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RNA-seq identifies a diminished 
differentiation gene signature in 
primary monolayer keratinocytes 
grown from lesional and uninvolved 
psoriatic skin
William R. Swindell   1,2, Mrinal K. Sarkar2, Yun Liang2, Xianying Xing2, Jaymie Baliwag2, 
James T. Elder2, Andrew Johnston2, Nicole L. Ward3,4 & Johann E. Gudjonsson2

Keratinocyte (KC) hyper-proliferation and epidermal thickening are characteristic features of psoriasis 
lesions, but the specific contributions of KCs to plaque formation are not fully understood. This study 
used RNA-seq to investigate the transcriptome of primary monolayer KC cultures grown from lesional 
(PP) and non-lesional (PN) biopsies of psoriasis patients and control subjects (NN). Whole skin biopsies 
from the same subjects were evaluated concurrently. RNA-seq analysis of whole skin identified a 
larger number of psoriasis-increased differentially expressed genes (DEGs), but analysis of KC cultures 
identified more PP- and PN-decreased DEGs. These latter DEG sets overlapped more strongly with 
genes near loci identified by psoriasis genome-wide association studies and were enriched for genes 
associated with epidermal differentiation. Consistent with this, the frequency of AP-1 motifs was 
elevated in regions upstream of PN-KC-decreased DEGs. A subset of these genes belonged to the same 
co-expression module, mapped to the epidermal differentiation complex, and exhibited differentiation-
dependent expression. These findings demonstrate a decreased differentiation gene signature in 
PP/PN-KCs that had not been identified by pre-genomic studies of patient-derived monolayers. This 
may reflect intrinsic defects limiting psoriatic KC differentiation capacity, which may contribute to 
compromised barrier function in normal-appearing uninvolved psoriatic skin.

Psoriasis plaques develop from abnormal interactions between epidermal KCs and infiltrating immune cells, 
leading to KC hyper-proliferation with epidermal thickening1,2. The role of KCs in normal skin homeostasis and 
plaque formation is complex and multifaceted3,4. KCs generate chemokines and cytokines such as IL-1b, IL-6 and 
TNF, and also produce defensive antimicrobial factors including β-defensins, LL37 and S100 proteins5,6. Such 
KC-derived factors amplify inflammatory cascades and the cytokine network that underlies psoriasis plaque 
formation7. KCs also have a critical structural function in epidermal barrier formation, which requires proper 
execution of early-to-late KC differentiation stages, leading to an intact stratum corneum with abundant keratin 
and lipid matrix4. This process is altered in psoriasis lesions, however, as evidenced by dysregulated expression of 
suprabasal differentiation markers (e.g., KRT1 and KRT10) and premature formation of a thin cornified envelope 
with abnormally increased involucin abundance8–10. It remains unclear whether this unique phenotype is due to 
intrinsic KC defects or is instead secondary to inflammatory cascades initiated by other cell types (e.g., T cells, 
dendritic cells, neutrophils)6,11.

Transcriptome studies of full-thickness psoriatic skin can in principle provide insights for understanding how 
KCs from psoriatic skin may differ from those in uninvolved or normal skin12–14. These studies have identified 
thousands of differentially expressed genes (DEGs) from the comparison of lesional psoriatic skin (PP) to either 

1Ohio University, Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA. 2University of Michigan, 
Department of Dermatology, Ann Arbor, MI, 48109–2200, USA. 3Department of Dermatology, Case Western Reserve 
University, 10900 Euclid Ave, Cleveland, OH, 44106, USA. 4The Murdough Family Center for Psoriasis, Case Western 
Reserve University, Cleveland, OH, USA. Correspondence and requests for materials should be addressed to W.R.S. 
(email: ws277814@ohio.edu)

Received: 27 September 2017

Accepted: 11 December 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0001-8504-6363
mailto:ws277814@ohio.edu


www.nature.com/scientificreports/

2SCientifiC Reports |  (2017) 7:18045  | DOI:10.1038/s41598-017-18404-9

non-lesional skin from psoriasis patients (PN) or normal skin from control subjects (NN). Comparisons between 
PN and NN skin have also identified DEGs, although typically many fewer DEGs have been identified from 
this comparison (relative to the PP vs. NN or PP vs. PN comparisons)15. It appears that at least some changes in 
gene expression identified from these studies can be traced to the epidermis or altered transcriptional activity of 
psoriatic KCs13. This conclusion has often been difficult to substantiate, however, primarily because epidermal 
thickness is greatly increased in lesional compared to non-lesional skin, which may lead to increased expression 
of KC-expressed genes in the absence of transcriptional up-regulation on a per-cell basis13. A second challenge 
has been that KCs within full-thickness biopsies remain embedded in their native multicellular environment, 
which includes influences of other cell types and factors released by those cell types (e.g., fibroblasts, immune 
cells, growth factors, cytokines, etc.)1,5. This permits identification of DEGs within a less disturbed in vivo context, 
but it is difficult to determine whether such DEGs stem from intrinsic KC defects or instead represent altered 
responses of KCs to the psoriatic skin microenvironment.

To identify intrinsic psoriatic KC defects, earlier studies have evaluated their phenotype in cell culture or 
transplant systems in which KCs are extracted from intact human skin16–20. This simplifies the extracellular envi-
ronment to attenuate the influence of exogenous factors or other cell types, thereby facilitating comparisons 
among samples in a “common garden” context. One approach has been to compare in vitro phenotypes of PP/
PN-KCs and NN-KCs in the setting of KC monolayer cultures grown from skin punch biopsies21. Compared to 
KCs from intact skin, it is expected that KCs grown as monolayers in culture will have altered proliferation and 
differentiation status, with the balance between proliferation and differentiation sensitive to cell culture con-
ditions such as extracellular calcium levels22. Nonetheless, such studies have shown that PP-KCs and PN-KCs 
proliferate at roughly the same rate in monolayer cultures, despite drastically different rates of proliferation in 
vivo16,20. PP-KCs were in fact shown to initiate proliferation more slowly than PN-KCs in primary cultures, with 
no observed difference in proliferation rates in serially passaged KC cultures19. Using the same approach, multi-
ple studies were able to demonstrate elevated rates of DNA synthesis in both PP-KCs and PN-KCs as compared 
to NN-KCs16,20. This appeared to support the idea that psoriatic KCs (PP and PN) possess intrinsic properties 
differing from NN-KCs, while further providing proof-of-principle to demonstrate the utility of patient-derived 
KC monolayers as a model system for investigating this possibility16,20. These earlier studies, however, were car-
ried out in the pre-genomic era and thus tools now available for large-scale transcriptome analysis could not be 
applied.

This study used RNA-seq to evaluate gene expression in primary confluent KC monolayer cultures (0.1 mM 
calcium) grown from full-thickness punch biopsies from psoriasis patients and control subjects (PP, PN and NN 
samples). We additionally used RNA-seq to concurrently evaluate gene expression in full-thickness skin biopsies 
from the same subjects. Psoriasis DEGs are identified based upon analysis of both sample types (monolayer KCs 
and full-thickness skin sections), and we compare DEGs identified from both analyses to identify points of cor-
respondence and differences. Our analyses identify DEGs similarly altered in both sample types, which can be 
unambiguously assigned to KCs and likely represent instances of KC-specific transcriptional dysregulation. We 
also identify psoriasis DEGs uniquely altered in KC monolayers and not similarly altered in full-thickness skin 
sections. These novel psoriasis DEGs may arise from intrinsic alterations of psoriatic KCs impacting their in vitro 
expression profile.

Results
RNA-seq analysis of primary confluent monolayer KC cultures and whole skin biopsies from 
psoriasis patients and control subjects.  Primary monolayer KC cultures were established using punch 
biopsies from lesional involved skin of psoriasis patients (PP), uninvolved non-lesional skin of psoriasis patients 
(PN), and normal skin from control subjects (NN) (n = 4 patients; n = 4 controls). All biopsies were processed in 
the same manner with cells harvested after reaching confluence. RNA was then extracted from KCs and a sepa-
rate extraction was performed using the original skin biopsy from each subject (n = 24 samples total; 12 KC and 
12 whole skin). We then used RNA-seq to generate an average of 27.6 million quality-filtered reads per sample, 
with at least 94% of the filtered reads successfully mapped to the human genome for each sample (Supplementary 
Figure S1).

An initial cluster analysis grouped together samples from the same subjects, suggesting that inter-individual 
variation had stronger influence than biopsy type (KC/skin) or disease status (PP/PN/NN) (Supplementary 
Figure S2A). Principal component analyses also showed that KC or skin samples from the same individual 
mapped to similar locations (Supplementary Figure S2C–F) and likelihood ratio tests (LRTs) confirmed that, for 
many genes, inter-individual differences contributed the most to variation among the 24 samples (Supplementary 
Figure S2G). Nonetheless, expression profiles of some NN-KC and NN-Skin samples differed from the psoriasis 
patient samples (Supplementary Figure S2C–F). We thus repeated the cluster analysis using expression values 
adjusted to remove the effects of patient/subject (i.e., residual analysis), which showed that NN-KC and NN-Skin 
samples grouped together and apart from the psoriasis patient samples (Supplementary Figure S2B).

Transcriptome differences between psoriatic and normal KCs are larger than those in whole 
skin and overlap more with genes near disease-associated SNPs.  We identified differentially 
expressed genes (DEGs) based upon 3 comparisons (PP vs. PN, PP vs. NN, PN vs. NN) and repeated the analy-
sis for KC and skin samples (Fig. 1). Surprisingly, for all 3 comparisons, the number of DEGs identified in KCs 
was larger than the number identified in whole skin biopsies (Fig. 1A–C vs. 1D–F). The strongest difference was 
observed for genes with decreased expression in psoriatic samples. For instance, compared to NN-KCs, more 
than 300 DEGs were decreased in PP-KCs and PN-KCs (FDR < 0.10 and FC < 0.50) (Fig. 1). However, compared 
to NN-Skin, only 9 and 31 DEGs were decreased in PP-Skin and PN-Skin, respectively (Fig. 1).
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Overall, FC estimates showed modest correspondence between monolayer KCs and whole skin (rs ≥ 0.438; 
Fig. 2A,D,G). Most genes elevated in PP- or PN-KCs were similarly elevated in PP- or PN-Skin, as compared 
to NN-KCs and NN-Skin, respectively (Fig. 2B,E,H). However, many genes decreased in PP-KCs and PN-KCs 
(compared to NN-KCs) were not similarly decreased in the comparison between PP/PN-Skin and NN-Skin 
(Fig. 2A–I). Such genes included SERPINB4, S100A8, S100A9, IL36G, LOR and KRT (Fig. 2C,F and I). The 
KC-Skin correspondence was not improved by comparing our KC results to those from a prior microarray anal-
ysis of LCM-dissected psoriatic epidermis (Fig. 2J) or RNA-seq studies of whole skin with a larger number of 
patient samples (Fig. 2K and L). Analysis of KC monolayer cultures thus identified gene expression differences 
not discernable from either whole skin analysis or LCM-dissected samples.

We next compared genes most strongly altered in our comparisons to genes at varying distances from 
disease-associated SNPs identified by genome-wide association (GWA) studies of psoriasis (Fig. 3)23. Genes with 
elevated expression in PP-Skin and decreased expression in PN-Skin overlapped significantly with genes near 
disease-associated SNPs (Fig. 3D,E). Overlap was much stronger, however, with respect to genes with decreased 
expression in PP-KCs and PN-KCs compared to NN-KCs (50–200 KB; Fig. 3B,C). Genes decreased in PP-KCs 

Figure 1.  Differential expression results (PP vs. PN, PP vs. NN, PN vs. NN). Volcano plots highlighting 
DEGs identified with respect to the three comparisons for (A–C) KC and (D–F) full-thickness skin biopsies 
(FDR < 0.10 with FC > 2.0 or FC < 0.50). (G–L) Scatterplot comparison of average FPKM in treatments 
compared by each differential expression analysis (dashed green line: equal average FPKM in both treatments).
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and PN-KCs with closest proximity to disease-associated SNPs were often located on chromosomes 1 or 17 and 
included CARD14, LCE2D, LCE3E and LCE3D (Fig. 3G,H).

Psoriatic KCs exhibit increased expression of pro-angiogenesis genes and decreased expres-
sion of early and late differentiation genes.  DEGs with elevated expression in PP-KCs compared to 
PN-KCs or NN-KCs were significantly enriched with genes associated with neovascularization, angiogenesis, 
blood vessel morphogenesis (Supplementary Figures S3 and S4). The strongest trend we observed, however, was 
reduced expression of genes associated with epidermal development and differentiation (PP-KCs and PN-KCs 
compared to NN-KCs; Supplementary Figures S4 and S5). This loss of differentiation-associated gene expres-
sion appeared to contribute to differences noted above in comparisons to whole skin biopsies (Fig. 2). Several 
differentiation-associated genes, for instance, were repressed in psoriatic KCs but not whole skin biopsies (e.g., 
TGM3, LOR, KRT1; Fig. 2F,I).

Figure 2.  Genes with decreased expression in PP-KCs and PN-KCs are not similarly altered in whole skin 
biopsy comparisons. (A,D,G) Comparison of FC estimates from whole skin (vertical axis) and KC comparisons 
(horizontal axis). (B,E,H) PP/PN-KC-increased genes with the least similar expression changes compared to 
whole skin (red: FDR < 0.10, FC > 1.50). (C,F,I) PP/PN-KC-decreased genes with the least similar expression 
changes compared to whole skin (blue: FDR < 0.10, FC < 0.67). (J,K,L) Comparison of FC estimates from KCs 
to those from (J) LCM-dissected epidermis (GSE26866), (K) an RNA-seq study of 44 patients (GSE41745, 
GSE54456/GSE63979, GSE66511), and (L) an RNA-seq study of 174 subjects (92 PP, 82 NN; GSE54456).
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Using data from a prior microarray study of LCM-dissected human skin24, we identified genes with elevated 
expression in suprabasal vs. basal epidermis, and found that nearly all of these were decreased in PP- and PN-KCs 
compared to NN-KCs (Fig. 4A). A similar pattern was observed among genes up-regulated in KCs differentiated 
within a devitalized dermis model of epidermal regeneration (Fig. 4B)25. Neither of these trends, however, could 
be discerned from analysis of full-thickness skin biopsies. Consistent with these results, PN- and PP-KCs showed 
decreased expression of early (KRT1, KRT10, DSC1) and late (FLG, LOR, IVL) differentiation genes (Fig. 4E–J). 
Basal keratins KRT5 and KRT14 did not show altered expression in monolayer KCs or full-thickness biopsies 
(Fig. 4C,D). Markers of hyperproliferation, such as KRT72 (KRT6) and KRT16, were increased slightly in PP ver-
sus PN skin but not PP-KCs versus PN-KCs; interestingly, however, KRT16 expression was elevated in NN-KCs 
compared to PP- and PN-KCs (Supplementary Figure S6).

Figure 3.  Genes with decreased expression in PP-KCs and PN-KCs overlap significantly with genes near SNPs 
identified by psoriasis GWA studies. (A–F) Genes altered in psoriatic KCs (A–C) or whole skin (D–F) and their 
overlap with genes near SNPs from psoriasis GWA studies. The 500 most strongly altered genes were examined 
in each analysis and percent overlap with genes at varying distances from psoriasis-associated SNPs was 
evaluated (yellow: P < 0.05, Fisher’s Exact Test). (G–J) Genes most strongly altered in psoriasis KCs or skin (top 
500) that are closest to a psoriasis-associated SNP (left margin). The estimated FC is shown for each gene (red: 
FDR < 0.10, FC > 2.0; blue: FDR < 0.10, FC < 0.50).
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Psoriatic monolayer KCs exhibit shifts in cytokine gene expression distinct from those in 
full-thickness skin biopsies.  IL36G encodes an interleukin 1 family cytokine and has been identified as a 
robust biomarker of lesional psoriatic skin, with one meta-analysis study showing increased expression of IL36G 
in 100% of lesional skin samples from 237 psoriasis patients (compared to matched non-lesional PN skin from 
the same patients)26. Remarkably, IL36G expression was decreased in PP- and PN-KCs compared to NN-KCs, 
although as expected expression was much higher in PP-skin compared to PN- and NN-skin (Supplementary 
Figure S7). We additionally observed decreased expression of IL36RN, IL20RA, IL22RA1, TNFAIP8L3 in PP- and 
PN-KCs without similar expression shifts in full-thickness skin biopsies (Supplementary Figure S7). We did not 
detect IL17A or TNF expression in KC or full-thickness skin samples, and there was no indication that genes 
decreased in PP- or PN-KCs are repressed by these cytokines (Supplementary Figure S7).

Figure 4.  Early and late differentiation gene expression is reduced in PP- and PN-KCs compared to NN-KCs. 
(A,B) FPKM and FC estimates for genes with (A) increased expression in LCM-dissected suprabasal epidermis 
compared to basal epidermis (GSE42114) and (B) increased expression in KCs undergoing differentiation 
(devitalized dermis model, GSE52651). (C,D) Average FPKM of basal keratin genes KRT5 and KRT14. 
(E–G) Average FPKM of early differentiation genes KRT1, KRT10 and DSC1. (H–J) Average FPKM of late 
differentiation genes FLG, LOR and IVL.
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Identification of an AP-1 motif enriched in regions upstream of PN-KC-decreased DEGs and 
within open chromatin regions near differentiation-associated genes.  The magnitude of PN vs. 
NN differences has been limited in prior transcriptome studies of full-thickness skin biopsies15. It was therefore 
surprising to find strong differences between PN-KCs and NN-KCs, with identification of 336 PN-KC-decreased 
DEGs (Fig. 1C). We evaluated whether genomic sequences 5000 BP upstream of the 336 PN-KC-decreased DEGs 
were enriched for motifs known to participate in sequence-specific interactions with transcription factors (TFs) 
or unconventional DNA-binding proteins (uDBPs). Of 2935 motifs screened26, 277 were significantly enriched 
in regions upstream of the 336 PN-KC-decreased DEGs (FDR < 0.10). A significant proportion of the 277 motifs 
were associated with Fos- and Jun-related TFs from the bHLH/bZIP class and basic superfamily (Supplementary 
Figure S8).

Only 34 of the 277 significant motifs interacted with TFs or uDBPs with decreased expression in PN-KCs 
compared to NN-KCs (FDR < 0.10). These 34 motifs included one recognized by KLF4 and several others 
associated with AP-1 (Supplementary Figure S8E and F). Consistent with this, several genes encoding Jun- 
and Fos-related TFs trended towards decreased expression in PN-KCs compared to NN-KCs, although only 
FOSL2 and JUNB met criteria as DEGs with FDR < 0.10 and FC < 0.50 (Supplementary Figure S8D). We iden-
tified one motif (5-TGACTCA/TGAGTCA-3) interacting with Fra-2 (FOSL2) that was present in upstream 
regions of several genes known to influence KC differentiation, including DSC2, IVL, FLG, KLF4, CASP14, and 
LOR (Supplementary Figure S9). Several occurrences of this motif were in open chromatin regions defined by 
ENCODE studies of NHEK cells (Supplementary Figure S9B and C)27.

A module of 36 co-expressed genes (ACER1-36) with differentiation-dependent expression is 
down-regulated in KCs from lesional and uninvolved psoriatic skin.  We used hierarchical clus-
tering to group genes into 239 modules (≥25 genes per module) based upon co-expression patterns across an 
independent dataset (i.e., 82 normal human skin samples from control subjects; Fig. 5A)14. Of 239 modules, we 
identified 61 differentially expressed modules (DEMs) with member genes biased towards PN-KC-increased (21 
DEMs) or –decreased (40 DEMs) expression. Increased and decreased DEM medoids were often negatively cor-
related (Fig. 5C,D) and approximately 20% of PN-KC-decreased DEGs could be accounted for by only 3 modules 
(ACER1-36, GATA3-119, PYCARD-46) (Fig. 5E).

ACER1-36 included genes with the strongest and most consistent expression differences between PN-KCs 
versus NN-KCs (Fig. 5A,C; Fig. 6A). 27 of 36 genes were decreased significantly in PN-KCs compared to 
NN-KCs (FDR < 0.10 with FC < 0.50), and most genes were similarly decreased in PP-KCs compared to NN-KCs 
(Fig. 6B). A significant fraction of the 36 genes (12/36) were located on chromosome 1 within the 1q21 seg-
ment that includes the epidermal differentiation complex (EDC) (Fig. 6E). Consistent with this, ACER1-36 was 
significantly enriched for genes associated with epidermis development, keratinization, and cell differentiation 
(Fig. 6D). Nearly all 36 genes were repressed by treatments that block normal keratinocyte differentiation, such 
as RNAi knockdown of MAF/MAFB, ZNF750 and STAU (Fig. 6H–J). Analysis of 5000 BP regions upstream of 
ACER1-36 identified enrichment for DNA motifs recognized by zinc finger protein transcription factors as well 
as a motif that interacts with MAF bZIP transcription factor F (MAFF) (Fig. 6F,G).

Discussion
The classic conception of psoriasis as a cutaneous disease has evolved towards a more nuanced understanding of 
psoriasis as a hybrid immune-cutaneous condition resulting from abnormal interactions between KCs and acti-
vated immune cells1,2. The possibility that intrinsic KC defects drive plaque formation, at least in part, has been 
frequently debated but remains unresolved3,6,11. This study used primary monolayer cultures as a model system 
to compare KCs grown from lesional (PP), uninvolved (PN), and normal human skin (NN). Altered expres-
sion of differentiation-associated genes was the strongest transcriptomic feature distinguishing PP/PN-KCs from 
NN-KCs, with PP/PN-KCs exhibiting decreased expression of early/late differentiation markers (KRT1, KRT10, 
FLG, LOR) and differentiation mediators (CASP14, ACER1). A subset of PP/PN-KC-repressed genes was associ-
ated with AP-1 binding sites and belonged to a single co-expression module (ACER1-36) mapping to the EDC. 
These results highlight differentiation as a key dysregulated process that may drive other aspects of the in vitro 
PP/PN phenotype (e.g., increased DNA synthesis and cell proliferation). Our findings are additionally consistent 
with the idea that PN-KCs have intrinsic defects limiting their differentiation capacity, which supports a model of 
pathogenesis in which plaque formation results at least in part from a primary cutaneous defect.

Transcriptome studies of full-thickness lesional and uninvolved psoriatic skin have been advanced to discover 
unique cutaneous features of psoriatic skin, which may allow for the identification of genes with KC-specific 
changes in transcriptional activity12–14. Transcriptome findings from this in vitro study, however, agreed only 
partially with results from full-thickness skin biopsies (Fig. 2). For example, several genes known to be robustly 
elevated in full-thickness sections of PP skin were in fact down-regulated in PP-KCs compared to NN-KCs (e.g., 
S100A8, S100A9, IL36G; Fig. 2). This seems paradoxical, and may reflect differential response patterns of such 
genes in the context of cell culture as compared to intact skin22,28. Alternatively, such genes may be predominantly 
KC-expressed and thus tend to show elevated expression in PP skin biopsies, due to expansion of the epidermal 
compartment13. Additional examples include genes within the EDC previously identified as up-regulated in PN 
skin compared to NN skin (e.g., SPRR2B, SPRR2G, SPRR3, LCED3)15. These findings suggest that analysis of 
full-thickness skin biopsies may obscure functionally important expression declines in PP- and PN-KCs, which 
can in contrast be detected from in vitro analysis of patient-derived cells (Fig. 2). This may explain why genes 
with decreased expression in full-thickness psoriatic skin biopsies included a lower proportion of genes near loci 
identified by psoriasis GWA studies23, whereas such overlap was stronger among genes decreased in PP/PN-KCs 
compared to NN-KCs (Fig. 3).
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Uninvolved skin from psoriatic patients appears macroscopically normal, although previous studies have 
identified impaired barrier recovery along with decreased abundance of late differentiation markers, such as the 
cornified envelope proteins filaggrin (FLG) and loricrin (LOR)29. In agreement with these findings, expression 
of FLG and LOR was decreased in PN-KCs compared to NN-KCs (Fig. 4). We additionally identified decreased 
expression of involucrin (IVL) in PN-KCs (Fig. 4), which was not previously observed in analyses of full-thickness 
skin sections29. It has been proposed that decreased expression of FLG and LOR in uninvolved psoriatic skin is 
secondary to elevated TNF-α expression in PN compared to NN skin29. We did not detect TNF expression in our 
samples and there was no indication that TNF represses expression of PN-KC-decreased DEGs (Supplementary 
Figure S7). In our experiments, KCs harvested from skin biopsies underwent repeated wash steps in monolayer 
cultures, which we expected to equalize the extracellular environment and cytokine concentrations of PN-KCs 
and NN-KCs. It is possible, however, that elevated TNF-α in PN skin alters the methylation status of promoter 

Figure 5.  Identification of differentially expressed modules (DEMs) from the comparison of PN-KCs to 
NN-KCs. (A) Cluster analysis of 239 co-expression module medoids (Euclidean distance; horizontal axis: 
average FC among module genes). Module IDs are shown (right margin; red: PN-KC-increased DEMs; blue: 
PN-KC-decreased DEMs). (B) Module medoids plotted with respect to principal component axes (red: PN-
KC-increased DEMs; blue: PN-KC-decreased DEMs). (C) Cluster analysis of top 12 DEM medoids (Euclidean 
distance; grey boxes: middle 50% of FC estimates; whiskers: middle 80% of FC estimates). (D) Spearman rank 
correlations among medoids (top 20 DEMs). (E) Cumulative percentage of the 336 PN-KC-decreased DEGs 
accounted for by modules (black font: number of PN-KC-decreased DEGs in each module).
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elements associated with FLG, LOR, and IVL, which may then be inherited in subsequent cell divisions to explain 
loss of FLG, LOR, and IVL expression in PN-KCs30. Alternatively, psoriatic KCs may harbor disease-associated 
genetic variants leading to decreased expression of genes required to execute the full differentiation program, 
including the EDC-associated ACER1-36 module identified in this study (Figs 5 and 6).

Transcription factors (TFs) regulate normal epidermal differentiation and genetic variants that alter TF activ-
ity may contribute to impaired KC differentiation of psoriatic skin31,32. Consistent with this, expression of KLF4 
and KLF4-regulated genes was decreased in PN-KCs compared to NN-KCs. PN-KCs also showed decreased 
expression of genes encoding AP-1 transcription factors (FOSL2 and JUNB), and motifs associated with Jun- and 
Fos-related TFs were enriched in regions upstream of the 336 PN-KC-decreased DEGs. This appears consist-
ent with prior work suggesting that decreased AP-1 activity in psoriatic KCs may precede plaque formation33. 

Figure 6.  The ACER1-36 module is decreased in PP- and PN-KCs and exhibits differentiation-dependent 
expression. (A,B) ACER1-36 genes ranked according to their expression decrease (PP/PN-KCs, bottom margin: 
FC). (C) ACER1-36 expression in NN skin (GSE54456). (D) GO BP terms enriched a mong ACER1-36 genes 
(left margin parentheses: number of genes per term). (E) Chromosomes associated with AVER1-36 genes 
(right margin: Fisher’s Exact Test p-values). (F) Motifs enriched in regions 5000 bp upstream of ACER1-36 
genes (white font: observed/expected motif frequency). (G) ZNF83 sequence logo. (H–J) ACER1-6 genes show 
decreased expression in KCs following RNAi knockdown of (H) MAF and MAFB, (I) ZNF750, and (J) STAU. 
Genes are ranked according to their RNAi expression change and cumulative overlap with ACER1-36 genes is 
shown.
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In mice, epidermal deletion of JUNB and JUN was shown to promote a psoriasiform skin phenotype with 
arthritic lesion formation33. A recent genomic analysis also demonstrated that risk alleles at enhancer-associated 
non-coding psoriasis susceptibility loci frequently disrupt AP-1 binding sites26. These findings and our current 
data suggest that loss of AP-1 activity or DNA binding may impair differentiation of psoriatic KCs, and such 
effects may be synergistic with decreased KLF4 expression. Within the in vivo setting, this may have an initiating 
effect on plaque development by weakening the PN epidermal barrier, thereby lowering the threshold for trigger-
ing inflammatory responses3,26.

It is important to note that our study was performed using KCs cultured under relatively low calcium concen-
trations (0.1 mM), which may have favored a proliferative phenotype and inhibited KC differentiation regardless 
of the donor’s disease status34,35. While we expect some differentiation markers to be expressed at this calcium 
concentration34,35, experiments performed with higher concentrations (e.g., 1.2–2.4 mM) would have provoked 
further cell-to-cell contact, culture stratification and differentiation. Potentially, higher calcium concentrations 
may have widened PP/PN versus NN differences with respect to the expression of differentiation-associated 
genes, although further studies would be needed to evaluate this possibility, with PP/PN- and NN-derived KCs 
cultured under varying calcium concentration levels. We also note that our analyses have identified differences 
in mRNA expression, whereas further characterization of KC differentiation status would require assays for key 
differentiation marker proteins (e.g., KRT1, KRT5, KRT10, KRT14, FLG, LOR and IVL). Finally, in this study 
we concurrently analyzed expression profiles of KC monolayer cultures and whole skin biopsies from the same 
patients. This allowed us to compare KC and whole skin PP/PN versus NN expression signatures while con-
trolling for patient heterogeneity36. However, an alternative approach for future work may be to perform similar 
comparisons using epidermal isolates rather than full-thickness biopsies (e.g., ammonium thiocyanate incubation 
or laser capture microdissection)24,37. This would limit the influence of non-KC cell types and may yield a PP/PN 
versus NN signature more correspondent with that observed in monolayer cultures.

This study extends previous transcriptome analyses to include RNA-seq analysis of patient-derived KC mon-
olayer cultures, which had not yet been investigated using the modern toolkit of sequencing and bioinformatic 
methods. Our transcriptomic findings uncover novel expression differences among PP, PN and NN skin sam-
ples that are not discerned from analysis of full-thickness skin sections. Such differences can be unambiguously 
localized to KCs and may reflect intrinsic disease-associated features of the psoriatic KC phenotype. Our results 
provide direction for future studies to further address longstanding questions regarding the contribution of KCs 
to plaque formation in psoriatic disease.

Methods
Ethics statement.  Samples were obtained from volunteer patients with informed written consent in 
accordance with Declaration of Helsinki principles. All protocols were approved by an institutional review board 
(University of Michigan, Ann Arbor, MI, IRB No. HUM00037994).

Patient samples.  6 mm punch biopsies were obtained from 4 psoriasis patients (PP, PN) and 4 normal con-
trol subjects without psoriasis (NN). The average age of the psoriasis patients was 46.5 years (range: 42–53; 3 
males, 1 female) and the average age of the controls was 51.2 years (range: 29–61; 2 males, 2 females). PP samples 
were obtained from the central region of an active psoriasis plaque located on the forearm, leg, abdomen or flank 
region. PN and NN samples were obtained from sun-protected skin of the buttock or upper thigh region. Prior 
to biopsy collection, psoriasis patients had discontinued systemic therapies for at least 2 weeks, and had not used 
topical treatment for at least 1 week. Biopsies were obtained following local lidocaine injection for anesthesia and 
split into two fractions. One fraction was flash frozen in liquid nitrogen and stored at −80 °C until further pro-
cessing for RNA extraction. The second fraction was processed immediately to generate primary KC monolayer 
cultures.

Keratinocyte monolayer cultures.  Skin biopsies were washed in HBSS containing antibiotics to remove 
blood, fat was trimmed away, and the remaining tissue was rinsed in 70% ethanol before being incubated in 50U/
ml dispase (Gibco) at 37 °C for 2 hours to release epidermis from dermis. Epidermal sheets were incubated in 
0.05% Trypsin-EDTA (Invitrogen) for 15 min at 37 °C, after which a slurry of cells was apparent. Trypsin was 
neutralized by the addition of complete Medium 154 culture medium containing 1% HKGS, 0.1 mM Ca2+ and 
antibiotics (Invitrogen). Cells were passed through a 100 µm cell strainer (BD Biosciences), washed, suspended 
in fresh culture medium, and seeded into 6-well cell culture plates (BD Biosciences). Cells were left undisturbed 
for 6 days at 37 °C with 5% CO2. Thereafter medium was replenished every 2–3 days. Cells were harvested shortly 
after reaching confluence and further processed for RNA extraction.

High throughput RNA sequencing.  Total RNA was processed for high throughput sequencing using the 
Illumina TruSeq mRNA Sample Prep v2 kit (catalog no. RS-122-2001 and RS-122-2002). mRNA was generated 
by polyA purification using approximately 0.1–3.0 µg of total RNA per sample. Following fragmentation, mRNA 
was converted to cDNA using random primers and reverse transcriptase. Adaptor barcodes were added to per-
mit multiple samples to be sequenced in each lane of a HiSeq flow cell (Illumina). Final cDNA libraries were 
purified and enriched by PCR (Kapa’s library quantification kit for Illumina Sequencing platforms; catalog no. 
KK4835; Kapa Biosystems, Wilmington MA). Quality assessment and cDNA quantification was performed using 
the Agilent TapeStation. Samples were clustered using Illumina’s automated clonal amplification system (cBot) 
and run with 6 samples per lane on a 50 cycle single end Illumina HiSeq 2000.

Gene expression quantification.  Sequencing generated an average of 28.0 million 50 bp reads per sample 
(n = 24 samples). These reads were further processed by Cutadapt and the FASTX-Toolkit to remove adaptor 
sequence and filter out low-quality reads, yielding an average of 27.6 million reads per sample (Supplementary 
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Figure S1)38,39. FastQC was used to assess quality control parameters before and after read filtering40. The 
quality-filtered reads were then mapped to the human genome (hg19, UCSC) using tophat2 under default 
settings41, except only a single alignment was permitted per read and the coverage based junction search was 
disabled (settings: -g 1–no-coverage-search). Samtools was used to sort and index BAM alignment files and to 
calculate BAM file statistics42. HTSeq was used to tabulate the number of reads mapping to each genomic feature, 
with counts tabulated only for genes that completely overlapped a given feature, with at least some sequence 
uniquely mapping to the assigned feature and no other (-m intersection-strict)43. Cufflinks was then used to cal-
culate FPKM estimates of gene expression along with associated confidence intervals44. RSeQC and RNA-SeQC 
were used to assess quality of sequence alignments (e.g., percentage of mapped and mapped intragenic reads, 
expression profiling efficiency)45,46.

Differential expression analysis.  Tests for differential expression were performed for protein-coding genes 
with detectable expression in at least 2 of 8 samples involved in a given comparison. For a gene to be considered as 
having detectable expression in a given sample, we required greater than 0.25 cpm (count per million mapped reads) 
with the lower limit of the FPKM 95% confidence interval greater than zero. Applying these criteria, we detected an 
average of 13660 protein-coding genes among the 24 samples (Supplementary Figure S1F). For genes with detecta-
ble expression in 2 of 8 samples involved in a given comparison, tests for differential expression were performed by 
fitting negative binomial generalized log-linear models to normalized gene counts, followed by likelihood ratio tests 
to assess statistical significance of expression differences (PP vs. PN, PP vs. NN, or PN vs. NN)47. Gene counts were 
normalized using the weighted trimmed mean of M-values method48, and negative binomial model dispersions 
were estimated using the Cox-Reid (CR)-adjusted likelihood approach49. For the PP vs. PN comparison, patient was 
included as an additional covariate in log-linear models to account for sample pairing, whereas the other compari-
sons (PP vs. NN, PN vs. NN) involved two independent groups without additional model covariates. Raw p-values 
from differential expression analyses were adjusted using the Benjamini-Hochberg method50.

Identification of differentially expressed modules (DEMs).  A set of 13045 KC-expressed protein-coding 
genes was clustered with respect to expression patterns (FPKM) across 90 normal human skin biopsies from 
non-psoriatic control subjects14. The 13045 genes were each detected in at least 2 of the 8 samples for each of the 3 KC 
sample comparisons (i.e., PP vs. PN, PP vs. NN, PN vs. NN). Prior to clustering, expression of each gene was centered 
such that the average expression across samples was equal to zero. Expression values were then standardized to have 
the same mean and unit variance in all samples. The 13045 genes were clustered using average linkage hierarchical 
clustering and the Euclidean distance metric (R function: hclust). The resulting dendrogram was used to assign genes 
to each of 239 modules with a minimum module size of 25 genes (R package: dynamicTreeCut). Label assigned to each 
module were based upon the member gene most heavily annotated with Gene Ontology (GO) terms and the number 
of genes within the module. For example, the ACER1-36 module included 36 genes, of which ACER1 was annotated 
with the largest number of GO terms.

Differentially expressed modules (DEMs) were identified based upon the comparison of expression in 
PN-KCs and NN-KCs. To identify DEMs, we evaluated whether genes within a module were more likely to be 
PN-KC-increased or PN-KC-decreased as compared to all other genes included in the cluster analysis (Wilcoxon 
rank sum test). The test was applied to each of the 239 modules and raw p-values were adjusted using the 
Benjamini-Hochberg method. Since modules included differing numbers of genes, this test was performed using 
only the 25 genes in each module that were closest to the module’s centroid (Euclidean distance), with the mod-
ule’s centroid calculated by averaging expression of genes in each of the 90 samples used for cluster analysis. This 
ensured that DEMs were identified based only upon genes most representative of each module, and additionally 
equalized statistical power across modules for identification of DEMs. Overall, we identified 40 PN-decreased 
DEMs for which the median KC-PN/KC-NN FC was less than zero (FDR < 0.05), along with 21 PN-increased 
DEMs with median KC-PN/KC-NN FC greater than zero (FDR < 0.05).

Comparison to genes identified by psoriasis GWA studies.  A curated list of genome-wide significant 
risk variants from prior psoriasis GWA studies was obtained from an earlier publication23. Only studies testing for 
associations with psoriasis vulgaris (PsV) were included (i.e., studies testing for associations with psoriatic arthritis 
were excluded). The initial list included 129 PsV-associated loci from 67 independent regions23. This list was filtered 
to include only one locus from each independent region, with the most significant locus retained in those cases 
where the same region was associated with multiple PsV-associated loci. Protein-coding genes were then identified 
at varying distances from the 67 independent PsV-associated loci, and we evaluated overlap with respect to genes 
with expression most strongly altered in our experiments (Fisher’s Exact test; Supplementary Figure S3).

DNA motif analysis.  DEGs and DEMs were investigated to identify DNA motifs enriched in regions upstream 
of transcription start sites (TSS). A 5500 bp region was evaluated for DNA motif matches for each gene (5000 bp 
upstream of TSS, 500 bp downstream of TSS). A comprehensive set of 2935 motifs was included in the analysis, 
which had been assembled, filtered and annotated in a prior study26. The 2935 motifs were drawn from multiple 
source databases, including the human protein-DNA interaction database (hPDI), Jaspar, UniPROBE, TRANSFAC, 
and the ENCODE project26. For each DEG set or DEM, enrichment of motifs within 5500 bp TSS-proximal regions 
was evaluated using semiparametric generalized additive logistic models (GAM)51. The Benjamini-Hochberg 
method was used to correct raw p-values across the complete set of 2935 motifs included in the analysis50.

Data Availability.   All raw and processed gene expression data are available from Gene Expression Omnibus 
(GEO) under the accession GSE107871.



www.nature.com/scientificreports/

1 2SCientifiC Reports |  (2017) 7:18045  | DOI:10.1038/s41598-017-18404-9

References
	 1.	 Lowes, M. A., Suarez-Farinas, M. & Krueger, J. G. Immunology of psoriasis. Annual review of immunology 32, 227–255, https://doi.

org/10.1146/annurev-immunol-032713-120225 (2014).
	 2.	 Winge, M. C. et al. RAC1 activation drives pathologic interactions between the epidermis and immune cells. The Journal of clinical 

investigation 126, 2661–2677, https://doi.org/10.1172/jci85738 (2016).
	 3.	 Tschachler, E. Psoriasis: the epidermal component. Clinics in dermatology 25, 589–595, https://doi.org/10.1016/j.

clindermatol.2007.09.021 (2007).
	 4.	 Slominski, A. T. et al. Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system. 

Advances in anatomy, embryology, and cell biology 212, v, vii, 1-115 (2012).
	 5.	 Nestle, F. O., Kaplan, D. H. & Barker, J. Psoriasis. The New England journal of medicine 361, 496–509, https://doi.org/10.1056/

NEJMra0804595 (2009).
	 6.	 Tonel, G. & Conrad, C. Interplay between keratinocytes and immune cells–recent insights into psoriasis pathogenesis. The 

international journal of biochemistry & cell biology 41, 963–968, https://doi.org/10.1016/j.biocel.2008.10.022 (2009).
	 7.	 Michalak-Stoma, A. et al. Cytokine network in psoriasis revisited. European cytokine network 22, 160–168, https://doi.org/10.1684/

ecn.2011.0294 (2011).
	 8.	 Bernerd, F., Magnaldo, T. & Darmon, M. Delayed onset of epidermal differentiation in psoriasis. The Journal of investigative 

dermatology 98, 902–910 (1992).
	 9.	 Ishida-Yamamoto, A. & Iizuka, H. Differences in involucrin immunolabeling within cornified cell envelopes in normal and psoriatic 

epidermis. The Journal of investigative dermatology 104, 391–395 (1995).
	10.	 McKay, I. A. & Leigh, I. M. Altered keratinocyte growth and differentiation in psoriasis. Clinics in dermatology 13, 105–114 (1995).
	11.	 Nickoloff, B. J. Keratinocytes regain momentum as instigators of cutaneous inflammation. Trends in molecular medicine 12, 102–106, 

https://doi.org/10.1016/j.molmed.2006.01.001 (2006).
	12.	 Tian, S. et al. Meta-analysis derived (MAD) transcriptome of psoriasis defines the “core” pathogenesis of disease. PloS one 7, e44274, 

https://doi.org/10.1371/journal.pone.0044274 (2012).
	13.	 Swindell, W. R. et al. Modulation of epidermal transcription circuits in psoriasis: new links between inflammation and 

hyperproliferation. PloS one 8, e79253, https://doi.org/10.1371/journal.pone.0079253 (2013).
	14.	 Li, B. et al. Transcriptome analysis of psoriasis in a large case-control sample: RNA-seq provides insights into disease mechanisms. 

The Journal of investigative dermatology 134, 1828–1838, https://doi.org/10.1038/jid.2014.28 (2014).
	15.	 Gudjonsson, J. E. et al. Global gene expression analysis reveals evidence for decreased lipid biosynthesis and increased innate 

immunity in uninvolved psoriatic skin. The Journal of investigative dermatology 129, 2795–2804, https://doi.org/10.1038/
jid.2009.173 (2009).

	16.	 Harper, R. A., Rispler, J. & Urbanek, R. W. DNA synthesis among uninvolved and involved psoriatic epidermal cells and normal 
epidermal cells in vitro. The Journal of investigative dermatology 70, 254–256 (1978).

	17.	 Krueger, G. G., Chambers, D. A. & Shelby, J. Involved and uninvolved skin from psoriatic subjects: are they equally diseased? 
Assessment by skin transplanted to congenitally athymic (nude) mice. The Journal of clinical investigation 68, 1548–1557 (1981).

	18.	 Fraki, J. E., Briggaman, R. A. & Lazarus, G. S. Uninvolved skin from psoriatic patients develops signs of involved psoriatic skin after 
being grafted onto nude mice. Science (New York, N.Y.) 215, 685–687 (1982).

	19.	 Liu, S. C. & Parsons, C. S. Serial cultivation of epidermal keratinocytes from psoriatic plaques. The Journal of investigative 
dermatology 81, 54–61 (1983).

	20.	 Kragballe, K., Desjarlais, L. & Marcelo, C. L. Increased DNA synthesis of uninvolved psoriatic epidermis is maintained in vitro. The 
British journal of dermatology 112, 263–270 (1985).

	21.	 Rheinwald, J. G. & Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies 
from single cells. Cell 6, 331–343 (1975).

	22.	 Katayama, S. et al. Gene expression analysis of skin grafts and cultured keratinocytes using synthetic RNA normalization reveals 
insights into differentiation and growth control. BMC genomics 16, 476, https://doi.org/10.1186/s12864-015-1671-5 (2015).

	23.	 Stuart, P. E. et al. Genome-wide Association Analysis of Psoriatic Arthritis and Cutaneous Psoriasis Reveals Differences in Their 
Genetic Architecture. American journal of human genetics 97, 816–836, https://doi.org/10.1016/j.ajhg.2015.10.019 (2015).

	24.	 Gulati, N., Krueger, J. G., Suarez-Farinas, M. & Mitsui, H. Creation of differentiation-specific genomic maps of human epidermis 
through laser capture microdissection. The Journal of investigative dermatology 133, 2640–2642, https://doi.org/10.1038/jid.2013.190 
(2013).

	25.	 Lopez-Pajares, V. et al. A LncRNA-MAF:MAFB transcription factor network regulates epidermal differentiation. Developmental cell 
32, 693–706, https://doi.org/10.1016/j.devcel.2015.01.028 (2015).

	26.	 Swindell, W. R. et al. Psoriasis drug development and GWAS interpretation through in silico analysis of transcription factor binding 
sites. Clinical and translational medicine 4, 13, https://doi.org/10.1186/s40169-015-0054-5 (2015).

	27.	 Qu, H. & Fang, X. A brief review on the Human Encyclopedia of DNA Elements (ENCODE) project. Genomics, proteomics & 
bioinformatics 11, 135–141, https://doi.org/10.1016/j.gpb.2013.05.001 (2013).

	28.	 Kennedy-Crispin, M. et al. Human keratinocytes’ response to injury upregulates CCL20 and other genes linking innate and adaptive 
immunity. The Journal of investigative dermatology 132, 105–113, https://doi.org/10.1038/jid.2011.262 (2012).

	29.	 Kim, B. E. et al. TNF-alpha downregulates filaggrin and loricrin through c-Jun N-terminal kinase: role for TNF-alpha antagonists to 
improve skin barrier. The Journal of investigative dermatology 131, 1272–1279, https://doi.org/10.1038/jid.2011.24 (2011).

	30.	 Zhang, P. et al. Whole-genome DNA methylation in skin lesions from patients with psoriasis vulgaris. Journal of autoimmunity 41, 
17–24, https://doi.org/10.1016/j.jaut.2013.01.001 (2013).

	31.	 Boxer, L. D., Barajas, B., Tao, S., Zhang, J. & Khavari, P. A. ZNF750 interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 
chromatin regulators to repress epidermal progenitor genes and induce differentiation genes. Genes & development 28, 2013–2026, 
https://doi.org/10.1101/gad.246579.114 (2014).

	32.	 Sen, G. L. et al. ZNF750 is a p63 target gene that induces KLF4 to drive terminal epidermal differentiation. Developmental cell 22, 
669–677, https://doi.org/10.1016/j.devcel.2011.12.001 (2012).

	33.	 Zenz, R. et al. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 437, 369–375, 
https://doi.org/10.1038/nature03963 (2005).

	34.	 Hennings, H. et al. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19, 245–254 (1980).
	35.	 Stanley, J. R. & Yuspa, S. H. Specific epidermal protein markers are modulated during calcium-induced terminal differentiation. The 

Journal of cell biology 96, 1809–1814 (1983).
	36.	 Swindell, W. R. et al. Heterogeneity of inflammatory and cytokine networks in chronic plaque psoriasis. PloS one 7, e34594, https://

doi.org/10.1371/journal.pone.0034594 (2012).
	37.	 Clemmensen, A. et al. Extraction of high-quality epidermal RNA after ammonium thiocyanate-induced dermo-epidermal 

separation of 4 mm human skin biopsies. Experimental dermatology 18, 979–984, https://doi.org/10.1111/j.1600-0625.2009.00921.x 
(2009).

	38.	 Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17, 10–12 (2011).
	39.	 Hannon, G. J. FASTX-Toolkit, http://hannonlab.cshl.edu/fastx_toolkit/.
	40.	 Andrews, S. FastQC: A quality control tool for high throughput sequence data, http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/.

http://dx.doi.org/10.1146/annurev-immunol-032713-120225
http://dx.doi.org/10.1146/annurev-immunol-032713-120225
http://dx.doi.org/10.1172/jci85738
http://dx.doi.org/10.1016/j.clindermatol.2007.09.021
http://dx.doi.org/10.1016/j.clindermatol.2007.09.021
http://dx.doi.org/10.1056/NEJMra0804595
http://dx.doi.org/10.1056/NEJMra0804595
http://dx.doi.org/10.1016/j.biocel.2008.10.022
http://dx.doi.org/10.1684/ecn.2011.0294
http://dx.doi.org/10.1684/ecn.2011.0294
http://dx.doi.org/10.1016/j.molmed.2006.01.001
http://dx.doi.org/10.1371/journal.pone.0044274
http://dx.doi.org/10.1371/journal.pone.0079253
http://dx.doi.org/10.1038/jid.2014.28
http://dx.doi.org/10.1038/jid.2009.173
http://dx.doi.org/10.1038/jid.2009.173
http://dx.doi.org/10.1186/s12864-015-1671-5
http://dx.doi.org/10.1016/j.ajhg.2015.10.019
http://dx.doi.org/10.1038/jid.2013.190
http://dx.doi.org/10.1016/j.devcel.2015.01.028
http://dx.doi.org/10.1186/s40169-015-0054-5
http://dx.doi.org/10.1016/j.gpb.2013.05.001
http://dx.doi.org/10.1038/jid.2011.262
http://dx.doi.org/10.1038/jid.2011.24
http://dx.doi.org/10.1016/j.jaut.2013.01.001
http://dx.doi.org/10.1101/gad.246579.114
http://dx.doi.org/10.1016/j.devcel.2011.12.001
http://dx.doi.org/10.1038/nature03963
http://dx.doi.org/10.1371/journal.pone.0034594
http://dx.doi.org/10.1371/journal.pone.0034594
http://dx.doi.org/10.1111/j.1600-0625.2009.00921.x
http://hannonlab.cshl.edu/fastx_toolkit/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


www.nature.com/scientificreports/

13SCientifiC Reports |  (2017) 7:18045  | DOI:10.1038/s41598-017-18404-9

	41.	 Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome 
biology 14, R36, https://doi.org/10.1186/gb-2013-14-4-r36 (2013).

	42.	 Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford, England) 25, 2078–2079, https://doi.
org/10.1093/bioinformatics/btp352 (2009).

	43.	 Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 
(Oxford, England) 31, 166–169, https://doi.org/10.1093/bioinformatics/btu638 (2015).

	44.	 Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature 
protocols 7, 562–578, https://doi.org/10.1038/nprot.2012.016 (2012).

	45.	 Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. Bioinformatics (Oxford, England) 28, 2184–2185, 
https://doi.org/10.1093/bioinformatics/bts356 (2012).

	46.	 DeLuca, D. S. et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics (Oxford, England) 28, 
1530–1532, https://doi.org/10.1093/bioinformatics/bts196 (2012).

	47.	 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene 
expression data. Bioinformatics (Oxford, England) 26, 139–140, https://doi.org/10.1093/bioinformatics/btp616 (2010).

	48.	 Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome 
biology 11, R25, https://doi.org/10.1186/gb-2010-11-3-r25 (2010).

	49.	 Landau, W. M. & Liu, P. Dispersion estimation and its effect on test performance in RNA-seq data analysis: a simulation-based 
comparison of methods. PloS one 8, e81415, https://doi.org/10.1371/journal.pone.0081415 (2013).

	50.	 Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a powerful and practical approach to multiple testing. J Roy Stat 
Soc B 57, 289–300 (1995).

	51.	 Swindell, W. R. et al. Robust shifts in S100a9 expression with aging: a novel mechanism for chronic inflammation. Scientific reports 
3, 1215, https://doi.org/10.1038/srep01215 (2013).

Acknowledgements
This work was supported in part by the National Psoriasis Foundation (AJ, NLW, JEG), the American Skin 
Association Carson Family Research Scholar Award in Psoriasis (WRS), the Babcock Foundation Endowment 
(AJ, JEG), the Murdough Family Center for Psoriasis (NLW), the Kenneth and Frances Eisenberg Emerging 
Scholar Award of the A. Alfred Taubman Medical Research Institute (JEG), a Doris Duke Charitable Foundation 
grant 2013106 (JEG), and the following grants from the National Institutes of Health: K08 grant AR060802, R01 
AR069071, P30 AR39750, R01 AR063437, R01 AR062546; R21 AR063852; K01 AR064765.

Author Contributions
W.R.S. performed the data analysis. M.K.S., Y.L., X.X. and J.B. participated in sample collection and performed 
wet lab experiments. J.E.G. designed the study and supervised experiments. W.R.S. and J.E.G. wrote the original 
draft of the manuscript. J.T.E., A.J. and N.L.W. critically reviewed the manuscript and participated in manuscript 
editing. All authors read and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-18404-9.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1186/gb-2013-14-4-r36
http://dx.doi.org/10.1093/bioinformatics/btp352
http://dx.doi.org/10.1093/bioinformatics/btp352
http://dx.doi.org/10.1093/bioinformatics/btu638
http://dx.doi.org/10.1038/nprot.2012.016
http://dx.doi.org/10.1093/bioinformatics/bts356
http://dx.doi.org/10.1093/bioinformatics/bts196
http://dx.doi.org/10.1093/bioinformatics/btp616
http://dx.doi.org/10.1186/gb-2010-11-3-r25
http://dx.doi.org/10.1371/journal.pone.0081415
http://dx.doi.org/10.1038/srep01215
http://dx.doi.org/10.1038/s41598-017-18404-9
http://creativecommons.org/licenses/by/4.0/

	RNA-seq identifies a diminished differentiation gene signature in primary monolayer keratinocytes grown from lesional and u ...
	Results

	RNA-seq analysis of primary confluent monolayer KC cultures and whole skin biopsies from psoriasis patients and control sub ...
	Transcriptome differences between psoriatic and normal KCs are larger than those in whole skin and overlap more with genes  ...
	Psoriatic KCs exhibit increased expression of pro-angiogenesis genes and decreased expression of early and late differentia ...
	Psoriatic monolayer KCs exhibit shifts in cytokine gene expression distinct from those in full-thickness skin biopsies. 
	Identification of an AP-1 motif enriched in regions upstream of PN-KC-decreased DEGs and within open chromatin regions near ...
	A module of 36 co-expressed genes (ACER1-36) with differentiation-dependent expression is down-regulated in KCs from lesion ...

	Discussion

	Methods

	Ethics statement. 
	Patient samples. 
	Keratinocyte monolayer cultures. 
	High throughput RNA sequencing. 
	Gene expression quantification. 
	Differential expression analysis. 
	Identification of differentially expressed modules (DEMs). 
	Comparison to genes identified by psoriasis GWA studies. 
	DNA motif analysis. 
	Data Availability. 

	Acknowledgements

	Figure 1 Differential expression results (PP vs.
	Figure 2 Genes with decreased expression in PP-KCs and PN-KCs are not similarly altered in whole skin biopsy comparisons.
	Figure 3 Genes with decreased expression in PP-KCs and PN-KCs overlap significantly with genes near SNPs identified by psoriasis GWA studies.
	Figure 4 Early and late differentiation gene expression is reduced in PP- and PN-KCs compared to NN-KCs.
	Figure 5 Identification of differentially expressed modules (DEMs) from the comparison of PN-KCs to NN-KCs.
	Figure 6 The ACER1-36 module is decreased in PP- and PN-KCs and exhibits differentiation-dependent expression.




