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Abstract

Alzheimer’s disease (AD) affects the quality of life as it causes; memory loss, difficulty in

thinking, learning, and performing familiar tasks. Resting-state functional magnetic reso-

nance imaging (rs-fMRI) has been widely used to investigate and analyze different brain

regions for AD identification. This study investigates the effectiveness of using correlated

transfer function (CorrTF) as a new biomarker to extract the essential features from rs-fMRI,

along with support vector machine (SVM) ordered hierarchically, in order to distinguish

between the different AD stages. Additionally, we explored the regions, showing significant

changes based on the CorrTF extracted features’ strength among different AD stages. First,

the process was initialized by applying the preprocessing on rs-fMRI data samples to reduce

noise and retain the essential information. Then, the automated anatomical labeling (AAL)

atlas was employed to divide the brain into 116 regions, where the intensity time series was

calculated, and the CorrTF features were extracted for each region. The proposed frame-

work employed the SVM classifier in two different methodologies, hierarchical and flat multi-

classification schemes, to differentiate between the different AD stages for early detection

purposes. The ADNI rs-fMRI dataset, employed in this study, consists of 167, 102, 129, and

114 normal, early, late mild cognitive impairment (MCI), and AD subjects, respectively. The

proposed schemes achieved an average accuracy of 98.2% and 95.5% for hierarchical and

flat multi-classification tasks, respectively, calculated using ten folds cross-validation.

Therefore, CorrTF is considered a promising biomarker for AD early-stage identification.

Moreover, the significant changes in the strengths of CorrTF connections among the differ-

ent AD stages can help us identify and explore the affected brain regions and their latent

associations during the progression of AD.
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Introduction

Alzheimer’s disease (AD) is a type of neurodegenerative disease, considered a crucial public

health problem due to the increase of AD patients worldwide [1, 2]. The symptoms and cogni-

tive abilities of AD patients decline over time as a result of the progressive degeneration and

death of nerve cells, which affects the quality of life as it causes memory loss, difficulty in think-

ing, learning, performing familiar tasks, and determining the place, and time [3–7]. AD cogni-

tive declination begins several years before becoming noticeable [4]. However, with the

progression of this disease, the symptoms become more deleterious, which obstruct the ability

of patients to perform their daily activities.

In 2017, AD was the sixth leading cause of death in the US, as it accounted for 121,404

deaths [4]. For elderly patients with age� 65 years, diagnosed with AD or other dementia, the

estimated healthcare costs $305 billion in 2020 [8]. However, up to date, available pharmaco-

logic treatments of AD cannot stop or prevent the nerve cell destruction caused by the disease

progression [4]. Consequently, early detection of AD is essential in improving the patient’s

quality of life and society at a large scale. Furthermore, the early detection of AD while localiz-

ing the affected regions will allow researchers to improve the available treatment plan, which

may help stop or prevent AD progression and severity. The diagnosis of AD is currently based

on the medical history of individuals and their families and the physical and neurological

examinations [8]. Additionally, resting-state functional magnetic resonance imaging (rs-

fMRI), measuring the subtle changes in brain functional connectivity (FC), has become one of

the emerging AD biomarkers [9].

Traditional machine learning techniques have been widely used to investigate rs-fMRI for

AD identification [10–13]. Zhang et al. [10] used graph theory to measure and analyze the rela-

tionship between different brain networks’ connectivity changes using rs-fMRI data. They

aimed at discriminating between EMCI and LMCI by calculating Pearson’s correlation coeffi-

cients from functional brain network time series at three different frequency bands with

ranges; 0.01–0.08 Hz; 0.027–0.08 Hz; and 5: 0.01–0.027 Hz. The authors reported an accuracy

of 83.9% using a dataset formed of 33 EMCI and 29 LMCI. Yuhu et al. [11] proposed identify-

ing AD patients from NCs based on the FCs of activated voxels extracted using independent

component analysis (ICA) from fMRI data. T-test was employed to study the significance of

the correlation coefficient, calculated between the different activated voxel pairs. Finally, the

SVM classifier was used to differentiate between AD patients and NCs. The authors achieved

an accuracy of 92.9% using a dataset formed of 67 AD patients and 76 NCs. Furthermore,

SVM was combined with graph theory to discriminate between MCI, AD, and NCs, where

SVM trained using graph extracted features from 264 regions based on Power Brain atlas,

achieving an accuracy of 88.40% using a dataset formed of 89 MCI, 34 AD, and 45 NCs [12].

Later, the same team employed Graph theory and SVM, applied on 90 regions, extracted based

Automatic Anatomical Labeling (AAL) atlas [13]. This algorithm achieved 100% accuracy

using a dataset formed of 20 AD and 20 NCs.

The transfer function approach had been employed to study brain activity using rs-fMRI as

a new biomarker describing the propagation of visual information transferred between the

brain’s visual areas [14–16]. Zayed et al. [14] investigated the significance of the correlation

transfer function (CorrTF) in classifying the optic neuritis (ON) patients and NCs in two dif-

ferent conditions; opened eyes focused on a fixed point and closed eyes, where the visual infor-

mation propagation transfer function was employed. The preliminary findings of this study

suggest the potential usage of CorrTF in the analysis of rs-fMRI data to measure the impact of

ON disease on the inter-regional communication between the visual areas of the brain. It is

worth noting that the CorrTF was also employed in several studies distinguishing between ON
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and NCs [15, 16]. Both ON and AD of neurodegenerative diseases occur when nerve cells in

the brain or peripheral nervous system lose function over time and ultimately die. All neurode-

generative diseases affect different brain regions and their way of communication. However,

we aim to discover how CorrTF can help us identify AD stages based on altered brain

communications.

Several studies have used rs-fMRI analysis and Deep learning algorithms to analyze and

diagnose the different brain disorders [5, 17–23]. Suk et al. [17] aimed to diagnose MCI

patients using deep learning techniques and state-space modeling. The authors trained a deep

autoencoder (DAE) with the preprocessed mean intensity time signals, calculated for 90 AAL

atlas brain regions to extract the nonlinear relations in a hierarchical and unsupervised man-

ner. The extracted features were then fed to Hidden Markov Model (HMM) to model the func-

tional dynamics for both MCI and NC. The authors employed an in-house collected dataset

and the ADNI dataset, where the accuracy of 81% and 72.6%, respectively, has been achieved.

Ronghui et al. [5] calculated Pearson’s correlation for the mean-time series using 90 brain

regions extracted based on the AAL atlas. The correlation coefficients have been used to train

the DAE with a softmax classifier. The algorithm was validated in a dataset of 91 MCIs, and 79

NCs, achieving 86.5% accuracy. Furthermore, Qureshi et al. [18] utilized a 3D-CNNs model,

trained using rs-fMRI features extracted using Independent Component Analysis (ICA) to

estimate the AD severity. They divided the AD patients into two groups according to the dis-

ease severity, named mild and moderate. The dataset consists of 77 and 56 for mild and mod-

erate subjects, respectively. Their framework achieved an accuracy of 92.3%. Ramzan et al.

[19] combined the deep residual neural networks (RNN) with the transfer learning approach

to classify six stages of AD. They trained the RNN network using rs-fMRI volumes

concatenated to form 2D Image/ subject. Using dataset consisted of 25 NC, 25 significant

memory concerns (SMC), 25 EMCI, 25 LMCI, 13 MCI, and 25 AD. The authors reported an

overall average accuracy of 97.9%.

This study aims at investigating the potential of the CorrTF as a feature extraction module

to identify the different stages of AD patients. Moreover, we are interested in extracting fea-

tures that describe the inter-regional communication between the different brain areas. The

proposed framework feds the hierarchical scheme extracted CorrTF features, calculated for

116 brain regions, to a hierarchical scheme to discriminate between NC, EMCI, LMCI, and

AD subjects.

Materials and methods

Dataset

The dataset employed in this study was downloaded from the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) database. The ADNI was launched in 2003 as a public-private partner-

ship led by principal investigator Michael W. Weiner, MD. ADNI dataset consists of PET,

different MRI structural and functional datasets, genetic data, clinical and neuropsychological

examinations. The primary goal of ADNI is to test whether these techniques can be combined

to diagnose and assess the progression of MCI and early AD. All ADNI studies are conducted

according to the Good Clinical Practice guidelines, the Declaration of Helsinki, and U.S. 21

CFR Part 50 (Protection of Human Subjects) and Part 56 (Institutional Review Boards). Writ-

ten informed consent was obtained from all participants before protocol-specific procedures

were performed. The Institutional Review Boards approved the ADNI protocol of all partici-

pating institutions; for up-to-date information, see www.adni-info.org.

In this study, 371 subjects, formed of 189 female and 182 male, were employed from ADNI,

categorized into four groups; normal controls (NCs), Early MCI (EMCI), Late MCI (LMCI),
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and AD patients, as reported in Table 1. The rs-fMRI images were acquired using 3.0 Tesla

Philips Achieva scanners, where Echo Planner Imaging (EPI) scan protocol with Echo Time

(TE) = 30 ms, Repetition Time (TR) = 3000 ms, flip angle = 80˚, pixel size = 3.3 × 3.3 mm,

acquisition matrix size = 64 × 64, and slice thickness = 3.3 mm, with 48 slices and 140

volumes.

A complete description of ADNI is available at http://adni.loni.usc.edu/. Moreover, the data

access requests are to be sent to http://adni.loni.usc.edu/data-samples/access-data/.

Methodology

Data preprocessing and brain network analysis. The standard preprocessing steps for

rs-fMRI are performed using the Statistical Parametric Mapping (SPM12) software package

[24], as shown in Fig 1. It includes discarding each subject’s first ten time-point volumes to

guarantee magnetization equilibrium, slice time correction for interleaved acquisition, realign-

ment for subject motion correction, and co-registration between the functional and structural

images. The images were then normalized to the SPM12 EPI template and smoothed with a 4

mm full-width half-maximum Gaussian kernel. Later, each volume was divided into 116

regions of interest (ROIs) according to the AAL atlas, as listed in Table 2 [25–27]. Finally, the

mean intensity time series for each ROI was extracted and filtered using a band-pass filter at

0.01–0.08 Hz to reduce non-neuronal contributions to blood-oxygenation-level-dependent

(BOLD) signal fluctuations. Consequently, each subject was represented by a matrix with

116×130, representing the time-series signal for each region.

CorrTF feature extraction. The CorrTF measures the amount of information transferred

from the input ROI to the output ROI. In this context, the characteristics of the functional con-

nectivity path between any pairs of regions can be predicted. The destruction of the nerve cells

during AD alters the connectivity path between the affected regions. Therefore, variations in

Table 1. Overview of rs-fMRI study groups.

Study group No. of subjects Range of age

NC 167 65–96

EMCI 102 57–83

LMCI 129 57–88

AD 114 58–89

NC: Normal Control, EMCI: Early Mild Cognitive Impairment, LMCI: Late MCI, AD: Alzheimer Disease.

https://doi.org/10.1371/journal.pone.0264710.t001

Fig 1. Block diagram of the AD diagnosing model using CorrTF features and CNN.

https://doi.org/10.1371/journal.pone.0264710.g001
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the connectivity path might have the powerful ability to distinguish between normal and dis-

eased subjects [15].

Theoretically, the transfer function models the system’s output for each possible input [28,

29], as shown in Fig 2. The relationship between output y(t) and input x(t), for any system, can

be modeled using

yðtÞ ¼
Z 1

� 1

x tð Þhðt � tÞdt ð1Þ

where the h(t) is the impulse response that defines the system behavior. While the relationship

in the frequency domain can be modeled using

Y fð Þ ¼ X fð ÞHðf Þ ð2Þ

where Y(f), X(f) and H(f) are the Fourier transform of the y(t), x(t, and h(t) respectively. Simi-

larly, this definition can be interpreted to model the connectivity path between any pair of

brain regions, as illustrated in

CorrTF ROI1;ROI2ð Þ ¼
FðROI1Þ
FðROI2Þ

�
�
�
�

�
�
�
� ð3Þ

where CorrTF (ROI1, ROI2) is the transfer function calculated between the mean time series of

ROI1 and ROI2, Ƒ is the discrete Fourier Transform. The correlation matrices were calculated

using Eq (3) between each pair of the 116 ROIs [14]. The size of extracted CorrTF matrix would

be 116×116×130 per subject. The CorrTF matrices were Fisher’s r-to-z transformed to stan-

dardize the feature vector to yield a zero mean and unit variance [30]. Each CorrTF matrix was

averaged through the time points, which yielded the final feature matrix of 116×116. Among

Table 2. The ROIs extracted from the different based on 116 AAL template.

ROI Label Abb. ROI Label Abb. ROI Label Abb.

Amygdala AMYG. Frontal_Mid_Orb ORBmid Precuneus PCUN

Angular ANG. Frontal_Mid MFG Putamen PUT

Calcarine CAL Frontal_Sup_Medial SFGmed Rectus REC

Caudate CAU Frontal_Sup_Orb ORBsup Rolandic_Oper ROL

Cerebelum_10 CRBL10 Frontal_Sup SFGdor Supp_Motor_Area SMA

Cerebelum_3 CRBL3 Fusiform FFG SupraMarginal SMG

Cerebelum_4_5 CRBL45 Heschl HES Temporal_Inf ITG

Cerebelum_6 CRBL6 Hippocampus HIP Temporal_Mid MTG

Cerebelum_7b CRBL7b Insula INS Temporal_Pole_Mid TPOmid

Cerebelum_8 CRBL8 Lingual LING Temporal_Pole_Sup TPOsup

Cerebelum_9 CRBL9 Occipital_Inf IOG Temporal_Sup STG

Cerebelum_Crus1 CRBLCrus1 Occipital_Mid MOG Thalamus THA

Cerebelum_Crus2 CRBLCrus2 Occipital_Sup SOG. Vermis_10 Vermis10

Cingulum_Ant ACG Olfactory OLF Vermis_1_2 Vermis12

Cingulum_Mid DCG Pallidum PAL Vermis_3 Vermis3

Cingulum_Post PCG ParaHippocampal PHG Vermis_4_5 Vermis45

Cuneus CUN Paracentral_Lobule PCL Vermis_6 Vermis6

Frontal_Inf_Oper IFGoperc Parietal_Inf IPL Vermis_7 Vermis7

Frontal_Inf_Orb ORBinf Parietal_Sup SPG Vermis_8 Vermis8

Frontal_Inf_Tri IFGtriang Postcentral PoCG Vermis_9 Vermis9

Frontal_Med_Orb ORBsupmed Precentral PreCG

https://doi.org/10.1371/journal.pone.0264710.t002

PLOS ONE Alzheimer identification based on correlation transfer function using resting-state fMRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0264710 April 12, 2022 5 / 17

https://doi.org/10.1371/journal.pone.0264710.t002
https://doi.org/10.1371/journal.pone.0264710


these features, we selected the discriminative features between normal subjects and AD different

stages using a statistical t-test, where the selected features had a p-value less than 0.05.

Classification and performance evaluation. Support vector machine (SVM) classifier

was employed here to differentiate between the normal subjects and the different stages of AD.

The SVM classifier is a supervised machine learning model that learns the hyperplane or a set

of hyperplanes that gives the largest minimum distance to the training examples [31]. The

SVM was trained using the significant CorrTF connections, selected using a statistical t-test.

We adopt two classification schemes, named; flat and hierarchical multi-classification

schemes. In the flat multi-classification scheme, a single machine was learned to classify any

test case into four classes; NC, EMCI, LMCI, or AD. While, in the hierarchical scheme, Super-

classes were formed by aggregating the subclasses to form binary classifiers following a one

versus all concept [32], as shown in Fig 3. The hierarchical scheme usually improves the

Fig 2. Representation of the transfer function H(f) for the system in time and frequency domain.

https://doi.org/10.1371/journal.pone.0264710.g002

Fig 3. Hierarchical classification scheme to identify the stage of Alzheimer’s disease into NC, EMCI, LMCI, and

AD.

https://doi.org/10.1371/journal.pone.0264710.g003
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accuracy when the classes to be predicted are hieratically related [33]. Additionally, the learn-

ing of the different classifiers is independent of each other and can be implemented in parallel.

Moreover, the hierarchical scheme helps to address some of the classes suffering from imbal-

anced dataset issues [34].

In this design, the mentioned hierarchy was selected based on the performance of the

binary classification models’ accuracies, reported in Table 3, between each pair of classes,

which minimizes the propagated error between the successive levels by classifying highly sepa-

rated classes at top layers of the architecture. Furthermore, it takes advantage of the disease

progression to differentiate between classes. In our hierarchical scheme, the first layer discrim-

inates between the AD subjects and the rest of the classes. Then, the classifier initiates the sec-

ond layer if the test case class is not AD. This layer’s classifier is to differentiate the incoming

case into either NC or MCI. Finally, the third layer differentiates between the different classes

of MCI, named EMCI or LMCI.

In order to evaluate the performance of the different schemes, a ten-fold cross-validation

technique is employed to measure the accuracy, specificity, sensitivity, positive predictive

value (PPV), and negative predictive value (NPV), calculated using the following equations:

Accuracy ¼
TP þ TN

TP þ FPþ FN þ TN
ð4Þ

Specificity ¼
TN

TN þ FP
ð5Þ

Sensitivity ¼
TP

TP þ FN
ð6Þ

PPV ¼
TP

TP þ FP
ð7Þ

NPV ¼
TN

TN þ FN
ð8Þ

Where TP: true positive, TN: true negative, FN: false negative, and FP: false positive.

Results

This paper proposes investigating the CorrTF features’ effectiveness in distinguishing between

AD’s three stages and normal subjects. The SVM classifier was trained hierarchically. More-

over, we compare the performance of the proposed hierarchical multi-classification scheme to

the flat multi-classification scheme.

Table 3. Binary classification result accuracies (mean ± standard deviation).

Classes Accuracy (%)

AD vs. NC 99.3 ± 1.5

AD vs. MCI 99.7 ± 0.9

NC vs. MCI 98.2 ± 1.7

EMCI vs. LMCI 1.00 ± 0

NC: Normal Control, EMCI: Early Mild Cognitive Impairment, LMCI: Late MCI, AD: Alzheimer Disease.

https://doi.org/10.1371/journal.pone.0264710.t003
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The model performance for hierarchical and flat multi-classification schemes is measured

using five metrics; accuracy, sensitivity, specificity, PPV, and NPV, as reported in Table 4. Ten

folds’ cross-validation was employed for testing to study the proposed system’s robustness.

The average accuracy for both the hierarchical and flat multi-classifiers schemes is 98.2±1.4%

and 95.5±4.3%, respectively, as listed in Table 4. Table 5 shows the confusion matrix for both

the flat and the hierarchical multi-classifier. It can be observed that the hierarchical multi-clas-

sifier provided better discrimination of the NC from the rest of AD diseases that were misclas-

sified in the case of flat multi-classifier. A comparison between the proposed model and

similar studies employing the same dataset is found in Table 6.

The standard t-test was employed to investigate the CorrTF connections signal strength to

extract the inter-regional communication between different brain areas among different

groups. BrainNet Viewer software package [35] was employed to generate the topology of the

brain networks after removing the connections with a strength less than 0.1 for the different

subjects, as shown in Fig 4. According to Fig 4, the number of connections with high strength

is increased in EMCI, an early stage of AD. Later, with disease progression, the number of con-

nections with high strength started to decrease in LMCI, which started to increase once again

in the case of AD. In Fig 5, the number of significant connections between each pair of net-

works for all AD stages was calculated and plotted for better visualization purposes. It is worth

noting that within this analysis, the directionality of the connection has been ignored. As

observed from Fig 5, the strength of connections between the following pair of networks, such

as; (sensorimotor cortex (SMC)—visual cortex (VC)), (SMC—executive attention network

Table 4. Classification performance of our model using CorrTF features (mean ± standard deviation).

Scheme Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Hierarchical Multi-Classifier 98.2 ± 1.4 99.4 ± 1.2 97.0 ± 3.1 98.6 ± 1.5 98.9 ± 2.4

Flat Multi-Classifier 95.5 ± 4.3 95.1 ±2.5 98.2 ± 4.0 98.6 ± 1.5 98.9 ± 2.4

PPV: Positive Predictive Value, NPV: Negative Predictive Value.

https://doi.org/10.1371/journal.pone.0264710.t004

Table 5. Confusion matrix for: (a) Flat multi-classification, (b) Hierarchical multi-classification scheme.

(a)

Ground Truth

NC EMCI LMCI AD

Predicted NC 164 6 5 6

EMCI 1 96 0 0

LMCI 1 0 124 3

AD 1 0 0 105

(b)

Ground truth

NC EMCI LMCI AD

Predicted NC 162 1 0 1

EMCI 1 100 0 0

LMCI 4 0 129 1

AD 0 1 0 112

NC: Normal Control, EMCI: Early Mild Cognitive Impairment, LMCI: Late MCI, AD: Alzheimer Disease.

https://doi.org/10.1371/journal.pone.0264710.t005
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Table 6. Comparison with recently published work using ADNI dataset.

Method Input Features Classifier Dataset # Subjects Accuracy

(%)

Khazaee et al. [13] Graph features SVM ADNI 20 NC, 20 AD 100

Khazaee et al. [12] Graph features SVM ADNI 45 NC, 89 MCI, 34 AD 88.4

Suk et al. [17] Mean-time series DAE ADNI 31 NC, 31 EMCI 72.6

In-house collected

dataset

25 NC, 12 MCI 81.1

Ronghui et al. [5] Correlation matrix DAE ADNI 79 NC, 91 MCI 86.5

Zhang et al. [10] Correlation matrix SVM ADNI 33 EMCI, 29 LMCI 83.8

Ramzan et al. [19] Volumes concatenated to form 2D

Image/ subject

RNN ADNI 25 NC, 25 SMC, 25 EMCI, 25 LMCI, 13

MCI, and 25 AD

97.9

Shi et al. [11] ICA SVM ADNI 76 NC, 67 AD 92.9

Proposed Flat Scheme CorrTF matrix SVM ADNI 167 NC, 102 EMCI 96.1

129 LMCI, 114 AD

Proposed Hierarchical

Scheme

CorrTF matrix SVM ADNI 167 NC, 102 EMCI 98.2

129 LMCI, 114 AD

NC: Normal Control, EMCI: Early Mild Cognitive Impairment, LMCI: Late MCI, AD: Alzheimer Disease, SMC: Significant Memory Concern, SVM: Support Vector

Machine, DAE: Deep Autoencoder, RNN: Recurrent Neural Network, ICA: Independent Component Analysis.

https://doi.org/10.1371/journal.pone.0264710.t006

Fig 4. Brain connectivity networks for (a) CN, (b) EMCI, (c) LMCI, and (d) AD at threshold = 0.1, the color code defines the

connection’s strength.

https://doi.org/10.1371/journal.pone.0264710.g004
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(EAN)), (SMC—default mode network (DMN)), (VC–cerebellum (Cereb)), (EAN—subcorti-

cal nuclei (SN)), (EAN- Cereb), (SN–SN), and (SN–Cereb) were increased in case of EMCI

while decreased during the progression of AD by at least two connections.

On the other hand, the connections between the following pairs; (SMC–Cereb), (VC–VC),

and (VC–EAN) were increased during the late stage of AD by at least two connections. Fig 6

shows the brain regions that have a significant change in connections’ strength in the case of

AD compared to NC subjects. Among the brain regions in Fig 6, the highest contributions are

for the cerebellum, DMN, and SMC areas. It is worth noting that the BrainNet Viewer software

package [35] was employed to generate the topology of the brain networks for Fig 6. The most

twenty discriminate connections are listed in Table 7, ordered according to their significance

level.

Discussion

Classification performance interpretation

In this study, we propose a hierarchical multi-classification scheme to distinguish between the

different stages of AD. First, the system is initialized by the preprocessing module, which aims

to reduce noise, volume normalization, and retain essential information. The preprocessed

volumes were then segmented into 116 ROIs using AAL atlases. Then, the mean time series

was calculated, followed by the CorrTF feature matrix extraction for each ROI. T-test was later

employed to select the statistically significant features from the mean CorrTF feature set.

The performance metrics listed in Table 4 reports the accuracy, sensitivity, specificity, PPV,

and NPV for both hierarchical and flat multi-classification schemes. The performance accu-

racy using the hierarchical multi-classification scheme has been boosted by 2.7% compared to

the flat multi-classifier scheme. These results inform that breaking up the flat multi-classifica-

tion problem into binary prediction steps can improve the classification performance without

extracting extra features to obtain higher classification metrics.

Moreover, when the classes, to be predicted, are hierarchically related, the hierarchical

multi-classification performance outperforms the flat multi-classification scheme [33]. Addi-

tionally, the hierarchical multi-classification scheme resolved the ambiguity in discriminating

Fig 5. Number of connections with strength>0.1 grouped by input-output networks with connection’s directionality ignored.

Sensorimotor Cortex (SMC), Visual Cortex (VC), Executive Attention Network (EAN), Default-Mode Network (DMN), Subcortical

Nuclei (SN), and Cerebellum (Cereb).

https://doi.org/10.1371/journal.pone.0264710.g005
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Fig 6. Localization of brain regions that have significant change in connections’ strength in case of AD compared to NC subjects AD, (a) Sagittal

view, (b) Axial view, and (d) Coronal view. yellow: default-mode network; orange: regions of the subcortical nuclei; dark blue: regions of the

sensorimotor cortex; blue: regions of the visual cortex; cyan: regions involved in the executive attention network; red: regions in the cerebellum.

https://doi.org/10.1371/journal.pone.0264710.g006
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the NC from the different stages of AD. The proposed hierarchical multi-classification scheme

was selected based on the performance of the binary SVM classifier for each pair of classes, as

reported in Table 3. The PPV and the NPV metrics were employed to estimate the system clas-

sification prevalence as a diagnostic tool. In this context, among those who had a positive

screening test, the probability of disease was 98.6%. While, among those who had a negative

screening test, the probability of being disease-free was 98.9%. These give a high confidence

level in the proposed model’s test results.

Since the model performance may rely on the training data, which may cause overfitting,

10-fold cross-validation was employed to prove the robustness since the standard deviation of

the calculated performance accuracy is considered small. Comparing the flat multi-classifica-

tion scheme to the hierarchical multi-classification scheme, the standard deviation for all per-

formance measures has decreased in the case of the hierarchical multi-classification scheme, as

reported in Table 4.

Table 6 compares the performance of the hierarchical multi-classification scheme to the

recent research studies distinguishing the different AD stages. We can observe that employing

the CorrTF in the flat multi-classification scheme boosted the performance compared to the

models using other feature sets and regular machine learning tools described in [10–12].

Therefore, the extracted CorrTF features can find the hidden features that can discriminate

between normal subjects and three stages of AD. Additionally, the employment of the hierar-

chical scheme even boosted the performance compared to that employing the deep learning

algorithms [5, 17, 19], which is considered a less expensive tool in both learning and testing

phases. Finally, it is worth noting that the dataset employed in this study is considered signifi-

cant compared to the other studies, as listed in Table 6.

Table 7. The most discriminative connections between CN and AD.

AAL ROI1 AAL ROI2 P-value

’Insula_L’ ’Cerebelum_Crus1_R’ 0.000031

’Parietal_Sup_R’ ’Precuneus_L’ 0.000183

’Rectus_R’ ’Temporal_Sup_L’ 0.000228

’SupraMarginal_R’ ’Precuneus_R’ 0.000229

’Cuneus_R’ ’Thalamus_R’ 0.000369

’Vermis_8’ ’Frontal_Sup_Medial_R’ 0.000439

’Frontal_Sup_L’ ’Temporal_Sup_R’ 0.000531

’Calcarine_L’ ’Vermis_4_5’ 0.000896

’Postcentral_L’ ’Cerebelum_Crus1_R’ 0.001035

’Frontal_Mid_Orb_L’ ’Cerebelum_7b_L’ 0.001109

’Frontal_Mid_Orb_L’ ’Temporal_Mid_R’ 0.001143

’Amygdala_L’ ’Occipital_Inf_L’ 0.001154

’Vermis_8’ ’Heschl_R’ 0.001171

’Cerebelum_Crus2_R’ ’Cingulum_Mid_R’ 0.001207

’Occipital_Inf_R’ ’Cingulum_Ant_R’ 0.001518

’Vermis_3’ ’Insula_L’ 0.001528

’Frontal_Med_Orb_L’ ’Parietal_Inf_R’ 0.001545

’Pallidum_L’ ’SupraMarginal_L’ 0.001572

’Precentral_R’ ’Cuneus_R’ 0.001865

’Angular_L’ ’Cerebelum_3_R’ 0.001873

AAL: Automatic Anatomical Labeling Atlas, ROI: Region Of Interest.

https://doi.org/10.1371/journal.pone.0264710.t007
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Statistical analysis of CorrTF weights

Fig 4 shows the topology of the brain networks after removing connections with strength less

than 0.1 for NC, EMCI, LMCI, and AD subjects. According to Fig 4, at an early stage of MCI

number of connections with high strength is large compared to that in the case of the late

MCI stage, while others increased during the late stage of AD. This means that the variations

in the brain networks’ connections during the AD progression are non-monotonic [36]. It

occurred due to the connection rearrangement occurring in the brain through the reparation

of the neuro-functional losses caused by the disease progression [37]. Neuroplasticity, the

ability of the brain to rebuild itself to form new neural connections to compensate for disease

and injury and regulate their activities with new situations, may explain this phenomenon

from the clinical aspect [38, 39]. Several researchers studied neuroplasticity and its effect on

the different brain regions and their activities [39–42]. Clément et al. [40] found that the

executive functions at EMCI benefit from neural reorganization, which breakdown during

the late stages of the MCI, which was supported by our findings shown in Fig 5. In the case of

EMCI, the connections between the EAN and cerebellum, SN and SMC ROIs have been

increased in strength compared to NC subjects while decreased during the late AD stages.

Kim et al. [36] reported that the brain network reorganization occurred stage-specific in a

non-monotonic manner. Additionally, we can observe, from Fig 5, the high activation in

SMC ROIs during the early stage of AD as coinciding with Wang et al. [43], Ferreri et al.

[44], and Salustri et al. [45]. Furthermore, we can observe the increase in connections’

strength within the SN and between the SN and both DMN and EAN, as shown in Fig 5. This

finding is supported by Mufson et al. [42], who stated that the hippocampus is capable of

neural plasticity during MCI.

Fig 6 shows the brain regions that have a significant change in connections’ strength in the

case of AD compared to NC subjects. The highest contributions of the affected connections

are found in the cerebellum, DMN, and SMC networks. This comports with the decay in the

regulator of motor activity and the modulation of cognition and emotional activities since the

cerebellum is responsible for such tasks [46]. Affected cerebellum regions such as Cerebellum

Cruses and Vermis, shown in Fig 6, are supported by Suk et al. [17], Jie et al. [47], and Olivito

et al. [48]. In the case of NC, The DMN shows a high level of activation during brain resting

conditions while not being involved in any explicit mental task [49]. However, in the case of

AD, the level of activation is significantly affected, as shown in Fig 6, which agrees with Das

et al. [49], Lee et al. [50], and Wu et al. [51]. Moreover, several studies supported the significant

change in the connections to/ from DMN ROIs due to AD progression such as Precuneus_L,

Precuneus_R, Rectus_R, Frontal_Sup_Medial_R, Frontal_Sup_L, Frontal_Med_Orb_L, Tem-

poral_Mid_R, Cingulum_Ant_R, and ’Precentral_R, reported in Table 7 [5, 10–13, 17, 18, 49,

52]. Furthermore, recent studies indicated that the sensorimotor cortex ROIsinclude Insula_L,

Parietal_Sup_R, Temporal_Sup_L, Temporal_Sup_R, Postcentral_L, Heschl_R, and Supra-

Marginal_L are also affected in the early progression of AD, which is also listed in Table 7 [5,

11, 47, 53–56].

Table 7 also confirms that there are eight out of 20 significant connections are connecting

(cerebellum—SMC) and (DMN—SMC) [57–59]. This finding supports the clinical association

between motor and cognitive function decline during AD progression [60, 61]. Additionally,

several areas are affected by the AD progression based on the significant changes in CorrTF

connections. This finding is in agreement with the literature, such as of VC; named Cuneus_R,

Calcarine_L, Occipital_Inf_L, and Occipital_Inf_R [13, 62], the EAN, named as; Frontal_Mi-

d_Orb_L, Parietal_Inf_R, and Angular_L [5, 11, 13, 47, 63] and SN named Pallidum_L, Cingu-

lum_Mid_R, Amygdala_L, and Thalamus_R [5, 11, 47, 64].
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Conclusion

This study successfully discriminated between the different AD stages and healthy subjects

using the correlation transfer function calculated for rs-fMRI data. Support Vector Machine

(SVM) was employed in both flat and hierarchical multi-classification schemes to perform the

classification task. A considerably large sample downloaded from the ADNI dataset was

employed in this study. The CorrTF based features, calculated for 116 regions based on AAL

Atlas, succeeded in providing latent details of the connections between the different regions

since it measures the amount of information transferred between the input and output ROIs.

The proposed schemes achieved an accuracy of about 98.2% and 95.5% for the hierarchical

and flat multi-classification schemes, respectively. Also, we proved that the hierarchical

schemes improved the classification performance measured in terms of accuracy, sensitivity,

specificity, PPV, and NPV, without employing extra features. Moreover, the hierarchical

scheme successfully identified the subtypes of MCI, named EMCI and LMCI, with an accuracy

of 98% and 100%, respectively.

Furthermore, a statistical t-test was employed to identify the high strength connections.

However, This study proved that CorrTF is a promising technique for extracting essential bio-

markers for AD identification. Consequently, corrTF connections can further investigate the

specific contribution of the different regions through the AD progression.
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