive oxygen
species, inducing DNA damage and the selection of mutant cells.?
DNA damage response genes also play key roles in prostate cancer.
Men with germline mutations in BRCA1 or BRCA2 had higher risk
of prostate cancer.” Prostate cancer patients with germ cell muta-
tions in BRCA2 tended to have worse clinical outcomes.?* Approx-
imately 23% of metastatic prostate cancers developed somatic
aberrations in DNA damage response genes.?” Radiation therapy is
widely used to treat cancer, and resistance mechanisms often in-
volve activation of DNA repair and inhibition of apoptosis. In mod-
els of human-patient-derived lung adenocarcinoma and glioma,



8 | Precis Clin Med, 2023, 6: pbad001

(A) "7 ripeaman = 0.328,p < 0.001 107 /4 peaman = 0.281, p < 0.001 187 fypeaman = 0.349, p < 0.001 159 Ixpeaman = 0342, p < 0.001 187 Ixpeaman = 0367, p < 0.001
8
10 < 10
38 ge 5
o ¢ I, =
=< s o I s
2
0 [} 8 0 8
00 02 04 06 08 00 02 04 08 08 00 02 04 06 08 00 02 04 06 08 00 02 04 06 08
DLFSCO'E DLFSCD’C DLFSCOYE DLFSCO'E DLFscore
Iypsaman = 0207, p = 0.001 87 ipeaman = 0.345, p < 0.001 8.5 /1 seaman = 0.163,p = 0.01 87 fopeaman = 0262, p < 0,001 M7 Fypoaman = 0.267, p < 0.001
o 4 - . . 8.0 o 10
= [
© 33 % c e
hg 4 <
T = G 8
n 2
o 1 7
0 0 6.0 0 6
00 04 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05 00 04 02 03 0.4 0.5 00 01 02 03 04 05
DLFSCOTE DLFSCDI‘C DLFSCOI‘E DLFSCOTE DLFscore
(B) -
AKR1C3 | = = 5 « 2 0.2
GPX4 2
HMOX1 * ke * = "
PHKG2 2
SAT1 - * * c
DLFscore | ok *k * * * *k *x ok ok ok 2 02
<
F & & & S e
Q\' 0 Qo\ 6&00 \oo pr Qoo &'p 600 O\)‘Q @v. 0’(}(\ géo s [ ] 0.4
I\ ) q 2 \) Q & ) (¢}
; 3¢ & AP 2 N
&KL o I & S R O s &
& & < < & * p<0.05
S P
© _\0\ **%, p < 0.01
L
< *%%, p < 0.001
PI-103 6-Mercaptopurine Fenretinide Curcumin Lapachone
2 29 p=0007 2 29 p=0.016 2 34 p=0.005 2 34 p=0.001 2 39 p=0.026
g . ; g - 8 & 8 . 8 .
FRE 5 1 5 21 5 21 £
s s K] K : K] T
€ 4 5 1 . < 14 £ 14
g 01 g 0 5 5 g
§ 0 § 01 g %1
=11 . 2] ; : :
] £ £ -1- . £ * £ 1 n
z ) z, N 2 - : s : z : .
£ . - £2{ . : £21 .
R . = = ; R
3-3 ~ T 3-3 T T g3l 0+ . r 3-3 T T
high low high low high low high low high low

(D) (E)

Figure 6. Prediction of therapeutic agents for use in ferroptosis regulation. (A) Correlation analysis of DLFs.o. and ferroptosis-related gene expression.
(B) Correlation analysis of the compound activity of drugs and ferroptosis-related genes and DLFscore in the NCI 60 cell line. (C) Comparison of drug
sensitivity between prostate cancer cell lines with high and low DLFscore. (D) The molecular structure of PI-103. (E) The docking result of the active
components to AKR1C3. Diagram of the cyclophosphamide and protein combination. IC50, half-maximal inhibitory concentration; *P < 0.05;

**P < 0.01; DLFgcore, deep learning-based ferroptosis score.

ferroptosis inducer could enhance the antitumor effects of radi- was mainly related to the DNA repair signaling pathway. There-
ation.”® Another study found that radiotherapy-induced ferrop- fore, whether ferroptosis was a programmed response after DNA
tosis and increased ferroptosis in patients were associated with damage deserves further study.

a better response to radiotherapy and longer clinical survival.”’In Few studies focused on the relationship between ferroptosis

this study, we found that the ferroptosis-related prognostic model and the regulation of the centrosome cycle. However, a recent
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study found that centrosome protein 290 was a new prognostic
marker that regulated ferroptosis in liver cancer cells through
the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway.?®
Studies of ferroptosis and RNA splicing have also rarely been re-
ported; only the RNA-binding protein NF-kappaB activating pro-
tein (NKAP) was found to protect glioblastoma cells from ferrop-
tosis by promoting N6-methyladenosine (m6A)-dependent splic-
ing of SLC7A11 mRNA.?° Research on ferroptosis and organelle
assembly was a gap that needed to be filled in the field of sci-
entific research. Therefore, the relationship between ferroptosis
and organelle assembly, regulation of centrosome cycle, and RNA
splicing needed to be further studied. In this study, we identified a
close relationship between ferroptosis and DNA repair, RNA splic-

ing signaling, organelle assembly, and regulation of centrosome
cycle pathways, which was a conclusion worthy of attention.
Some studies had found that AKR1C3 activation was a key re-
sistance mechanism associated with resistance to enzalutamide.
Targeting endogenous androgens and AKR1C3 could overcome
enzalutamide resistance and improve the survival rate of pa-
tients with advanced prostate cancer.?® Recently, a compound
named MF-15 was found to have strong effects on androgen re-
ceptor (AR) signaling, including significant inhibition of AR activ-
ity, downregulation of androgen-regulated genes, and reduction
of PSA production, reducing AR and AKR1C3 expression. How-
ever, the specific mechanism is still unclear.®® PI-103 is a PI3K
inhibitor that can induce apoptosis, reduce autophagy, and in-
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hibit the PI3K/Akt/mTOR pathway. However, its inhibitory effect
on AKR1C3 had not yet been reported.?®-?°Our study found that
PI-103 might be a drug targeting AKR1C3, which also indicated
that PI-103 might be a potential drug for the treatment of prostate
cancer.

This study still had some limitations. First of all, the study con-
ducted cross-validation of two independent prostate cancer co-
horts and a pan-cancer cohort, but there might still be poten-
tial bias due to the use of retrospective cohort analysis. Second,
prospective single-center or multicenter studies are still needed
to further verify the robustness of the prognosis model. Finally,
although our study revealed that DNA repair, RNA splicing, or-
ganelle assembly, and regulation of centrosome cycle pathways
were associated with DLF .o in prostate cancer, the exploration of
potential mechanisms and functional verification of experimen-
tal studies remain to be performed.

Conclusions

We constructed a prognostic model for prostate cancer patients
using ferroptosis-related genes based on a deep-learning algo-
rithm. In addition, we constructed a predictive nomogram for
prostate cancer patients based on DLFscore and clinicopathological
features. The enrichment analysis found that DLFs.oe Was associ-
ated with DNA repair, RNA splicing signaling, organelle assembly,
and regulation of centrosome cycle pathways. More importantly,
the prognostic model we constructed also has application value
in predicting drug sensitivity.
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