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ABSTRACT
For this study, we utilized class-I and class-II preQ1-sensing riboswitches as model systems to decipher
the structure-activity relationship of rationally designed ligand derivatives in vitro and in vivo. We found
that synthetic preQ1 ligands with amino-modified side chains that protrude from the ligand-encapsulat-
ing binding pocket, and thereby potentially interact with the phosphate backbone in their protonated
form, retain or even increase binding affinity for the riboswitches in vitro. They, however, led to
significantly lower riboswitch activities in a reporter system in vivo in E. coli. Importantly, when we
substituted the amino- by azido-modified side chains, the cellular activities of the ligands were restored
for the class-I conditional gene expression system and even improved for the class-II counterpart. Kinetic
analysis of ligand binding in vitro revealed enhanced on-rates for amino-modified derivatives while they
were attenuated for azido-modified variants. This shows that neither high affinities nor fast on-rates are
necessarily translated into efficient cellular activities. Taken together, our comprehensive study inter-
connects in vitro kinetics and in vitro thermodynamics of RNA-ligand binding with the ligands’ in vivo
performance and thereby encourages azido- rather than amino-functionalized design for enhanced
cellular activity.
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Introduction

Riboswitches have emerged as possible targets for the develop-
ment of alternative antimicrobial approaches [1–8]. They are
typically located in the 5ʹ noncoding regions of bacterial mRNA
and are able to bind specific metabolites to their aptamers with
very high selectivity [9–11]. In a manner that is dependent on
metabolite concentration, nascent mRNAs containing ribos-
witch domains can enter one of two mutually exclusive folding
pathways to impart regulatory control [12]. The outcome of the
folding pathway corresponds to ligand-bound or -free state.
Thereby, the aptamer fold triggers structural cues into the
expression platform which, in turn, transduces an ‘on’ or ‘off’
signal for gene expression, predominantly at the transcriptional
or translational level [13–15].

One of the most critical steps in riboswitch gene regulation
is ligand-sensing by the aptamer. For most riboswitches, the
ligand becomes almost completely encapsulated by the RNA
scaffold. Besides nucleobase stacking, most riboswitch apta-
mers involve every possible hydrogen donor or acceptor posi-
tion of the ligand in hydrogen bond interactions with
nucleotides of the binding pocket. This makes the structure-
based design of modified ligand analogs and ligand mimics
rather challenging. Nevertheless, the identification of novel
potent ligands is a topic of intense research because ever
since their discovery, riboswitches have been viewed as

promising targets for the development of novel antibiotic
strategies [16]. Likewise, efforts to engineer riboswitches for
imaging purposes [17–19] or as biotechnological tools for the
detection of endogenous and non-endogenous small mole-
cules are in the focus of synthetic biologists interested in
understanding and reprogramming cellular behavior [20].

In the present study, we examine the structure-activity rela-
tionships between 7-aminomethyl-7-deazaguanine (preQ1) sen-
sing riboswitches [21] and chemically functionalized preQ1

ligands, both in vitro and in vivo. In particular, we ask the
question how ‘add-on’ functionalities such as aminoalkyl, azi-
doalkyl, and ethylene glycol moieties that can potentially inter-
act with the phosphate backbone and that are amenable for
further derivatization, impact binding thermodynamics and
kinetics and how the obtained in vitro parameters translate
into riboswitch activity in the cell.

Results and discussion

Structure-based design of functionalized ligands for
preQ1-I and -II riboswitches

PreQ1 is an intermediate of the biosynthesis pathway of the
hypermodified nucleoside queuosine. Although queuosine is
found in specific tRNAs of most eukaryotes and bacteria, it is
only synthesized in bacteria. The queuosine modification
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enhances translational fidelity at the wobble position [22–25],
and queuosine deficiency in bacteria can lead to reduced
growth fitness and diminished virulence [26,27]. Bacterial
riboswitches responsive to preQ1 are currently known to fall
into three phylogenetically distinct classes. The preQ1-I (class
1) aptamer is distributed widely and rather compact, compris-
ing not more than 34 nucleotides [28]. The preQ1-II (class 2)
riboswitch is about twice this size and has been found in the
Firmicutes [29]. Both classes are prevalent among important
pathogens, such as Streptococcaceae. By contrast, the preQ1-III
(class 3) riboswitch has been found exclusively in Clostridium,
and it is the largest of all preQ1 riboswitches [21].

In the present comprehensive study, we have focused on
the two most widespread classes of preQ1 riboswitches (I and
II). These two classes employ distinct ligand binding modes
(Figure 1) [30,31]. The class-I riboswitch recognizes preQ1

with cytosine (C15) through classical Watson–Crick base
pairing and additionally through bidentate interaction of the
ligand’s N3 and C2-NH2 with the trans Watson–Crick face of
adenosine (A29) (Figure 1A,C). Moreover, the N9-H of preQ1

is H-bonding to the carbonyl O4 of uridine (U6) and the 7-
aminomethyl moiety is involved in a further H-bond, namely
to O6 of guanosine (G5).

The class-II riboswitch binds preQ1 differently (Figure 1B,
D). PreQ1 pairs in bidentate fashion through trans Watson-
Crick/Watson-Crick to cytidine (C30) and tridendate via N9-
H–N3–C2-NH2 to the trans Watson–Crick face of uridine
(U41). The O6 of the preQ1 lactam moiety forms a water-
mediated bridge to the 2ʹ-OH of C30. Compared to the class-
I riboswitch, the 7-aminomethyl group of the ligand is more
strongly involved in interactions with the RNA, namely

H-bonding to O6 of U31 and via electrostatic interactions to
the phosphate group between A70 and A71.

Although preQ1 binding modes of class I and II ribos-
witches are different with respect to H-bonding patterns, for
both riboswitches the 7-aminomethyl group of the ligand
remains solvent-accessible in the bound state. The 7-amino-
methyl group therefore appears to be a suitable anchor for
tether attachment without disturbing ligand-aptamer recogni-
tion. Because we intended to retain the interaction character-
istics of the 7-aminomethyl moiety, its alkylation (resulting in
secondary amines) rather than acylation (resulting in amides)
was considered to provide the most fitting functionality for
attachments.

For tethering additional functionalities to the native ligand,
we have mainly focused on two types of modifications. First,
aminoalkyl tethers as shown for derivative 3 and 4 (Figure 1E,
Figure 2) in their protonated form at suitable pH should be
able to support binding of the modified ligand, based on
specific electrostatic interactions with the phosphate backbone
at the entrance of the ligand binding site. Higher affinities can
be expected and additionally, binding kinetics are likely influ-
enced due to an apparent increase in concentration because of
non-specific interactions of the ammonium groups with the
RNA phosphate backbone.

Second, azidoalkyl tethers as shown for derivative 5, 6 and
7 (Figure 1E, Figure 2) have been envisaged because of their
potential for further straightforward functionalization with
labeling compounds, e.g. fluorophores or biotin, using
bioorthogonal Click or Staudinger reactions.

Moreover, we set out to analyze the impact of ethylene
glycol moieties as shown for compound 8 (Figure 1E,
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Figure 2). In a different context, earlier studies on oligoribo-
nucleotide duplexes carrying this functionalization demon-
strated a Mg2+-chelating effect that can be utilized for
enthalpic stabilization of RNA double helices [32]. We there-
fore speculated that this effect might be advantageous to
stabilize small molecule–RNA interactions as well. Finally,
we wanted to analyze the binding properties of a ligand
dimer 9 (Figure 2) that bridges two preQ1 units via a short
pentane linker to both 7-aminomethyl groups.

Synthesis of tethered preQ1 ligands

To get access to the preQ1 derivatives displayed in Figure 2, we
have developed a robust protocol for reductive amination of 7-
(aminomethyl)-7-deazaguanine 1 [33] and the corresponding
phthalimido-protected aminoalkylaldehydes and azidoalkylalde-
hydes, respectively, using tetramethylammonium triacetoxyboro-
hydride in dimethylformamide and acetic acid. The phthalimido
group was then cleaved with aqueous hydrazine solution. All
tethered preQ1 derivatives were purified by reversed-phase chro-
matography applying an acetonitrile gradient to aqueous eluents
containing one percent of trifluoroacetic acid. The products were
thus obtained as salts of trifluoroacetic acid in excellent purity.
Details of preparation are given in the Supporting Information.
The developed routes provide significantly higher yields compared
to direct alkylation of preQ1 using bromoalkyl substrates [34].

Binding thermodynamics and kinetics of tethered preQ1

ligands to class-I and -II riboswitches

Ligand affinities (KD) as well as on-rates (kon) for ligand binding
were measured based on a fluorescence spectroscopic approach
(Fig. S1, Figure 3) that utilizes site-specifically 2-aminopurine (Ap)
labeled RNA [35]. For preQ1 class-I riboswitches, we focused on
the specific aptamer sequence from Thermoanaerobacter tengcon-
gensis (Tte); for preQ1 class-II riboswitches, we used the aptamer
sequence from Streptococcus pneumoniae (Spn) (Figure 4A). For
both, suitable positions for Ap substitutions (U22Ap class I;
A11Ap class II) have been identified [36–38].

Of note, the availability of the 7-aminomethyl group of
native ligand 1 is particularly important for class-II ribos-
witches. Affinity was 7-fold reduced for ligand analog 2 (7-
(3-aminopropyl)-7-deazaguanine; Fig. S2A) that comprised an
alkyl spacer placing the amino group at greater distance from
the ligand core (Figure 2); likely, the longer chain hinders
positioning of the amino group to generate contacts to the
phosphate of A70–A71 and to U31 in the RNA binding
pocket.

Concerning the class-I preQ1 riboswitch aptamer, the KD

values of amino- and azidopropyl and -butyl tethered ligands
(3 to 6) measured in aqueous buffer at pH 7.5 (50 mM MOPS,
100 mM KCl, 293 K) in the presence of 2 mM MgCl2 were
comparable to native ligand 1, varying only by a factor of 1.7
(Table 1, Figure 4B-D, Fig. S1 and S2). Ligands carrying
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longer chains, such as azidoethoxyethyl-preQ1 7 and triethy-
lene glycol-linked preQ1 8, experienced a 4-fold and 18-fold
decrease in affinity, respectively (Table 1, Fig. S2). We spec-
ulate that the conformational changes of the tethered group
that are required for a chelating Mg2+ interaction (as indi-
cated in Figure 1E) might lead to an entropic destabilization
that compensates the enthalpic stabilization. Also, for the
preQ1 dimer 9, a loss in affinity (11-fold) was found (Table 1).

Interestingly, for the preQ1 class-II riboswitch aptamer, the
affinities measured for aminopropyl and -butyl tethered ligands
(3 and 4) were increased by 3- to 4-fold compared to the native
ligand, consistent with stabilizing interactions between the addi-
tional ammonium group and the RNA phosphate backbone at the
entrance of the binding pocket (Table 2, Figure 4B, Fig. S1B and
S2A). In contrast to 3 and 4, the KD values of the corresponding
azidopropyl and -butyl tethered ligands (5 and 6)were comparable
to the native ligand, varying only by a factor of 1.7 (Table 2,
Figure 4C, Fig. S1B and S2C). Also, for azidoethoxyethyl-preQ1

7 the affinity remained comparable, however, the triethylene gly-
col-linked preQ1 8 and the preQ1 dimer 9, experienced a 10-fold
and 4-fold loss in affinity, respectively (Table 2). From this in vitro
analysis, it becomes obvious that varying affinities of a particular
ligand derivative towards class-I and class-II aptamers likely ori-
ginate from their distinct structural features leading to differential
accomodation and interaction with the tether.

With regard to ligand binding kinetics, we note that pre-
vious studies have demonstrated that for the Tte class-I apta-
mer, preQ1 binding kinetics are strongly dependent on preQ1

concentrations [36]. Employing the U22Ap riboswitch variant
for the 2ApFold fluorescence approach here, we determined
an on-rate kon of 11.3 × 103 M−1s−1 for preQ1 1 (Table 1). For
the Spn class-II preQ1 counterpart, however, we found that

binding kinetics of preQ1 1 (based on the corresponding
A11Ap variant) were independent of ligand concentration,
with kobs of 1.07 ± 0.30 s−1 (over the same range of 2 to 14-
fold excess of ligand over RNA as applied to the class-I
counterpart). This suggests that a conformational change or
conformational adaption of the class-II preQ1 RNA is possibly
rate-limiting for the ligand binding process.

For the aminoalkyl ligand derivatives 3 and 4 we found
three to five-fold faster on-rates kon for binding to the class-I
aptamer compared to native preQ1 1 (Table 1, Figure 3C,
Fig. S2B and S3). By contrast, the corresponding azidoalkyl
ligands 5 and 6 with the same tether lengths were observed to
have two and five-fold slower on-rates kon than preQ1 1 for
binding to the class-I aptamer (Table 1, Figure 3B, Fig. S2C).
The faster on-rates for ligands 3 and 4 are consistent with the
possibility for specific electrostatic interactions between the
additional ammonium moieties and the phosphate backbone,
and more generally, with an increase in local concentration
due to improved electrostatic interactions with the negatively
charged RNA. They are also consistent with an earlier pro-
posed induced-fit binding mode of the preQ1 class-I ribos-
witch [39,40].

Not unexpectedly, for the class-II riboswitch where ligand
binding is not the rate limiting step but likely a conforma-
tional change that occurs in the RNA pocket, all preQ1 ligand
derivatives 3 to 9 exhibited rates kobs that were comparable to
that of the native ligand (Table 2, Figure 4, Fig. S2 and S4).
Only a slight rate difference among the ligand derivatives was
observed, with azidobutyl modified preQ1 6 being slowest
(kobs 0.68 ± 0.30 s−1) and aminopropyl modified preQ1 3
together with dimer 9 being fastest (kobs 1.05 ± 0.16 s−1 and
kobs 1.06 ± 0.11 s−1) (Table 2, Fig. S4). The here observed
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concentration-independence of class-II riboswitches with
respect to binding rates is consistent with the conformational
capture model that was deduced from NMR spectroscopic
investigations [41]. This model proposed that stem P4 is
poised to act as a ‘screw cap’ on preQ1 recognition to block
ligand exit and stabilize the binding pocket.

Cellular activity of functionalized preQ1 derivatives in a
preQ1 deficient E. coli strain

Previously, preQ1 riboswitches have attracted attention as plat-
forms for the engineering of orthogonal riboswitches to control
gene expression. Micklefield and coworkers used a rational tar-
geted approach in the evaluation of synthetic compounds with
riboswitch mutants and identified an orthogonal riboswitch
−ligand pair that effectively repressed the transcription of selected
genes in B. subtilis [42]. More recently, rationally engineered
preQ1 riboswitches have been applied for inducible gene regula-
tion in mycobacteria [43].

In this study, we investigated how the affinity and kinetic
parameters obtained in vitro for functionalized preQ1 deri-
vatives (2 to 9) translate into cellular activity (Figure 4). We
therefore engineered a preQ1 class I or class II riboswitch-
controlled reporter gene (green fluorescence protein, GFP)
and monitored its production in response to the different
ligands in vivo in E. coli. To avoid potential interference of
endogenous preQ1 with the assay, we used an E. coli strain
bearing an inactivating mutation of the queC gene, which
encodes a protein involved in the early steps of queuosine
synthesis [44]. Tte and Spn preQ1 riboswitches act at the

level of translation by sequestering the Shine-Dalgarno
sequence via ligand-triggered alternative RNA folding [21].
Successful binding of the preQ1 ligand therefore results in a
decrease of GFP production, which can be measured directly
in the bacterial culture by determining GFP fluorescence.
We used an inducible reporter system (pQE70 bacterial
expression system) to repress GFP transcription in the
absence of the inducer (IPTG) and added the different
ligands concomitantly with the IPTG. Fluorescence measure-
ments at 6 h after induction revealed that the native preQ1

ligand 1 was capable of dose-dependent regulation of class I–
controlled GFP expression with an IC50 value of 27 μM and
75% repression observed at preQ1 concentrations of 1 mM
or higher (Figure 4A) while for the class II riboswitch, the
IC50 value amounted to 96 μM with 65% repression at 1 mM
or higher preQ1 concentrations (Figure 4A).

We then evaluated the importance for in vivo activity of the
native 7-aminomethyl group as a structural subunit in analogs of
preQ1 by measuring IC50 values of compound 2. Although this
compound comprises the 7-deazaguanine core, the replacement of
the 7-aminomethyl by a 7-(3-aminopropyl) substituent renders it
practically inactive in vivo regardless of the riboswitch tested
(Fig. S2A). This was especially surprising in the case of the class I
riboswitch because in vitro, compound 2displayednearly the same
affinity to class I aptamers as the native ligand.

Unexpectedly, the aminoalkylated ligands 3 and 4 that
showed up to 4-fold higher affinities (class-II) and up to 5-
fold increased on-rates (class-I) in vitro exhibited poor reg-
ulation ability in vivo. IC50 values for both riboswitch classes
were at least 10-fold higher than those for native preQ1 1
(Table 1, Figure 4B, Fig. S2B). However, when azido instead of
amino groups were present at tethers of the same lengths, as
in preQ1 derivatives 5 and 6, the in vivo activity was restored
(for class I) or even improved (for class II) compared to the
native preQ1 1 ligand (Table 1, Figure 4C, Fig. S2C).
Intriguingly, those ligands had shown significantly slower
on-rates in in vitro binding studies (for class-I) (Figure 4C).
Together, these findings demonstrate that azidoalkylated
ligands exhibit excellent bioavailability and are potent triggers
of riboswitch conformation changes resulting in the repres-
sion of translation in vivo. On the other hand, it appears that
despite superior in vitro affinity of aminoalkylated ligands,
they are less suitable for in vivo applications. Potential reasons
for that could be reduced cellular uptake [45] or interference
with polyamine metabolism in the cell [46].

We also tested the in vivo activity of azidoethoxyethyl preQ1

derivative 7 and found that it was comparable to that of the
native preQ1 ligand for the class II riboswitch and slightly
higher for the class I type (Figure 4D). The triethylene glycol
modification of the ligand (derivative 8) resulted in strongly
decreased in vitro affinities of this ligand for both riboswitch
classes. Interestingly, however, the in vivo activity of derivative
8 towards the class-II riboswitch was essentially equal to the
native ligand (Fig. S2D). For the class-I riboswitch, a similar
trend was observed in that the decrease in IC50 value was less
pronounced than expected considering its low affinity in vitro
(Fig. S1D). Finally, the ligand dimer 9 showed clearly inferior
in vivo activity towards both class-I and -II riboswitches com-
pared to the native ligand 1 (Tables 1 and 2).

Table 1. Class-I preQ1 riboswitches – Thermodynamic and kinetic parameters of
ligand binding and cellular activity.

Ligand No. KD [nM] kon [M
−1s−1 x10−3 koff [s

−1] * IC50 [µM] **

1 51 11.3 0.000576 27 (75%)
2 71 4.3 0.000305 n.d.
3 32 61.7 0.001974 > 500
4 41 37.9 0.001554 > 1000
5 30 4.6 0.000138 52 (65%)
6 88 2.5 0.000220 30 (70%)
7 167 2.4 0.000401 53 (42%)
8 922 3.4 0.003135 152 (56%)
9 590 3.5 0.002065 308 (38%)

* off-rates were calculated from koff = KD x kon (ref. [51]);
** number in brackets represents percentage of translational repression at
saturating ligand concentration;

n.d. not detectable

Table 2. Class-II preQ1 riboswitches – Thermodynamic and kinetic parameters of
ligand binding and cellular activity.

Ligand No. KD [nM] kobs [s
−1] koff [s

−[1]] * IC50 [µM] **

1 430 1.07 0.084733 96 (65%)
2 2830 > 10*** n.d. n.d.
3 97 1.05 0.019982 > 500
4 148 0.80 0.022999 > 1000
5 254 0.70 0.033841 71 (80%)
6 432 0.68 0.054080 40 (80%)
7 203 0.75 0.029262 92 (68%)
8 4580 0.72 0.031532 116 (65%)
9 1030 1.06 0.181061 328 (53%)

* off-rates were calculated from koff = kobs/(1+([L]/KD)) (ref. [51]);
** number in brackets represents percentage of repression at saturating ligand
concentration;

*** estimated value;
n.d. not determined
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Conclusions

For several reasons riboswitches have been considered
attractive targets for antimicrobial drug development [1–
5]: They are well structured and allow stable binding of
low–molecular weight compounds to RNA with affinities as
found for interactions between established antibiotics and
ribosomal RNA. Furthermore, riboswitches have not been
identified in mammals which should reduce the risk of
undesired side effects. Finally, they are often located
upstream of genes encoding enzymes that are involved in
the synthesis of the metabolite that triggers the very ribos-
witch. By designing suitable metabolite analogs that out-
compete the natural ligand for interaction with the
riboswitch, the production of the metabolite will be inhib-
ited by preventing the expression of the synthesis genes. If
the respective metabolite is essential for life, this will lead
to a growth stop and/or death of the bacterial cell. Several
studies have demonstrated that riboswitches are indeed
druggable [6–8,16,47–49]. The most prominent investiga-
tion employed a phenotypic screen and identified ribocil
that acts as a structurally distinct mimic of the natural
ligand flavin mononucleotide to repress ribB gene expres-
sion and inhibit cell growth [7].

Modest success, however, derived from ligand design
that relied on the modulation of the nature and/or position
of heteroatoms of the ligand core and/or the decoration of
accessible positions with substituents that are typically used
in medicinal chemistry as e.g. reported recently for gua-
nine-sensing riboswitches in the bacterial pathogen
Clostridioides difficile [6]. To the best of our knowledge,
such studies have not yet included the evaluation of azide
functionalization of ligands. Our study now demonstrates
that the attachment of short azido-tethers to the native
ligand of preQ1 riboswitches leads to improved efficacy
(> 2-fold decreased IC50) and significantly increased repres-
sion (from 65% to 80%) of a GFP reporter in E. coli. These
findings were unexpected because the thermodynamic and
kinetic parameters kon and KD determined in vitro were
clearly inferior to amino-modified derivatives and rather
similar to the native ligand. It was furthermore unexpected
that the amino-modified derivatives that gave the highest
affinities in vitro, exhibited the lowest cellular activities of
all preQ1 derivatives investigated.

For future prospects, azido-modified preQ1 ligands due to
their excellent bioavailability and in vivo activity may constitute
highly promising platforms for in vivo labeling approaches. The
here presented azido-tethered preQ1 derivatives are amenable
for bioorthogonal labeling reactions with diverse reporter groups
such as fluorophores. Recently, the structure-guided design of
fluorescent S-adenosyl-L-methionine (SAM) analogs has been
successfully introduced for a high throughput screen to target
SAM-I riboswitch RNAs [50]. Such screens are likely expandable
to preQ1 riboswitches based on the derivatives presented.
Finally, inspiration for live cell imaging applications of preQ1-
fluorophor conjugates can be drawn from a recent RNA imaging
assay using the cobalamin riboswitch as an RNA tag and a series
of probes containing the cobalamin ligand as a fluorescence
quencher to elicit fluorescence turn-on upon binding RNA [17].
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