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Abstract

Background

The COVID-19 pandemic is likely to represent an ongoing global health issue given the

potential for new variants, vaccine escape and the low likelihood of eliminating all reservoirs

of the disease. Whilst diagnostic testing has progressed at a fast pace, the metabolic drivers

of outcomes–and whether markers can be found in different biofluids–are not well under-

stood. Recent research has shown that serum metabolomics has potential for prognosis of

disease progression. In a hospital setting, collection of saliva samples is more convenient

for both staff and patients, and therefore offers an alternative sampling matrix to serum.

Methods

Saliva samples were collected from hospitalised patients with clinical suspicion of COVID-

19, alongside clinical metadata. COVID-19 diagnosis was confirmed using RT-PCR testing,

and COVID-19 severity was classified using clinical descriptors (respiratory rate, peripheral

oxygen saturation score and C-reactive protein levels). Metabolites were extracted and ana-

lysed using high resolution liquid chromatography-mass spectrometry, and the resulting

peak area matrix was analysed using multivariate techniques.

Results

Positive percent agreement of 1.00 between a partial least squares–discriminant analysis

metabolomics model employing a panel of 6 features (5 of which were amino acids, one that

could be identified by formula only) and the clinical diagnosis of COVID-19 severity was

achieved. The negative percent agreement with the clinical severity diagnosis was also
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1.00, leading to an area under receiver operating characteristics curve of 1.00 for the panel

of features identified.

Conclusions

In this exploratory work, we found that saliva metabolomics and in particular amino acids

can be capable of separating high severity COVID-19 patients from low severity COVID-19

patients. This expands the atlas of COVID-19 metabolic dysregulation and could in future

offer the basis of a quick and non-invasive means of sampling patients, intended to supple-

ment existing clinical tests, with the goal of offering timely treatment to patients with poten-

tially poor outcomes.

1. Introduction

The SARS-CoV-2 pandemic has caused a sustained threat to global health since the discovery

of the virus in 2019 [1]. Whilst great strides have been made in both treatment and vaccination

development [2, 3], the disease has inflicted multiple waves of infection throughout the world

during 2020 and into 2021 [4, 5]. COVID-19 has higher fatality rates than seasonal influenza

[6], and in addition, new variants are constantly evolving with the potential for either reduced

vaccine effectiveness or altered lethality [7]. As a consequence, there is a continuing need for

both better understanding of the impact of COVID-19 on the host metabolism as well as for

prognostic tests that can be used to triage the high volumes of patients arriving in hospital

settings.

Nasopharyngeal swabs followed by polymerase chain reaction (PCR) have been adopted

worldwide for SARS-CoV-2 detection. However, supply chains for swabs rapidly collapsed

amongst exponential increases in demand for testing, highlighting the urgency for alternative

sample types and testing approaches. Furthermore, whilst PCR tests are easily deployable and

highly selective for the virus, these approaches yield no prognostic information and cannot

easily deliver rapid turnaround at the point of care, for example during a hospital admissions

process. In contrast, analyses based on mass spectrometry can be provided in minutes, and

have shown promise in the diagnosis of COVID-19 [8]. Furthermore, mass spectrometry

instrumentation is often available to hospitals through third party providers or in-house labo-

ratories. Prognostic tests, whilst challenging due to the varied phenotypes that may present

themselves [9], could be used to manage demand for hospitalisation and treatment, especially

if vaccine escape leads to future waves of severe COVID-19 infection.

Metabolic biomarkers in blood have been identified that carry prognostic information [10–

12], but sampling blood is invasive. Our experience in collecting and analysing patient samples

is that saliva samples are significantly easier to collect and handle than blood. Blood collection

requires trained phlebotomists, causes discomfort to patients and must be spun soon after col-

lection to preserve the metabolome [13]. In contrast, a saliva sample can be donated quickly

and painlessly by a patient [14]. Saliva is itself a carrier of the coronavirus [15], and addition-

ally can convey information on wellness via its own characteristic metabolites [16]. To date,

saliva is relatively under researched as a biofluid for metabolism analysis. It has been used for

breast, pancreatic and also oral cancers [17, 18], and saliva multi-omics has been used to dis-

tinguish between COVID-19 inpatients and outpatients [19]. Here we undertook a prelimi-

nary and explorative study to investigate the suitability of saliva metabolomics for identifying
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biomarkers of COVID-19 positivity as well as biomarkers specific to COVID-19 severity

within a hospital inpatient cohort (Fig 1).

This work took place as part of the efforts of the COVID-19 International Mass Spectrome-

try (MS) Coalition [20]. This consortium aims to provide molecular level information on

SARS-CoV-2 in infected humans, in order to better understand, diagnose and treat cases of

COVID-19 infection. Data related to this work will be stored and fully accessible on the MS

Coalition open repository on publication. The website URL is https://covid19-msc.org/

Fig 1. Workflow summary—Recruitment, processing and results, produced with Biorender.com.

https://doi.org/10.1371/journal.pone.0274967.g001

PLOS ONE Untargeted saliva metabolomics reveals markers of COVID-19 severity

PLOS ONE | https://doi.org/10.1371/journal.pone.0274967 September 22, 2022 3 / 14

https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcovid19-msc.org%2F&data=04%7C01%7Cm.spick%40surrey.ac.uk%7C991315f22425478ac9bf08d88fc7fe4f%7C6b902693107440aa9e21d89446a2ebb5%7C0%7C0%7C637417436418744855%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=5rU%2FJxgwAxrn0HGqavOrhpJAde5ZdC7n%2F9wtFsCw4%2BU%3D&reserved=0
http://Biorender.com
https://doi.org/10.1371/journal.pone.0274967.g001
https://doi.org/10.1371/journal.pone.0274967


2. Materials and methods

2.1. Participant recruitment and ethics

Ethical approval for this project (IRAS project ID 155921) was obtained via the NHS Health

Research Authority (REC reference: 14/LO/1221). 88 participants were recruited at NHS Frim-

ley NHS Foundation Trust hospitals by researchers from the University of Surrey. Participants

were identified by clinical staff to ensure that they had the capacity to consent to the study and

were asked to sign an Informed Consent Form, witnessed by two University of Surrey

researchers; written / verbal informed consent was obtained from all participants for inclusion

in the study, and those that did not have this capacity or who did not provide written consent

were not sampled. Consenting participants were categorised by the hospital as either “query

COVID” (meaning there was clinical suspicion of COVID-19 infection) or “COVID positive”

(meaning that a positive COVID test result had been recorded during their admission). All

participants were provided with a Patient Information Sheet explaining the goals of the study.

Inclusion for participants was determined by reverse transcription polymerase chain reac-

tion (RT-PCR) results; participants with an inconclusive RT-PCR test (clinically positive only

and/or inconclusive test result, n = 6) or where the time lag between initial RT-PCR test and

sampling exceeded fourteen days were excluded (n = 7). These additional exclusion criteria

reduced the participant population from 88 to 75.

2.2. Sample collection, extraction and instrumental analysis

Patients were sampled immediately upon recruitment to the study in two waves, one between

May and August 2020 and the second between October and November 2020. The range in

time between symptom onset and saliva sampling ranged from 1 day to> 1 month, an inevita-

ble consequence of collecting samples in a pandemic situation. Subsequently, the population

was filtered prior to statistical analysis to exclude patients whose RT-PCR result was greater

than 14 days from saliva collection. Each participant provided a sample of saliva by spitting

directly into a falcon tube which was placed on ice immediately after collection. Samples were

collected between the hours of 9 a.m. and 1 p.m. and transferred on ice from the hospital to

the University of Surrey by courier within 4 hours of collection, to minimise changes to sali-

vary metabolites [21]. Once received at University of Surrey, the samples were stored at minus

80˚C until analysis.

Alongside saliva collection, metadata for all participants was also collected covering inter
alia sex, age, comorbidities (based on whether the participant was receiving treatment), the

results and dates of COVID PCR tests, bilateral chest X-Ray changes, smoking status, drug reg-

imen, and whether and when the participant presented with clinical symptoms of COVID-19.

This included access to medical records, for which consent was given according to the

Informed Consent Form described previously. Participants were also sampled for sebum and

serum [22]. Values for lymphocytes, CRP and eosinophils were also taken; values obtained

within five days of the saliva sampling were recorded. Each participant was attributed a “sever-

ity score” in relation to their fitness observations at the time of hospital admission using the

metadata collected. We adapted the “mortality scoring” approach of Knight et al. [23] to pro-

vide a score for symptom severity. This was derived from the sum of the respiratory rate score

(with patients scoring 0 for<20, +1 for 20–29 and +2 for�30 breaths per min), peripheral

oxygen saturation score (%) (0 for�30, +2 for <92) and C reactive protein level score (0 for

<50 mg/L, +1 for 50–99 mg/L and +2 for�100 mg/L). This score ranged from 0 to 6; patients

scoring 0 to 3 were attributed low severity and patients scoring 4 to 6 were attributed high

severity.
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Sample preparation and processing followed the guidelines set out by the COVID-19 Mass

Spectrometry Coalition, which included safe handling procedures [13]. Saliva samples were

separated into aliquots: 50 μL of saliva was added to 200 μL of ice-cold isopropanol (this also

had the effect of deactivating the virus to allow transfer into a lower biological safety level labo-

ratory). The samples were agitated for one hour, sonicated three times for 30 seconds, with

resting on ice for 30 seconds between each sonication. Each sample was then left to stand on

ice for 30 minutes then centrifuged for 10 minutes at room temperature at 10 000 g before rest-

ing on ice. The supernatant was removed and the precipitated protein pellet reserved for future

analysis. The supernatant then underwent centrifugal filtration (0.22 μm cellulose acetate) for

five minutes at 10,000 g, and the filtered supernatant was then dried under nitrogen and stored

at minus 80˚C.

Samples were reconstituted on the day of analysis in 100 μL water:methanol (95:5) with

0.1% formic acid by volume. 10 μL of each sample was set aside for combination in a pooled

QC. The samples were analysed over a period of eleven days. Each day consisted of a run

incorporating blank injections (n = 2), field blank injections (n = 3), pooled QC injections

(n = 6, 3 at the start and finish), as well as QCs to measure instrumental variation and extrac-

tion variation (n = 7 and 3 respectively), and 10 participant samples, randomised for positive/

negative (n = 3 for each).

2.3. Materials and chemicals

The materials and solvents utilised in this study were as follows: 2 mL microcentrifuge tubes

(Eppendorf, UK), 0.22 μm cellulose acetate sterile Spin-X centrifuge tube filters (Corning

incorporated, USA), 200 μL micropipette tips (Starlab, UK) and QsertTM clear glass insert LC

vials (Supelco, UK). LC-MS grade 2-propanol was used as an inactivation solvent. OptimaTM

LC-MS grade methanol and water were used as reconstitution solvents and mobile phases.

Formic acid was added to the mobile phase solvents at 0.1% (v/v). Solvents were purchased

from Fisher Scientific, UK.

2.4. Instrumentation and operating conditions

Analysis of samples was carried out using a UltiMate 3000 UHPLC equipped with a binary sol-

vent manager, column compartment and autosampler, coupled to a Q Exactive™ Plus Hybrid

Quadrupole-Orbitrap™ mass spectrometer (Thermo Fisher Scientific, UK) at the University of

Surrey‘s Ion Beam Centre. Chromatographic separation was performed on a Waters

ACQUITY UPLC BEH C18 column (1.7 μm, 2.1 mm x 100 mm) operated at 55˚C with a flow

rate of 0.3 ml min-1.

Mobile phase A was water: methanol (v/v 95:5) with 0.1% formic acid, whilst mobile phase

B was methanol:water (v/v, 95:5) with 0.1% formic acid (v/v). An injection volume of 5 μL was

used. The initial solvent mixture was 2% B for one minute, increasing to 98% B over 16 min-

utes and held at this level for four minutes. The gradient was finally reduced back to 2% B and

held for two minutes to allow for column equilibration. Analysis on the Q-Exactive Plus mass

spectrometer was performed with a scan range of m/z 100 to 1 000, and 70,000 mass resolution.

MS/MS validation of features was carried out on Pooled QC samples using data dependent

acquisition mode and normalised collision energies of 30 and 35 (arbitrary units). Operating

conditions are summarised in S1 Table.

2.5. Data processing

LC-MS outputs (.raw files) were pre-processed for alignment and peak identification using

Compound Discoverer version 3.1 and Freestyle 1.6 (Thermo Fisher Scientific, UK). Peak
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picking was set to a mass tolerance ±5 ppm, and alignment to a retention time window of 120

seconds. Missing values were imputed using K-nearest neighbour imputation [24]. Features

identified by mass spectrometry were initially annotated using accurate mass match with refer-

ence to external databases (explored in parallel; KEGG, Human Metabolome Database, Drug-

Bank, LipidMaps and BioCyc), and then validation was performed using data dependent MS/

MS analysis. This process yielded an initial peak:area matrix with 10,700 discrete features. Two

criteria were used for inclusion in the final analysis: only those features with identities vali-

dated by MS/MS were used, reducing the number of features to 1,874, and 1,514 features that

were present in less than 30% of participant samples were excluded. This left 360 features that

were used in the analysis. Normalisation was performed using EigenMS in NOREVA for each

dataset analysed [25, 26].

2.6. Statistical analysis

PCA analyses were conducted in SIMCA (Sartorius Stedim Biotech, France) with additional

machine learning conducted in R Studio Version 1.3.959 and MetaboAnalyst [27, 28]. Initial

biomarker investigation was carried out using PLS-DA using 5 components and pareto-scal-

ing, maximising separation by mahalanobis distance. Panels of the discriminatory biomarkers

were identified by varying the number of features employed but otherwise using the same

hyperparameters as for the PLS-DA analyses. Reduced panels were employed to improve

robustness, given that when the number of features employed exceeds the number of samples,

machine learning can overfit models that lack predictive power [29]. Furthermore, panels

emphasising named compounds such as amino acids makes future targeted analysis more

straightforward using already-existing assays. Leave-one-out cross-validation was used for

model validation test accuracy, sensitivity and specificity; variable importance in projection

(VIP) scores were used to assess feature significance alongside p-values and effect sizes (fold

count). Batch effects were assessed by PCA analysis of both collection batches (waves one and

two) and also instrument and extraction batching by day (in S1 and S2 Figs), showing no clus-

tering by batches.

In prognostic analysis, given the lack of a “gold standard” reference test for whether

COVID-19 is likely to be high severity or low severity (as this depends on clinical judgement),

positive percent agreement (PPA) between the generated model and a high severity clinical

diagnosis was used in preference to sensitivity, which measures the detection of positive

instances of a disease relative to a ground truth value. Similarly, negative percent agreement

(NPA) between the model and a high severity clinical diagnosis was used in preference to spec-

ificity, which measures the detection of positive instances of a disease relative to a ground

truth value. In diagnostic analysis, given that RT-PCR tests were available to establish a ground

truth, sensitivity and specificity values were calculated alongside diagnostic accuracy.

3. Results

3.1. Population metadata overview

The study population analysed in this work included 75 participants, comprising 47 partici-

pants presenting with a positive COVID-19 RT-PCR test and 28 participants presenting with-

out. Of the positive participants, 10 were classed as presenting with high severity COVID-19,

34 were classed as presenting with low severity COVID-19, and 3 lacked sufficient clinical

information for severity scoring. A summary of the metadata is shown in Table 1.

In this study all participants were recruited in a hospital setting with at least potential suspi-

cion of COVID-19 infection; controls were age matched and had similar profiles in terms of

gender, oxygen requirements and survival rates. The COVID-19 positive cohort did, however,
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present with statistically significant increases in bilateral chest X-ray changes (p-value 0.0009)

and levels of eosinophils (p-value 0.002), in agreement with literature observations [23], but

not for C-reactive protein (CRP, p-value 0.80). Type 2 diabetes mellitus (T2DM) was more

prevalent in the COVID-19 negative population than the positive population, being observed

in 36% of COVID-19 negatives versus 30% of high severity COVID-19 patients and 15% of

low severity COVID-19 patients, and similar trends of greater comorbidity being seen in the

negative population was also true for ischemic heart disease (IHD) and hypertension (HTN).

The greater preponderance of underlying comorbidities within the negative population repre-

sents a confounding factor.

Within the COVID-19 positive cohort, comorbidities were again age matched, but the high

severity grouping had more males (80% male for high severity versus 47% for low severity)

and had a statistically significant difference in proportion presenting with hypertension (p-

value 0.04) and a statistically significant decrease in eosinophil levels (p-value 0.02). Interest-

ingly, CRP was increased by a 1.5x fold count in high severity participants versus low, but CRP

for low severity participants was lower than for COVID-19 negative participants. This can be

explained by the fact that CRP is associated with a larger number of comorbidities and patients

were only recruited if they had clinical suspicion of COVID-19.

3.2. Overview of features identified by liquid chromatography mass

spectrometry (LC-MS)

360 features with MS/MS validation were identified as being present in 30% or more of partici-

pant samples. Of these 360 features, 36 were identified as related to medical interventions or

food and were excluded, leaving 324 for statistical analysis. Of the 324, 38 were annotated by

m/z value only, 171 were putatively annotated by formula (elemental composition), and 114

were putatively annotated as metabolites, with annotations considered level two as set out by

the metabolomics standards initiative (MSI) [30].

3.3. Analysis of cohorts by multivariate techniques

Initially separation of COVID-19 positive versus negative participants was tested, as well as

separation of COVID-19 high severity and low severity. As shown in Fig 2A, separation for

diagnostic purposes was poor by visual inspection and delivered R2Y of 0.78 and Q2Y of 0.18.

Leave-one-out cross-validation (LOOCV) provided sensitivity of 0.74 (95% confidence inter-

val of 0.60–0.86) and specificity of 0.75 (0.55–0.89). The most significantly dysregulated identi-

fied metabolites (measured by p-value) between positive and negative COVID-19 status are

listed in S2 Table.

Fig 2B shows separation for COVID-19 high severity participants versus low severity partic-

ipants. The optimal separation was found using 5 components. Using leave-one-out cross vali-

dation, PPA for COVID-19 high severity was 1.00 (95% confidence interval of 0.69–1.00) and

NPA was 1.00 (0.90–1.00), for overall percent agreement with the clinical diagnosis of 1.00

(0.92–1.00).

A volcano plot is shown in Fig 3. Amino acids are highlighted because this class of metabo-

lites was identified as differentiated between high and low severity (see also S3 Table).

In order to improve robustness and reduce overfitting, sparse PLS-DA models were also

constructed for the purposes of establishing a smaller panel of metabolites or features capable

of discriminating between high and low severity COVID-19 participants. A putative panel

comprising Valine, Leucine, Phenylalanine, Tyrosine, Proline and a feature identified puta-

tively only by formula as C44H74N8O16, was capable of discriminating between the two popula-

tions with 100% accuracy and AUC of 1.00. This panel of predictive metabolites are
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additionally shown as boxplots in Fig 4 below and a complete list of metabolites showing statis-

tically significant differences between high and low COVID-19 severity populations is shown

in S3 Table.

Table 1. Summary of clinical characteristics by participant cohort.

Parameters Covid-19 Covid-19 p-value Covid-19 Negative p-value

Low Severity High Severity High vs Low Severity Pos vs Neg

N 34 10 28

Age (mean, standard deviation; years) 60 ± 18 63 ± 13 0.61 62 ± 22 0.74

Male / Female (n) 16 / 18 8 / 2 0.083 16 / 12 0.26

Treated for Hypertension (n) 6 6 .041 12 0.21

Treated for High Cholesterol (n) 2 0 1.00 6 .05

Treated for Type 2 Diabetes Mellitus (n) 5 3 0.39 10 0.29

Treated for Ischemic Heart Disease (n) 1 2 0.149 7 0.09

Current Smoker (n) 1 0 1.00 0 NA

Ex-Smoker (n) 12 5 0.71 8 0.46

Medical Acute Dependency admission (n) 10 6 0.26 4 0.06

Intensive Care Unit admission (n) 0 0 N/A 0 NA

Survived Admission (n) 34 8 0.048 27 1.00

Lymphocytes (mean, standard deviation; cells / μL) 0.8 ± 0.5 0.9 ± 0.7 0.77 1.0 ± 0.5 0.302

C-Reactive Protein (mean, standard deviation; mg / L) 115. ± 85 170. ± 83. 0.075 127 ± 105 0.80

Eosinophils (mean, standard deviation; 100 / μL) 0.1 ± 0.1 0.0 ± 0.0 0.018 0.3 ± 0.4 0.002

Bilateral Chest X-Ray changes (n) 15 8 0.26 3 0.0009

Continuous Positive Airway Pressure (n) 1 1 0.442 3 0.36

O2 required (n) 9 4 0.69 8 1.00

https://doi.org/10.1371/journal.pone.0274967.t001

Fig 2. Saliva metabolomics analysis for COVID-19 diagnosis and prognosis via LC-MS in positive mode, showing: A PLS-DA plot for 75 participants and 324

features, COVID-19 positive / negative. B PLS-DA plot for 44 participants and 324 features, high severity / low severity. C LOOCV confusion matrix, COVID-

19 positive / negative. D LOOCV confusion matrix, high severity / low severity.

https://doi.org/10.1371/journal.pone.0274967.g002
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3.4. Validation set

Since no fully independent prognostic validation set was available, we projected the reduced-

feature PLS-DA model obtained for high severity versus low severity participants on to

COVID-19 negative participants. Given that these participants should not show features asso-

ciated with high severity COVID-19, this was considered to offer additional information. The

confusion matrix for the results of the projection is shown in Table 2 below.

4. Discussion

Whilst age and recruitment venue were well matched (all participants were recruited in a hos-

pital setting including controls), several variables within the metadata illustrate the natural dif-

ficulties in experimental design experienced during a pandemic. Age ranges of participants

were large, a wide range of comorbidities were present, and the time between symptom onset

and saliva sampling ranged from 1 day to> 1 month. This variation in time between symptom

onset and saliva sampling was addressed through exclusion of participants whose RT-PCR

result was greater than 14 days from study sampling. However, participant recruitment of the

most severely affected was limited by ethics approval only covering patients who could give

informed consent, thereby precluding the participation of patients with the highest COVID

severity. Furthermore, given the small n in this pilot study, precision was necessarily low and

confidence intervals wide.

In this study, saliva samples were provided under conditions that could be practically

achieved in a hospital pandemic setting. This meant no scope for abstinence from food and /

Fig 3. Volcano plot of statistical significance versus effect size for MS/MS validated features identified in the

patient samples.

https://doi.org/10.1371/journal.pone.0274967.g003
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or drink before saliva sampling, and no prior rinsing of the mouth, leading to potential con-

founding factors. Diagnostic sensitivity of 0.74 (95% confidence interval of 0.60–0.86) and

specificity of 0.75 (0.55–0.89) was considered insufficient to justify further investigation, given

that proteomic and serum / plasma based metabolomic diagnostic tests have shown markedly

better performance in diagnosing COVID-19 by both meta-analysis and in a recent matched-

sample study [8, 31]. Fig 4 illustrates that a more marked separation exists between low severity

and high severity, than between hospital-recruited controls and low severity. We hypothesise

that mild COVID-19 causes more limited alteration of the salivary metabolome versus con-

trols, especially given that the controls in this work were recruited in a hospital setting with

similar symptoms to COVID-19. The data presented here suggest that salivary dysregulation

specific to COVID-19 (and not indicative of general poor health) only reaches clearly

Fig 4. Boxplots of features selected for ability to differentiate high and low COVID-19 severity (corresponding p-values for high and low severity, left to

right:< 0.001, 0.041, 0.051, 0.65, 0.16, and 0.02).

https://doi.org/10.1371/journal.pone.0274967.g004

Table 2. Confusion matrix for reduced-feature PLS-DA model projected on to COVID-19 negative participants.

COVID-19 negative participants

Reduced-feature PLS-DA model result: High Severity 1

Reduced-feature PLS-DA model result: Low Severity 27

https://doi.org/10.1371/journal.pone.0274967.t002
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identifiable levels at greater levels of COVID-19 severity, at least using the uncontrolled, but

pragmatic sampling approach described in this work.

Superior differentiation by multivariate analysis was, however, achieved in relation to

COVID-19 severity. The reduced-feature PLS-DA model showed separation of High Severity

COVID-19 positive participants from Low Severity COVID-19 positive participants, with PPA

and NPA of 1.00 by LOOCV. Furthermore, whilst not a true independent validation set, pro-

jecting the reduced-feature PLS-DA model on to COVID-19 negative participants showed that

the model classified 97% of them as “low risk”, i.e. that the characteristic levels of markers asso-

ciated with high severity were not associated with low severity in COVID-19 negative

participants.

A number of identified metabolites showed statistically significant differences between

the high and low severity participants. As shown in Fig 4, amino acids constituted the class

of metabolites seeing the most changes between high and low severity, similar to literature

observations of changes in either amino acids or ratios of amino acids in serum or plasma.

Encouragingly for clinical application, in this work a reduced feature panel of just six fea-

tures was still capable of discriminating between high and low severity COVID-19 partici-

pants, with five of the six features being amino acids (all downregulated in the saliva of high-

severity participants). One previous study found in contrast that salivary myo-inositol and

2-pyrrolidineacetic acid were capable of distinguishing an inpatient cohort from an outpa-

tient cohort [19], rather than amino acids, but all recruitment in this work took place in a

hospital setting, i.e. the results shown herein represent separation based on severity within

the inpatient cohort.

A number of limitations in this study should be acknowledged. In this work, we were

unable to standardise the saliva collection by asking patients to rinse the mouth or abstain

from eating, due to health and safety considerations, Additionally, we were unable to access

patients immediately after admission to hospital, meaning that sample collection took place 1

day– 1 month after admission. Further, high resolution mass spectrometry was only per-

formed in positive mode, due to competing demands for participant samples. Analysis in both

positive mode and negative mode could have identified additional significant features. The

analysis was also untargeted, and so lacked the use of internal standards that would be available

in a targeted assay. As an untargeted analysis, many features were putatively identified, result-

ing in a noisy dataset for machine learning. In addition, the supervised multivariate analysis

used in this work can lead to overfitting and false discovery, especially given the relatively

small numbers of participants recruited in this work. Validation of these results in a larger and

more balanced study cohort is required, using a standardised approach for assessing COVID-

19 severity, when such an approach is universally accepted. Furthermore, future studies may

need to take account of biomarker changes with new variants, as these have been found to be

dependent upon collection wave [32].

It should be noted, however, that whilst this work was untargeted for discovery purposes,

the features selected for the PLS-DA panel (valine, leucine, phenylalanine, tyrosine, proline

and C44H74N8O16) were on average present in 85% of participant samples and targeted meth-

ods are available that can reliably quantify amino acids for future investigation [33]. Therefore,

whilst this is a preliminary and exploratory study, we see these results as encouraging first evi-

dence for distinctive changes in the salivary metabolome of hospitalised individuals with

severe COVID-19. We believe that saliva has potential to add to understanding of the progres-

sion and severity of COVID-19, providing evidence that the salivary metabolome is disrupted,

and more generally illustrating the potential for saliva as a biofluid for investigating dysregu-

lated metabolism related to infectious diseases.
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