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ABSTRACT
Wheat root rot disease due to soil-borne fungal pathogens leads to tremendous yield
losses worth billions of dollars worldwide every year. It is very important to study
the relationship between rhizosphere soil fungal diversity and wheat roots to
understand the occurrence and development of wheat root rot disease. A significant
difference in fungal diversity was observed in the rhizosphere soil of healthy and
diseased wheat roots in the heading stage, but the trend was the opposite in the filling
stage. The abundance of most genera with high richness decreased significantly from
the heading to the filling stage in the diseased groups; the richness of approximately
one-third of all genera remained unchanged, and only a few low-richness genera,
such as Fusarium and Ceratobasidium, had a very significant increase from the
heading to the filling stage. In the healthy groups, the abundance of most genera
increased significantly from the heading to filling stage; the abundance of some
genera did not change markedly, or the abundance of very few genera increased
significantly. Physical and chemical soil indicators showed that low soil pH and
density, increases in ammonium nitrogen, nitrate nitrogen and total nitrogen
contributed to the occurrence of wheat root rot disease. Our results revealed that in
the early stages of disease, highly diverse rhizosphere soil fungi and a complex
community structure can easily cause wheat root rot disease. The existence of
pathogenic fungi is a necessary condition for wheat root rot disease, but the richness
of pathogenic fungi is not necessarily important. The increases in ammonium
nitrogen, nitrate nitrogen and total nitrogen contributed to the occurrence of wheat
root rot disease. Low soil pH and soil density are beneficial to the occurrence of wheat
root rot disease.

Subjects Agricultural Science, Molecular Biology, Mycology, Plant Science, Soil Science
Keywords Rhizosphere soil, Fungal diversity, Community structure, Wheat root rot disease

How to cite this article Zhang X, Wang H, Que Y, Yu D, Wang H. 2021. The influence of rhizosphere soil fungal diversity and complex
community structure on wheat root rot disease. PeerJ 9:e12601 DOI 10.7717/peerj.12601

Submitted 17 August 2021
Accepted 15 November 2021
Published 13 December 2021

Corresponding authors
Dazhao Yu, dazhaoyu1956@126.com
Hua Wang, wanghua4@163.com

Academic editor
Hector Mora-Montes

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj.12601

Copyright
2021 Zhang et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.12601
mailto:dazhaoyu1956@�126.com
mailto:wanghua4@�163.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.12601
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


INTRODUCTION
Soil microbial diversity is important to sustainable agriculture because microbes
mediate many processes that are essential to the agricultural productivity of soil (Lupwayi,
Rice & Clayton, 1998). However, to meet the food demand of an increasing population,
intensive agricultural practices and excessive cultivation of crops have destroyed soil
structure and ignored the biological potential of roots or rhizospheres to efficiently
mobilize and acquire soil nutrients (Parkinson & Coleman, 1981; Schreiner &
Bethlenfalvay, 1996; Assaf, Turk & Ameed, 2009; Kumar & Pratush, 2014; Taheri, Hamel &
Gan, 2015; Ai et al., 2015; Rashida et al., 2016). As such, soils have very low biological
activity, and plants growing in these soils are predisposed to soil-borne pathogens
(Sivasithamparam, 1993; Kirkegard et al., 2008; Wintera, Mol & Tiedemann, 2014;
Almasudy, You & Barbetti, 2015).

With the destruction of soil structure, the degradation of soil and the increase in
soil-borne pathogens, wheat, as one of the three major staple foods in the world, grown in
Asia (China), Australia, Europe, North America, and South America, is vulnerable to
attack by a complex of root pathogens, which results in tremendous yield losses (Duffy,
2000). Annual losses in wheat industries due to soil-borne fungal pathogens amount to
over billions of dollars worldwide (Paulitz, Smiley & Cook, 2002; Mavrodi et al., 2012;
Okubara, Dickman & Blechl, 2014). All cultivars of wheat are attacked by several soil-borne
fungal pathogens that cause root diseases (Mavrodi et al., 2012). The primary fungal
pathogens include the following: Fusarium culmorum, F. pseudograminearum,
Gaeumannomyces graminis var. Tritici, Bipolaris sorokiniana, and Alternaria spp. in
Ascomycota; Rhizopus oryzae, Rhizoctonia solani and Penicillium spp. in Basidiomycota;
Pythium spp. in Oomycota; and Curvularia spp. in Deuteromycota (Mielke, 1998;Wintera,
Mol & Tiedemann, 2014). Root diseases are difficult to control because these soil-borne
fungi are ubiquitous, the pathogens often occur as a complex (Paulitz & Adams, 2003;
Mavrodi et al., 2012), and they can easily survive on infected plant debris or form durable
chlamydospores in the soil with or in the absence of growing hosts and can outgrow or
evade plant defenses (Smith et al., 2003; Wintera, Mol & Tiedemann, 2014). There are
no resistant varieties among adapted cultivars of wheat and no chemical controls, although
certain seed treatments can provide some early benefits to seedling health (Paulitz & Scott,
2006; Davis et al., 2008).

Therefore, it is very important to study the relationship between soil microbial diversity
and plants to understand the occurrence and development of crop root rot. Plants depend
on the ability of roots to communicate with rhizosphere soil microorganisms through
signaling pathways, creating a connection between plants and microorganisms (Meena
et al., 2013; Li et al., 2016; Kumar et al., 2017). The composition of the rhizosphere soil
microbiota can negatively or positively influence plant traits such as stress tolerance,
health, development, and productivity (Kristin & Miranda, 2013; Lakshmanan, Selvaraj &
Bais, 2014; Miao et al., 2016). The plant, in turn, cultivates the structural and functional
diversity of microbial communities in the rhizosphere soil by adjusting soil pH,
releasing secondary metabolites into the rhizosphere soil (Chakraborty et al., 2011;
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Meena, Rakshit & Meena, 2016; Kumar et al., 2017), reducing competition for beneficial
microbes, and providing an energy source, mostly in the carbon-rich rhizosphere soil
(Davis et al., 2008; Rashida et al., 2016). Nutrients are also drivers for rhizosphere soil
community structure. Soil-plant-microbial health must remain in equilibrium to maintain
sustainable agricultural practices (Kumar et al., 2017; Narula, Anand & Dudeja, 2013;
Ramırez-Bahena et al., 2013). Under unfavorable conditions, some fungi can cause plant
diseases and sometimes even total loss of crop yields (Miao et al., 2016).

In addition to agrochemicals (Handiseni et al., 2013), fertilization (Phillips & Fahey,
2007; Ai et al., 2015), soil types (Buyer, Roberts & Russek-Cohen, 1999; Rasche et al., 2006),
tillage (Lupwayi, Rice & Clayton, 1998) and crop rotation (Kirkegard et al., 2008;Wintera,
Mol & Tiedemann, 2014), which can influence rhizosphere soil microorganisms, the
structure and function of rhizosphere soil microbiota may also be affected by the plant
physiology of different plant genotypes (Söderberg, Olsson & Bååth, 2002; Rasche et al.,
2006) and may also fluctuate among the vegetation stages of the same plant genotype
(Gyamfi et al., 2002; Rasche et al., 2006). Plant growth stage influences root physiology
and changes the quality and quantity of root exudates; consequently, these changes select
for different root-associated microorganisms at different growth stages (Dunfield &
Germida, 2003; Houlden et al., 2008; Li et al., 2014). The purpose of this study was to
study the diversity of fungi, the variation in community structure and the trends in the
microbial species in the rhizosphere soil of healthy and diseased wheat roots at different
heading and filling stages of wheat growth. Additionally, by combining these results
with the physical and chemical properties of soil, the possible causes of wheat root rot
disease were revealed, providing an important theoretical basis and practice for the
improved control of wheat root rot disease.

MATERIALS & METHODS
Rhizosphere soil sampling
Field experiments were approved by the Research Council of the Institute of Plant
Protection and Soil & Fertilizer, Hubei Academy of Agricultural Sciences (project
number:17.035.18).

The Institute of Plant Protection and Soil & Fertilizer, Hubei Academy of Agricultural
Sciences granted Ethical approval to carry out the study within its facilities (Ethical
Application Ref: hb375-a6c3d).

In Xiangyang Original Farm, from wheat filling stage in early April to dough stage in
May, the physiological growth of wheat plants changed rapidly, and the root exudates
changed sharply from April to May, which were important factors influencing the great
changes of rhizosphere microorganisms. In addition, the rapid change of temperature is
also an important factor. The temperature is around 17 degrees in early April and 24
degrees in early May.

From 2010 to 2016, we conducted the investigation and efficacy control test of wheat
root rot disease in Xiangyang Original Farm for six consecutive years. According to
our investigation and experiment, we found that the root rot of wheat plantation in
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Xiangyang Original Farm occurred seriously (the disease index reaches 43% Fig. 1A), and
the main pathogenic factors were continuous cropping obstacle, large temperature
variation, rice and wheat crop rotation. The main root rot occurred in the wheat field of
Xiangyang Original Farm was caused mainly by Gaeumannomyce gramim (Sacc.) Arx et
Olivier, Pellicularia Rolfsii (Sacc.) West, Rhizoctonia cerealis and F. oxysporum F.S.P.
Niveum.

The symptoms of wheat root rot in April were not particularly obvious, so multiple
rhizosphere soil samples were collected from multiple points. Then, we defined and
selected rhizosphere soil samples collected in April by the sample area with the most
significant symptoms of wheat root rot in May (Fig. 1B). The sampling method consisted
of first investigating the occurrence of wheat root rot, selecting weak seedlings and
sampling the brown parts of the root as the diseased wheat rhizosphere. Areas with
diseased wheat and healthy wheat (the diameter of each area was not more than 10 m)
were marked by inserting cards at fixed points at least 10 m apart. Five samples were
collected from the healthy and diseased rhizosphere soil respectively in May, then we
selected five samples from the corresponding healthy and diseased wheat area respectively
in April.

The roots of the whole plant and the soil on the roots were collected. The majority of
soil on the roots was shaken off, and samples were collected for the determination of
physical and chemical soil properties. The rhizosphere soil samples wheat plants were
placed in a sealed pocket and quickly stored in a dry-ice box for dry-ice preservation. After
all the samples were collected, they were immediately brought to the laboratory and stored
in a cryogenic refrigerator for future use.

Figure 1 Sampling plots of wheat root. This picture mainly shows the readers the serious situation of
the root rot disease in the wheat field of Xiangyang Original Farm. After the occurrence of wheat root rot
disease, the ears of wheat is becoming abnormal white, and even false ripening in advance. Judging by this
phenotype, when the roots of wheat plants were dug out, it was observed that the diseased roots were
unusually brown, dark brown, and even black compared to the healthy roots. These diseased roots can
lead to plant death at a later stage, leading to crop failure. (A) The occurrence of wheat root rot in this
wheat field in 2015 and 2016. This land has a total of three acres, and 17 plots have been set up to test the
efficacy of wheat root rot. The disease index of the wheat root rot reached 43%. (B) The soil sample
collection of wheat root in this wheat field in 2017. Areas with diseased wheat and healthy wheat were
marked by inserting white cards at fixed points. The samples, in April and May, were collected from the
areas labeled in April. Full-size DOI: 10.7717/peerj.12601/fig-1
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Extraction and PCR amplification of total genomic DNA from
rhizosphere soil fungi
The soil attached to the root was brushed off, a 0.1-g soil sample was accurately weighed,
and the total genomic DNA from all samples was extracted according to the instructions
provided with an E.Z.N.A.� soil DNA Kit (Omega Biotek, Norcross, GA, USA). Total
DNA was detected by 1% agarose gel electrophoresis, and the purity and concentration of
DNA were determined with NanoDrop 2000 UV-vis spectrophotometer (Thermo
Scientific, Waltham, MA, USA). All DNA samples were stored in a refrigerator at −20 �C.
Fungal diversity was determined by amplifying the ITS1 region using the ITS1F and
ITS2R primer sets for fungi. The primer sequences were ITS1F 5′-CTTGGTCATT
TAGAGGAAGTAA-3′ and ITS2R 5′-GCTGCGTTCTTCATCGATGC-3′, and the
amplification conditions were predenaturation at 95 �C for 5 min, 27 cycles of 95 �C for
30 s, 55 �C for 30 s, and 72 �C for 45 s, and elongation at 72 �C for 5 min. Three replicates
of the PCR were performed, and a 20-mL reaction system (4 mL of 5× FastPfu buffer
solution, 2 mL of 2.5 mM dNTPs, 0.8 mL of primer (5 mM), 0.4 mL of FastPfu polymerase
and 10 ng of fungal total genomic DNA) was used.

Illumina HiSeq2500 sequencing
Purified amplicons were pooled in equimolar and paired-end sequenced on an Illumina
MiSeq PE300 platform/NovaSeq PE250 platform (Illumina, San Diego, CA, USA)
according to the standard protocols by Majorbio Bio-Pharm Technology Co. Ltd.
(Shanghai, China). The raw reads were deposited into the NCBI Sequence Read Archive
(SRA) database (accession number: PRJNA549031).

Data processing
The sequencing depth was more than 30,000 original reads per library. Raw fastq files were
demultiplexed, quality-filtered by Trimmomatic (Bolger, Lohse & Usadel, 2014) and
merged by FLASH 1.2.7 (Magoč & Salzberg, 2011) with the following criteria: (i) The
300 bp reads were truncated at any site receiving an average quality score of <20 over a
50 bp sliding window, and the truncated reads shorter than 50 bp were discard, reads
containing ambiguous characters were also discarded; (ii) only overlapping sequences
longer than 10 bp were assembled according to their overlapped sequence. The maximum
mismatch ratio of overlap region is 0.2. Reads that could not be assembled were
discarded; (iii) Samples were distinguished according to the barcode and primers, and the
sequence direction was adjusted, exact barcode matching, two nucleotide mismatch in
primer matching.

OTU and species community analysis
Operational taxonomic units (OTUs) with 97% similarity cutoff were clustered using
UPARSE version 7.1 (Edgar, 2013; Stackebrandt & Goebel, 1994) and chimeric sequences
were identified and removed using UCHIME. The taxonomy of each OTU representative
sequence was analyzed by RDP Classifier version 2.2 (Wang et al., 2007) against the
Unite (Release 7.0 http://unite.ut.ee/index.php) database using confidence threshold of
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70%. Finally, the effective tag data, low-frequency tag data, annotated tag data, and OTU
data obtained from each sample were counted by a script. Additionally, we used R software
to calculate the annotation ratio of OTUs and each taxonomic level and the relative
abundance of the species in each taxonomic level.

Based on the above valid OTU data, the following evolutionary analysis was carried out:
(a) evolutionary relationships and relative abundance information of species systems based
on OTU data in samples were determined, and species annotation results for a single
sample were visualized using KRONA software (http://sourceforge.net/projects/krona);
(b) related genera were selected, a phylogenetic tree for the OTUs of these genera was
constructed (QIIME software package: make_phylogeny.py: http://qiime.org/scripts/
make_phylogeny.html), and the systematic evolutionary relationship was displayed by
combining the relative abundance of OTUs and the reliability of annotation using a
Perl script; and (c) local Perl scripts were used to select the dedicated OTUs for
intrasample and intersample phylogenetic analysis and to compare relative abundance.

To analyze the community structure of species, relative abundance thermograms
were plotted at the OTU level and the genera level by R software. Alpha diversity was
analyzed using mothur software. The data of soil physical and chemical properties was
analyzed by SPSS 16.0 software. Cluster analysis and principal coordinate analysis (PCoA)
were also carried out to compare samples.

RESULTS
Fungal diversity in the rhizosphere soil of wheat root
According to the diversity index, the community richness and diversity of the diseased
groups were higher than those of the healthy groups in the heading stage, and there was
a significant difference in community diversity between the diseased group and the healthy
group (Shannon index: P < 0.01) (Table 1). High community richness can also be a factor
in disease suppression. However, the community richness and diversity of the disease
group and the healthy group in the filling stage were higher than those of the disease group
and the healthy group in the heading stage, and there was a significant difference between
the disease group and the healthy group in the heading stage (Sobs index: P < 0.05;
Shannon index: P < 0.05). The community richness and diversity of the healthy group in
the filling stage were higher than those of the diseased group in the filling stage.

Community structure of fungi in the rhizosphere soil
There were 1,393 OTUs distributed among six phyla, 346 genera and 549 species. The six
phyla were Ascomycota, Basidiomycota, Zygomycota, Chytridiomycota, Glomeromycota,

Table 1 The analysis of alpha diversity index in healthy and diseased groups.

Sample/Estimators Sobs Ace Chao Shannon Coverage

H4 129.40 142.21 142.14 3.03 0.9994

D4 135.60 154.71 149.52 3.37 0.9995

H5 163.40 178.98 180.19 3.41 0.9993

D5 155.80 160.04 161.46 3.32 0.9997
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and Blastocladiomycota (Fig. 2A). Among these phyla, Ascomycotawas the most abundant.
The richness values were 65.48% and 67.61% in healthy groups 4 and 5 (H4 and H5,
respectively), and 72.57% and 57.35% in diseased groups 4 and 5 (D4 and D5,
respectively), respectively, but there was no significant difference among the populations.
The other three phyla showed very interesting results. Basidiomycota had the highest
abundance in population H4 in the heading stage (25.3%). However, in the D4, D5 and H5
populations, the abundance was significantly decreased to 12.36%, 11.16% and 14.7%,
respectively. Significant differences were found between populations H4 and D4 and
populations D5 and H5 (P < 0.01). The abundance of Zygomycota in populations H4
and D4 was low in the heading stage (3.16% and 2.44%, respectively), but suddenly
increased to 9.87% (H5) and 7.42% (D5) in the filling stage. However, the trends in the
abundance of Chytridiomycota and Zygomycota were almost the opposite. The abundance
of Chytridiomycota in the heading stage groups was 4.52% (H4) and 7.18% (D4), and there

Figure 2 Comparative analysis of OTUs and genus levels in each community. (A) Principal coordi-
nate analysis (PCoA) at the OTU level in healthy and diseased groups at the heading stage and filling
stage. Distance algorithm is based on bray_curtis. (B) Sample hierarchical clustering analysis based on
OTU level. (C) Typing analysis of fungi at the genus level. Full-size DOI: 10.7717/peerj.12601/fig-2
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was a significant difference between these two groups. The abundance of Chytridiomycota
in population D4, a diseased group, was much higher than that in the healthy groups.
By May, the abundance of Chytridiomycota in population H5 decreased sharply to 1.37%,
while that of population D5 decreased to only 4.12%.

Excluding unclassified fungi, all fungi with richness greater than 1% in a single
group were counted (Table 2). There are 30 genera in the four groups belonging to
Ascomycota, Basidiomycota, Chytridiomycota and Zygomycota. Among these genera,
Chytridiomycota and Zygomycota had only one genus, Olpidiaster and Portierella,
respectively. Basidiomycota had seven genera, and Ascomycota had the largest distribution,

with 21 genera (Figs. 2B and 2C; Table 2). In the heading stage, the abundance of the most

Table 2 All fungi with a richness greater than one percent in each group. There are 30 genera in the
four groups, which mainly belong to Ascomycota, Basidiomycota, and Chytridiomycota.

Phylum Genus H4 D4 H5 D5

p__Ascomycota g__Microdochium 0.0184 0.0760 0.0455 0.0454

g__Apodus 0.0010 0.0662 0.0035 0.0314

g__Mycosphaerella 0.1291 0.0460 0.0609 0.0136

g__Scytalidium 0.0005 0.0309 0.0027 0.0168

g__Chaetomium 0.0028 0.0295 0.0029 0.0132

g__Alternaria 0.1489 0.0284 0.1160 0.0288

g__Aspergillus 0.0119 0.0274 0.0021 0.0035

g__Articulospora 0.0012 0.0271 0.0044 0.0045

g__Cistella 0.0010 0.0236 0.0015 0.0164

g__Acremonium 0.0103 0.0213 0.0165 0.0081

g__Epicoccum 0.0442 0.0160 0.0201 0.0057

g__Subplenodomus 0.0005 0.0134 0.0009 0.0001

g__Debaryomyces 0.0008 0.0108 0.0001 0.0003

g__Sarocladium 0.0193 0.0055 0.0127 0.0042

g__Fusarium 0.0021 0.0050 0.0197 0.0100

g__Gibberella 0.0122 0.0036 0.0083 0.0038

g__Cladosporium 0.0135 0.0027 0.0103 0.0013

g__Neosetophoma 0.0106 0.0025 0.0195 0.0008

g__Monographella 0.0114 0.0003 0.0259 0.0015

g__Ilyonectria 0.0025 0.0001 0.0210 0.0005

g__Cladorrhinum 0.0000 0.0000 0.0118 0.0000

p__Basidiomycota g__Agrocybe 0.0000 0.0255 0 0.0006

g__Cryptococcus 0.0726 0.0102 0 0.0161

g__Ceratobasidium 0.0009 0.0022 0 0.0109

g__Psilocybe 0.0049 0.0013 0 0.0214

g__Volvopluteus 0.0156 0.0011 0 0.0001

g__Cystofilobasidium 0.0319 0.0009 0 0.0003

g__Coprinopsis 0.0113 0.0006 0 0.0001

p__Chytridiomycota g__Olpidiaster 0.0432 0.0529 0 0.0128

g__Mortierella 0.0315 0.0244 0 0.0737
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highly abundant genera in population D4 was significantly decreased in population D5 at
the filling stage; however, the abundance of Mortierella significantly increased, the
abundance of one-third of the genera remained almost unchanged, and the abundance of
a few low abundance genera, such as Fusarium and Ceratobasidium, significantly
increased in the diseased population over time. Seven genera with high richness were
found in the H4 population at the heading stage, and the richness of these genera was
significantly increased in the H5 population at the grain filling stage; among these genera,
the variation in the richness of Microdochium, Mycosphaerella, Scytalidium, Acremonium
and Olpidiaster from the H4 population to the H5 population was the opposite of the
change in abundance from the D4 population to the D5 population. The richness of
13 genera did not markedly change, and the richness of four low-richness genera was
significantly increased at the grain filling stage compared with the heading stage.
In general, the following six genera showed no change in richness from the heading
stage to the grain filling stage, between the H5 and D5 populations and the H4 and
D4 populations, respectively, Alternaria, Sarocladium, Gibberella, Cladosporium,
Neosetophoma and Cystofilobasidium. The genera with significant or extremely significant
differences in richness among the groups were Alternaria, Mortierella, Cryptococcus,
Apodus, Epicoccum, Scytalidium and Chaetomium.

A Venn diagram of genera with richness greater than 1% was constructed (Fig. 2D).
There were 153 shared genera, 35 endemic genera that appeared most frequently in the
healthy group in the filling stage and seven and 10 genera in the heading stage and
filling stage, respectively. The results showed that the root exudates of diseased plants
specifically promoted the growth of microbial fungi, while the rhizosphere of healthy
plants was more suitable for the growth of various fungi. An increased diversity of soil
microorganisms promoted healthy plant growth.

PCoA of populations
The PCoA of fungal community structure in different samples based on OTU revealed that
the populations could be divided into two groups: the healthy group and the diseased
group (Figs. 3A and 3B). There was no overlap between the two groups, which
indicated that the samples were consistent with the expectation and that the microbial
community structures of the diseased group and the healthy group were quite different.
The diseased group at the heading stage was significantly separated from the diseased
group at the filling stage, and the microbial community structure was quite different.
The healthy group at the heading stage and the healthy group at the filling stage were also
clearly separated, and the microbial community structure was quite different. In addition,
according to the flora classification, all rhizosphere fungi were divided into two types
(Fig. 3C): type one included the diseased group, and type two included the healthy group.
Only sample H5-5 was assigned to type one.

Effects of physical and chemical soil properties on rhizosphere fungi
The main physical and chemical properties of soil measured were total phosphorus (TP),
ammonium nitrogen (NH4), nitrate nitrogen (NO3), total nitrogen (TN), pH, soil density
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(SD), total carbon (TC) and the soil dry-humidity ratio (DHR) (Table 3). TP and TC
decreased and NH4 increased from the heading stage to the filling stage. Moreover, the
NO3 and TN of the diseased group were higher than those of the healthy group, and the
pH value and SD of the diseased group were lower than those of the healthy group.
Heatmap cluster analysis based on Spearman correlation coefficients for the 30 genera with

Figure 3 Species composition analysis. (A) Percent community abundance at the phylum level in each
groups. (B) Species abundance clustering at genus level in each sample. (C) Circos representation
showing distribution of genus with significant difference in abundance in different groups. (D) Analysis
of common and endemic genera in the different populations by Venn diagram.

Full-size DOI: 10.7717/peerj.12601/fig-3

Table 3 The physical and chemical properties of the rhizosphere.

Sample ID TP NH4 NO3 TN pH SD TC DHR

H4 4.16 ± 0.13 16.02 ± 3.27 26.38 ± 6.03 204.1 ± 30.94 7.18 ± 0.06 2.68 ± 0.06 9.82 ± 1.37 86.26 ± 1.32

D4 4.13 ± 0.21 14.04 ± 2.62 30.97 ± 5.95 251.48 ± 21.09 6.95 ± 0.08 2.42 ± 0.05 10.56 ± 2.25 85.15 ± 0.84

H5 3.82 ± 0.18 17.45 ± 4.20 23.48 ± 2.23 217.65 ± 49.43 7.15 ± 0.07 2.5 ± 0.03 7.93 ± 0.71 89.77 ± 0.32

D5 3.84 ± 0.16 18.71 ± 2.41 29.38 ± 3.82 237.39 ± 52.74 6.76 ± 0.15 2.48 ± 0.03 8.54 ± 0.43 88.77 ± 0.21

Note:
TP, total phosphorus; NH4, ammonium nitrogen; NO3, nitrate nitrogen; TN, total nitrogen; SD, soil density; TC, total carbon; DHR, soil dry-humidity ratio.
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the most richness and these physical and chemical indicators was performed (Fig. 4).
The graph shows that pH and SD have the greatest influence on microbial abundance,
and the influence of these factors is in the same direction. Soil density refers to the dry
weight of unit volume soil (g/cm3) (not including soil pore), which also represents water
saturation. Soil density can affect the soil microbial diversity and community structure.
One-third of the genera were positively or significantly positively correlated with both pH
and SD, and one-third were negatively or significantly negatively correlated with both
pH and SD. The effects of NO3 and TN on microbial richness were similar, but the impact
of these factors on microbial species richness was almost the opposite of that of pH and
SD. From our results, there is relationship between them, but from previous similar
research, there is no necessary reverse relationship between them. Soil DHR and TP had
moderate effects on microbial richness. The physical and chemical properties of soil with
the least influence on microbial abundance were NH4 and TC.

Figure 4 Hierarchical clustering analysis at the OTU level between physical and chemical soil
properties and the 30 most abundant genera. �, �� and ��� represent significant difference P < 0.05,
P < 0.01 and P < 0.001, respectively. Full-size DOI: 10.7717/peerj.12601/fig-4
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DISCUSSION
Microbial diversity in soil is an important factor that determines soil health and is
considered one of the main contributors to soil suppressiveness (Xu et al., 2012;Miao et al.,
2016). The rhizosphere is one of the most complex environments; rhizospheres are
influenced by plant roots and are an active microhabitat where plant roots and microbes
interact (Xu et al., 2012; Mendes, Garbeva & Raaijmakers, 2013; Singh, Singh & Dubey,
2014). Throughout the heading and filling stages of wheat, the fungi in the rhizosphere
soil showed high diversity. The diversity of soil fungi at the grain filling stage was
significantly higher than that at the heading stage. It is already well known that most crops
can significantly benefit from establishing associations with diverse soil microbes (Kristin
& Miranda, 2013). Plants stimulate or inhibit the growth of specific rhizosphere
microorganisms by releasing secondary metabolites into the rhizosphere (Chakraborty
et al., 2011; Meena, Rakshit & Meena, 2016; Kumar et al., 2017). For example, Flavonoids
can resist root bacteria (there are many studies on fungi) and play a bactericidal effect in
the way of cell death: compounds are oxidized to release toxic active ions leading to
cell death; Degradation of ATPASE and mitochondrial respiratory electron transporter on
the membrane to achieve cell death (Zhalnina et al., 2018). In the rhizosphere soil of
wheat root rot disease, the interaction between wheat and microorganisms was intense,
and the diversity and richness of the fungal community in the rhizosphere soil of the
diseased group were significantly higher than that of the healthy group, creating conditions
for the occurrence of wheat root rot. However, at the filling stage, wheat roots were
clearly diseased due to infection by pathogenic fungi. During this process, the metabolites
secreted by wheat roots tend to be less (Chen, Waghmode & Sun, 2019). As a result,
the fungi in the rhizosphere of diseased plants showed lower community diversity and
richness than those in the rhizosphere of healthy plants. The interaction between
rhizosphere fungi and wheat roots in the healthy group reached an optimal balance
during the filling stage and then became mutualistic, which was favorable for the healthy
growth of the fungi and wheat. Therefore, in the filling stage, the diversity and richness of
fungi in the rhizosphere were higher in the healthy group than in the diseased group.

The richness change analysis at the phylum level revealed that the phylum with the
highest richness was Ascomycota, which consisted of more than 60% of all healthy and
diseased groups, and there was no significant difference among groups. However,
the main pathogenic fungi that cause wheat root rot disease, such as F. culmorum,
F. pseudograminearum, G. graminis var. Tritici, B. sorokiniana and Alternaria spp., are
in this phylum. There are also some fungi that cause wheat root rot in the phylum
Basidiomycota, such as Rhizoctonia oryzae, R. solani and Penicillium spp (Almasudy,
You & Barbetti, 2015; Barnett, Ballard & Franco, 2019; Gqozo et al., 2020; Zhang, Yu &
Wang, 2021). This phylum showed high richness in the healthy group at the heading stage
(25.3%), but the richness of this phylum was significantly decreased in the other groups
(<14%). Analysis of the abundance of these two phyla shows that the impact of the
fungi that cause wheat root rot disease is not due to phylum-level abundance. The richness
of two other phyla, Zygomycota and Chytridiomycota, which contain almost no root rot
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fungi, showed notable differences between the heading and filling stages in the healthy
group but showed no significant differences between these stages in the diseased groups.
This change in abundance may contribute to the healthy growth of wheat roots or may be a
cofactor in the occurrence of wheat root rot disease.

Relative to the changes at the phylum level, levels of richness at the genera level varied
greatly. The abundance of most genera with high richness decreased significantly from the
heading stage to the filling stage in the diseased groups; the richness of approximately
one-third of all genera remained unchanged, and only very few low-richness genera, such
as Fusarium and Ceratobasidium, had a very significant increase in richness over time.
In the healthy group, the abundance of most genera increased significantly from the
heading stage to the filling stage, except for some genera whose abundance did not
markedly change or very few genera whose abundance increased significantly. This result
also shows that the interactions between wheat roots and rhizosphere fungi must
achieve a balance. If this balance is lost, the wheat roots will become diseased. From the
analysis of the endemic genera in each group, we also found that there were 35 endemic
genera in the healthy group, which was many more than the approximately 10 endemic
genera in the diseased group, indicating that the healthy growth of wheat roots can
promote plant growth and suppress disease through various activities that prevent
infection by pathogens. Therefore, the rhizosphere microorganisms show improved
growth, and the microbial diversity and community richness are also significantly
increased in the healthy plants compared with the diseased plants.

Fungi and fungus-like organisms form one of the most diverse groups of eukaryotes and
represent an essential functional component of soil microbial communities (Buée et al.,
2009; Miao et al., 2016). Under unfavorable conditions, some fungi can cause plant
diseases and sometimes even the total loss of crop yields. In many instances, these diseases
are caused by a complex of fungal species (Miao et al., 2016). Only Alternaria and
Fusarium, genera with richness values greater than one percent, have been documented to
cause wheat root rot, but the abundance of these two genera is not high. Although the
abundance of Alternaria in the diseased groups was significantly higher than that in
the healthy groups, there was no significant change between the heading stage and filling
stage. The abundance of Fusarium in the filling stage was significantly higher than that
in the heading stage. Considering the abundance of these two pathogens, the richness level
of a fungus does not indicate whether it can lead to wheat root rot. In addition, other
pathogenic fungal genera mentioned in the literature were determined to have less than
one percent abundance. Therefore, we can speculate that as long as these fungal genera
exist in the rhizosphere, they can lead to wheat root rot disease, regardless of the
abundance. However, whether a fungus can induce root rot disease depends on the result
of the interaction between wheat root and rhizosphere microorganisms, which is also
closely related to seasonal climatic conditions (Campanella et al., 2020).

Differences in the fungal community structure among groups can clearly demonstrate
the heterogeneity of each group, thus showing why there are so many differences in the
rhizosphere fungi of the diseased groups and the healthy groups (Karuppiah et al.,
2020). PCoA clustering analysis clearly clustered the four groups into two groups: the

Zhang et al. (2021), PeerJ, DOI 10.7717/peerj.12601 13/21

http://dx.doi.org/10.7717/peerj.12601
https://peerj.com/


healthy group and the diseased group. However, the healthy group and the diseased group
were each clearly separated into the heading stage and grouting stage. In addition, all
rhizosphere fungi were divided into two types according to flora classification: one type
included only the healthy group, and the other type included only the diseased group.
When wheat roots were attacked by microorganisms and developed root disease, the
structure of the rhizosphere fungal community was markedly changed (Stephen, Ross &
Christopher, 2019). To differentiate between the fungi located very close to the epidermis in
the root zone and to protect against the invasion of heterogeneous microbes, plants
continuously secrete signaling molecules, which allows for the development of pathogenic,
associative, symbiotic, or naturalistic relationships between microbes and the plant
(Kumar et al., 2017; Hayat et al., 2010).

At the heading stage, the root is slightly diseased, and the interaction between wheat
roots and rhizosphere fungi is the most intense, resulting in marked heterogeneity of the
soil environment and inducing a high level of rhizosphere fungal diversity and a complex
community structure. However, at the filling stage, the wheat roots are completely
diseased. At this time, the soil environment is stable, and the material secreted by wheat
roots is relatively limited, which leads to a decrease in the microbial diversity of the
rhizosphere and a relatively simple community structure. Soil-plant-microbial health must
be maintained at an equilibrium to maintain sustainable agricultural practices (Narula,
Anand & Dudeja, 2013; Ramırez-Bahena et al., 2013; Kumar et al., 2017). At the heading
stage, the antagonistic interaction between healthy wheat roots and rhizosphere fungi
reaches a balance and promotes the healthy growth of wheat and fungi. By the filling
stage, the ecological environment, such as temperature, humidity and other factors, is
improved, the rhizosphere microbial diversity naturally significantly increases, and the
community structure becomes more complex. When microbial diversity increases, the
beneficial microorganisms will also increase, which will improve the inhibitory effect of
plant roots, thus reducing the occurrence of plant root rot (Hu et al., 2016).

Biotic and abiotic factors are assumed to influence the structural and functional
diversity of the microbial communities in the rhizosphere (Berg & Smalla, 2009; Weinert
et al., 2011). Site properties, including soil type, climatic conditions and type of agricultural
management, have been shown to strongly influence the relative composition of
rhizosphere microbial communities (Heuer et al., 2002; Kowalchuk et al., 2002; Berg et al.,
2006; Costa et al., 2006; Bremer et al., 2007; Weinert et al., 2010). Changes in the physical
and chemical properties of soil also have a significant impact on fungal diversity and
community structure in crop rhizospheres. Soil physical and chemical properties are
determined not only by the nature of the soil itself but also by the physical and chemical
properties of the soil after the interaction between crop roots and rhizosphere fungi.
The physical and chemical soil properties we measured were determined in soil collected
around the rhizosphere of wheat (Zhang, Vivanco & Shen, 2017). Organisms that are
present in the rhizosphere microbiota can have profound effects on the growth, nutrition
and health of plants in agroecosystems (Bonfante & Anca, 2009; Mendes et al., 2011;
Meena et al., 2015; Kumar et al., 2017). TP and TC decreased from the heading stage to the
filling stage, indicating that the later the growth period was, the less TP and TC was

Zhang et al. (2021), PeerJ, DOI 10.7717/peerj.12601 14/21

http://dx.doi.org/10.7717/peerj.12601
https://peerj.com/


needed; however, these metrics seemed unrelated to the occurrence of diseases.
In addition, the levels of NH4, NO3 and TN in the diseased group were higher than
those in the healthy group at the heading and filling stages, indicating that their increase
contributed to the occurrence of wheat root rot disease. Too much ammonium nitrogen
and total nitrogen can easily damage the root system of the plant, then it can easily attract
pathogenic fungi to attack the damaged root system of the plant, resulting in the
occurrence of root to disease (Zhang et al., 2021). In contrast, the pH and SD of the soils
around diseased plants were lower than those of the soils around healthy plants at the
heading and filling stages. This finding indicated that relatively low pH and SD values
were beneficial to the occurrence of wheat root rot disease. The heatmap cluster analysis of
the physical and chemical soil indicators and the 30 most abundant genera also showed
that soil pH and SD affected fungal abundance and diversity in the same direction.

CONCLUSIONS
In the rhizosphere, many plant-microbial interactions occur that mediate soil processes
(Kumar et al., 2017). The occurrence of crop root rot disease is closely related to the
interaction between rhizosphere microorganisms and crop roots, as well as the physical
and chemical properties of soil. At present, there are approximately 10 types of fungi that
can cause wheat root rot disease alone or in a complex, according to the literature.
By studying the diversity of fungi and the community structure of the rhizospheres of
healthy and diseased wheat at different growth stages, the heading and filling stages, it was
revealed that in the early stages of illness, the high diversity of rhizosphere fungi and a
complex community structure can easily cause wheat root rot disease. Additionally, the
existence of pathogenic fungi is a necessary condition for wheat root rot disease, but the
richness of pathogenic fungi is not necessarily important. Based on the physical and
chemical properties of the soil, an increase in NH4, NO3 and TN contributes to the
occurrence of wheat root rot disease. Soil pH and SD had the greatest influence on the
abundance and diversity of rhizosphere fungi, and the influence was in the same direction;
low soil pH and SD are beneficial to the occurrence of wheat root rot disease.
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