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Abstract

Quantitative analysis of animal behaviour is a requirement to understand the task solving strategies of animals and the
underlying control mechanisms. The identification of repeatedly occurring behavioural components is thereby a key
element of a structured quantitative description. However, the complexity of most behaviours makes the identification of
such behavioural components a challenging problem. We propose an automatic and objective approach for determining
and evaluating prototypical behavioural components. Behavioural prototypes are identified using clustering algorithms and
finally evaluated with respect to their ability to represent the whole behavioural data set. The prototypes allow for a
meaningful segmentation of behavioural sequences. We applied our clustering approach to identify prototypical
movements of the head of blowflies during cruising flight. The results confirm the previously established saccadic gaze
strategy by the set of prototypes being divided into either predominantly translational or rotational movements,
respectively. The prototypes reveal additional details about the saccadic and intersaccadic flight sections that could not be
unravelled so far. Successful application of the proposed approach to behavioural data shows its ability to automatically
identify prototypical behavioural components within a large and noisy database and to evaluate these with respect to their
quality and stability. Hence, this approach might be applied to a broad range of behavioural and neural data obtained from
different animals and in different contexts.
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Introduction

Animals behave in their environment accomplishing various

tasks, like searching for food or partners. The analysis and

comparison of animal behaviour, therefore, is necessary to

understand their task solving strategies (e.g. in locomotion and

flight control [1,2]) and to identify the underlying mechanisms (e.g.

genetic controlling [3,4]). Before attempting to interpret behav-

iour, we have to describe relevant parts of it in an objective and

quantitative manner. The identification of repeatedly occurring

behavioural components is a generally applied approach to

structure behavioural sequences of animals as well as of humans

that often appear to be continuous (e.g. [5–9]). However, due to

the complexity and variability of behaviour, it is a challenging task

to identify those components in an objective way. In this paper we

present one way how this can be achieved.

Behavioural scientists often define categories of behavioural

components just by visual inspection dependent on the question to

be answered [10,11]. This kind of categorisation has to be done

with care, because it significantly influences what data is collected,

the collection procedures and, eventually, the success or failure of

the analysis. In any case, much experimental experience is

required to define the categories in a way that allows the currently

observed behaviour to be classified unambiguously according to

them. For example, Fentress and Stilwell [5] identified seven

categories in mice grooming behaviour by visual inspection. These

categories are, amongst others, flurry of forelimbs below face, large

synchronous but asymmetric strokes of forelimbs over top of head, as well as

momentary interruption of active movement, with forelimbs at chest height.

However, the class description employed here leaves it up to the

observer to decide, for instance, which strokes of the forelimbs are

large. In order to get reproducible results it is desirable to quantify

the class definitions by determining appropriate measurable

characteristics, like, in the example here, the positions and the

velocities of the forelimbs for quantitatively describing their

movements. Calculating the corresponding values based on the

behavioural data and taking the distributions of values within their

value ranges into account leads to distinct accumulation points

corresponding to prototypical behavioural components. Instead of

assigning the a priori defined categories to the values, we propose

to exploit the accumulation points within the value distribution of

suitable characteristics for automatically determining precisely

defined behavioural categories.

Selecting candidates for those characteristics depends on the

aspired kind of behavioural description that is determined by the

goal of the experiment. A description of behaviour is called

‘functional’ if it comprises the function or the consequence of the

behaviour, like grooming top of the mouse head. In contrast, an

‘empirical’ description contains the structure, the appearance,

temporal pattern etc. of a behaviour, as for example the

description of the forelimb movements. Empirical quantities

characterising movements may comprise the coordinates of an

animal’s position, its orientations, or its translational and rotational

velocities, accelerations, etc. Generally, one has to select quantities
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that, on the one hand, provide valuable information about the

behaviours and, on the other hand, are reliable, i.e. they can be

extracted reproducibly, consistently and precisely from the

experimental data. For instance, to automatically classify previ-

ously known phenotypes of C. elegans on the basis of their

behaviour J.H. Baek et al. [12] successfully used several

measurements ranging from form and size to velocity parameters.

K. Hoshi et al. [13] uses the head and tail positions of C.elegans in

image sequences in order to distinguish four typical locomotion

states. The locomotion behaviour of Drosophila melanogaster is

quantitatively described using trajectory characteristics like

lengths, velocities, and turning frequencies for comparing different

genetically modified strains (e.g. [14,15]) or analysing the influence

of drug treatments [16].

A special problem of selecting characteristic measurements for

categorising behavioural data lies in the temporal aspect because

behaviour often appears to occur as a continuous sequence. To

identify behavioural components this sequence has to be

segmented in a meaningful way. One commonly applied approach

to this problem is to separate the segmentation from the

categorisation step. This is done by using data sequences of

definite and equal length [14–17] or by exploiting additional

knowledge. For example, in [18,19] the borders of meaningful

movement segments are identified as points of time of zero

velocities. Separating the segmentation step may simplify the

following categorization, because a characteristic time course of a

value during the whole segment can be exploited for classifying the

segment. However, additional application dependent knowledge is

necessary to perform the segmentation.

Without prior knowledge about the borders of meaningful

segments the sequence is firstly divided into snippets correspond-

ing to time steps of short and equal length. Categorization then

takes place for each time step individually resulting in a sequence

of category labels. If the time steps are short enough this sequence

will provide subsequences of constant labels. They constitute

segments of variable length that contain meaningful components

of behaviour, as shown, for example, by G. Stephens et al. [1]

while detecting basic shape types of C. elegans or by A. Galata et al.

[20] for segmenting data from humans performing different

exercise routines based on prototypical human silhouettes. Our

approach also follows this idea of combined categorisation and

segmentation, because it is generally applicable to different kinds

of behavioural data.

Exploiting characteristic quantities, called features, for auto-

matically determining categories is known in computer science as

unsupervised learning [21–23]. The feature values calculated from

the available database are assumed to provide distinct accumu-

lation points, where each accumulation point corresponds to a

category. Clustering methods ideally identify those distinct groups or

clusters of feature values with strong internal similarities. Whether

clustering is successful depends on the characteristic of the

feature value distributions and on an appropriate parameterisa-

tion of the clustering procedure. Among the available algorithms

the k-means approach is widely used due to its robustness and

simplicity [23]. This approach was already successfully applied

to behavioural data, for example, for classifying four behavioural

phenotypes of C. elegans [24] or for determining action

primitives used for steering the animation of an artificial game

character [25].

After automatically determining clusters of feature values, we

have to evaluate whether the clusters represent distinct and

meaningful behavioural components. This implies the evaluation

of the resulting cluster representatives with respect to their stability

and quality in describing behavioural prototypes.

We applied and tested our approach to flight behaviour of

blowflies, Calliphora vicina. By mounting coils on the heads of free-

flying Calliphora and exploiting their magnetic induction, C.

Schilstra and H. van Hateren were able to record large amounts

of trajectory data containing the translational and rotational

position of the fly’s head within the 3D space during cruising flight

[26]. Based on this data set the flight behaviour was divided into

essentially two basic classes, saccades and intersaccadic intervals

[27]. The proposed clustering procedure corroborates this finding,

but, additionally, quantifies the results and answers the question,

whether there are additional prototypical movements within the

data set. The segmentation of behavioural sequences into

prototypical movements constitutes the basis for further analysis

of the individual movements and their correlation to external

causal factors like visual stimuli or to internal causal factors like the

neural activity in the brain controlling this behaviour. The latter

aspects are beyond the scope of this article.

Methods

The proposed approach for categorising behavioural data

mainly consists of three steps: Feature selection, clustering and

evaluation.

Feature Selection, Extraction, and Normalisation
Before attempting to automatically categorise data, criteria need

to be defined for discriminating different prototypical behaviours.

These criteria, we call them features in the following, have to be

objectively computable from the behavioural data. For each point

in time of data acquisition we determine one value for each

predefined feature from the behavioural data resulting in the

extraction of a high dimensional feature vector for each point in time.

This approach implies to leave out any information about the

temporal sequence of the data points. We do this, because we want

to use the categorisation of the individual data points to finally

determine a meaningful segmentation in time, as already

introduced above.

The selection of the characteristic feature set is the first and one of

the most critical steps of the whole analysis. Ideally, we define the

feature set in a way that makes the resulting feature vectors for

different behaviours well separable from each other in order to allow

the clustering algorithm to automatically detect this separation.

Feature selection generally is determined by the experimental

question to be answered and by the available data. For example, if

spatial behaviour is to be analysed spatial coordinates and

orientations of an animal may constitute valuable features, whereas

with the goal to describe the dynamics of behaviour features such as

velocities and accelerations may be appropriate.

In order to compare feature values we have to define a measure

of their similarity or dissimilarity which strongly depends on the

kind of involved features and their values. If feature extraction

delivers categorical values, like red, green, blue, or binary ones, the

definition of a measure of similarity is especially difficult (see e.g.

[28–30]). Dependent on the application it might be possible to

define numerical distances between the distinct values of a

categorical variable. However, this discussion is beyond the scope

of this article, since we here constrain ourselves on continuous

numeric feature values, like we get for spatial coordinates,

velocities or accelerations of a moving animal. For evaluating

and comparing the (dis)similarity of each pair of high dimensional

feature values we calculate the squared Euclidian distance within

the n-dimensional feature space. This distance measure is in

common use and computationally advantageous especially when

applied to k-means clustering.

Identifying Prototypes
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Generally, we need several features to discriminate prototypical

behaviours. However, just taking into account more and more

features without selection implies a high computational load for

feature extraction and the subsequent clustering. Even more, noisy

values may be obtained when calculating features that cannot be

discriminated within the given database or cannot be extracted in

good quality from the data due to experimental restrictions. Such

noisy feature values may interfere with the separation within the

feature space and may cause the clustering algorithm to fail. In

order to evaluate and select a subset of relevant features without

applying prior knowledge about the inner structure of the feature

values principal component analysis (PCA) is in common use (e.g. [23]).

PCA determines the axes of largest variability within the high

dimensional feature values and thereby gives insight into linear

dependencies between feature values which may give indications

for possible dimensionality reduction.

After selecting the final set of features and extracting the

corresponding values we have to take into account that

the distance between two vectors of feature values is calculated

as the sum of the differences between the individual feature values.

These differences depend on the range of occurring feature values.

To ensure that the differences corresponding to individual features

contribute to the final distance value we have to normalise the

ranges of the individual feature values. Apart from special

application-dependent approaches, there are simple normalisation

procedures that can be generally applied: Either the values of all

features are normalised to a common value range, or the values of

each feature are normalised individually to zero mean and

standard deviation one [31]. The latter approach ensures

comparability of the values without forcing the data with all

outliers to one fixed range.

Clustering
Clustering aims at identifying groups of similar data within the

generally widely spread data. We apply the clustering method to our

feature data. To identify groups of similar feature values clustering

procedures use a suitable distance measure to the feature value

vectors, as discussed above. The intention is to identify clusters that

provide minimal inner-cluster distances and maximal inter-cluster

distances. As a representative for each cluster a centroid is chosen

by determining the feature vector that has minimal distance to all

the members of the cluster. By renormalisation to the original

feature values, the centroids become feature prototypes. Segmenting the

temporal sequence of behavioural data by identifying subsequences

of constantly assigned prototypes leads to segments containing

prototypical behaviour.

In contrast to supervised classification, clustering approaches are

applied, if the groups are not known in advance and, therefore,

belong to the field of unsupervised learning in computer science.

Without applying prior knowledge about classes the clustering

process aims at discovering the inner structure of the data, resulting

in objective and stable classifications. ‘Objective’ means that the

same data processed with the same method leads to the same results.

‘Stable’ means that the results are invariant against variations of the

special data, i.e. if, for instance, another set of data is used that was

obtained by the same type of experiment [28].

Clustering techniques are widely used in many disciplines of

science and accordingly many approaches have been developed

(e.g. [28,29,31]). Two principally different clustering approaches

can be distinguished: hierarchical algorithms and partitioning

algorithms [30]. Hierarchical clustering either follows a splitting or

an agglomerative procedure. The first starts with one cluster that

contains all data and iteratively splits this cluster according to

given criteria. An agglomerative hierarchical clustering starts with

the finest granulation, i.e. each feature value vector builds its own

cluster, and iteratively merges pairs of them by minimising the

costs of merging via the distance to be bridged. The approaches of

the second main group, the partitioning algorithms, start from a

given group configuration describing a partitioning of the feature

space and proceed by exchanging data elements between the

groups. The partitioning of the feature space proceeds until a

given end criterion is reached. Thereby, the assignment of a single

data element to a group generally changes during the process,

while in hierarchical clustering an assignment decision is fixed at

the risk of false decisions based on outlier values and noise.

For our application of clustering a large amount of noisy

behaviour-based feature data, we decided to use the most

prominent representative of the class of partitioning algorithms,

the k-means approach using Lloyd’s algorithm [23]. This

approach requires selecting the number of clusters in advance.

For evaluating the selection of an appropriate number of clusters

based on k-means clustering results several approaches exist in the

literature that will be discussed and extended below. However, for

applying k-means we need at least an idea about the range of

cluster numbers to be tested to reduce the computational effort.

To get this idea without prior knowledge about the number of

meaningful clusters, we applied first an agglomerative hierarchical

approach. For applications that provide this prior knowledge the

hierarchical clustering step can be skipped.

Due to the basic idea of agglomerative hierarchical clustering,

all possible numbers of clusters are built and the costs for merging

and thereby reaching a special number of clusters are calculated.

By analysing the slope of the cost function with decreasing

numbers of clusters possible promising numbers of clusters can be

identified by determining significant increases in merging costs.

The evaluation of an increase to be significant thereby depends on

the stage of the algorithm and has to be done in comparison to the

neighbouring absolute costs. We should have in mind that this

procedure is not suited for reliably clustering large and noisy data

sets due to the extensive distance calculations and the local

decision mechanism. Therefore, agglomerative hierarchical clus-

tering will generally not be able to determine the appropriate

number of clusters. Nonetheless, its application to parts of the data

is appropriate to initially restrict the range of cluster numbers to be

evaluated in detail based on k-means clustering results.

In the following two sections we will introduce the agglomer-

ative hierarchical clustering and the k-means clustering algorithm.

Readers who are already familiar with these approaches are

encouraged to skip these sections.

Agglomerative Hierarchical Clustering Using Ward’s
Criterion

Agglomerative hierarchical clustering starts with each feature

value vector representing an individual cluster. Then the

algorithm searches the two clusters that provide the smallest

joining costs, merges them to form one new cluster and does so

until all feature value vectors are agglomerated into one cluster.

For determining the costs of joining two clusters we use Ward’s

criterion, which is one of several widely used criteria to be applied

with agglomerative hierarchical clustering. It is based on the

variance of the data within one cluster p, which is calculated as the

sum of the squared Euclidian distances between the elementary

feature vectors xi and the centroid �xxp:

VARp~
Xnp

i~1

xi{�xxp

� �2
h i

with �xxp~
1

np

Xnp

i~1

xi
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The variance of a new cluster generated by joining two clusters p
and q is:

VARpzq~VARpzVARqznpnq

�xxp{�xxq

� �2

npznq

Ward’s criterion for joining two clusters within the cluster

hierarchy is to search for the two clusters that minimize the

increase of the variance, which is given by the third summand.

When analysing the sequence of costs arising with more and

more joining clusters according to Ward’s criterion the costs are

usually small in the beginning, where feature vectors are grouped

that are very similar to each other. At the point where distinct

groups within the data are forced to be joined, costs should

increase significantly in comparison to neighboured values and

thereby give a hint at a suitable number of clusters to be built from

the given data.

Figure 1 illustrates the agglomerative hierarchical clustering

approach using Ward’s criterion for a set of two dimensional

vectors of artificial feature values (Figure 1A). Figure 1B shows the

hierarchy resulting from clustering the data in the form of a so

called dendrogram. The joining costs stay small with a decreasing

number of clusters until four or less clusters are generated

(Figure 1C,D). For this data the slope gives the clear hint that five

clusters should be built.

The agglomerative hierarchical approach is suited only for small

data sets due to its extensive distance calculations. Additionally,

the approach locally clusters data points and shifts centroids

according to the new cluster member. This very local approach is

sensitive to noise because a small deviation within the data may

change the sequence of clustering and thereby the intermediate

centroids which themselves determine the next clustering step.

Nonetheless, we propose to apply the hierarchical clustering

approach to noisy behavioural feature data in order to constrain

the promising range of cluster numbers, if there is no prior

knowledge for this restriction available.

K-Means Clustering
K-means is the most popular partitioning clustering technique to

be applied to large data sets [23]. It partitions the feature space into

so-called Voronoi cells by determining k feature vectors to be cluster

centroids and associating each part of the feature space to its nearest

centroid according to a previously defined distance measure

(Figure 2D). The choice of cluster centroids and thus the partitioning

of the feature space is done in order to minimize the overall sum of

distances between the feature values and their corresponding

centroids. Using especially the squared Euclidian distance criterion,

as for the agglomerative clustering described above, the generally

formulated overall sum of distances to be minimised is given by the

variance of the feature data, and each centroid becomes the mean

value or centre of its assigned feature data:

VARk~
Xk

c~1

Xnc

i~1

xi{�xxcð Þ2
h i

with �xxc~
1

nc

Xnc

i~1

xi and xi[c

Figure 1. Hierarchical clustering approach. A) Artificial data of a
two dimensional feature set. B) Dendrogram of applying agglomerative
hierarchical clustering using Ward’s criterion on the data shown in A.
The x-axis indicates individual data points from A. C) Joining costs
plotted against the number of clusters. D) Differential joining costs for
the interesting range of number of clusters. Costs increase significantly
if the algorithm groups the data in less than five clusters.
doi:10.1371/journal.pone.0009361.g001

Figure 2. K-means clustering approach. A) Two dimensional
artificial feature vectors to be clustered. B) Solid lines divide the feature
space into Voronoi cells for the random centroid starting positions. Each
of the cell’s centroids is denoted by an individual marker. C) Voronoi
plots of the nine steps needed by a k-means algorithm to find five
stable clusters. The greyness of lines and markers indicates to which
step of clustering they belong. D) The final clustering is shown in black
above the data in grey. E,F) Results of clustering assuming an improper
numbers of clusters.
doi:10.1371/journal.pone.0009361.g002
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However, finding the global optimum is a np-hard problem and

requires approximations like the iterative Lloyd’s algorithm [23]. It

iteratively improves the set of starting centroid candidates in order to

find a centroid distribution that leads at least to a local minimum of

the variance function. The algorithm is based on the observation that,

as a consequence of using the squared Euclidian or variance distance

criterion, the optimal centroids fall together with the mean value of

the assigned data. The k-means clustering using Lloyd’s algorithm

applied to artificial two-dimensional feature values is shown in

Figure 2.

Starting with any set of k centroidsC, Lloyd’s algorithm

determines V (c) to be the Voronoi cell of centroid c[C, which

is the set of feature vectors for which c is the nearest centroid

(Figure 2B). The centres of the data within the Voronoi cells are

calculated iteratively as new candidates for the centroids, and new

Voronoi cells are determined based on the current candidates

(Figure 2C). These steps are repeated until predefined conditions

for the convergence of the centroids and/or number of iteration

steps is reached (Figure 2D). Lloyd’s algorithm does not define the

selection of the starting set of centroids. If there is no prior

knowledge about the centroids, they are mostly determined by

randomly selecting k feature value vectors from the data set (see

[23,28,31] for detailed discussion of selecting strategies).

Although Lloyd’s iterative approach makes the k-means

problem treatable, the computational effort to calculate the

distances necessary at each step of iteration is very high.

Therefore, some accelerating approaches were developed in

previous studies, which mainly increase the reusability of distance

calculations instead of starting from zero at each iteration step. We

applied the accelerating approach of T. Kanungo et al. [32] to our

high dimensional behavioural feature data. It is based on the idea

to firstly structure the data set within a tree. Each node contains

one or more data points and additionally provides the number of

the contained points and their mean value. For each node that

contains a set of data points dependent nodes exist that contain

parts of these data points together with the appropriate additional

information. This tree structure accelerates the procedure to select

for each data point at each step of the iteration the nearest

centroid of the current candidate set. By exploiting the knowledge

about the mean vector stored in each node centroids from the

current set can be excluded to be considered for the current and all

dependent nodes. The accelerated algorithm significantly simpli-

fies the analysis of large amounts of high dimensional data but

does not change the result.

Independent of the applied algorithm to calculate Lloyd’s

iteration, the resulting set of centroids may depend on the starting

configuration, if there are local minima of the variance function. To

ensure that the iteration reaches a significant minimum needed for

further drawing general conclusions from the appropriate cluster

centroids, repeated runs starting from different configurations are

essential. We run Lloyd’s algorithm with 1000 steps per run, which

leads, together with a suitable threshold for convergence, to about

10 to 15 times selecting new random start positions.

Even for perfectly structured data the resulting centroids may

not be meaningful due to an inappropriate choice for the number

of clusters (Figure 2E,F). This choice has to be made in advance

based on prior knowledge, or k-means has to be applied repeatedly

using different values of k. For restricting the range of cluster

numbers to be tested, we propose to apply agglomerative

hierarchical clustering, as described above.

As a result of repeatedly applying k-means we get different

clusters in dependence on k. Moreover, different centroids are

obtained for each k when repeating clustering for different starting

conditions, which is done to avoid meaningless local minima of the

variance function. The different results have to be evaluated within

an additional postprocessing step.

Cluster Validation
The k-means clustering approach using Lloyd’s algorithm

delivers k centroids for a given data set. The centroids are placed

within the feature space with the objective to minimize the sum of

the variances within the partitions of the data that are associated

with one centroid. Before drawing conclusions from the resulting

centroid configuration we have to evaluate, whether the clusters

defined by the centroids represent significant structures within the

data set. So, we need objective criteria to evaluate the quality of

clustering, i.e. how well the clusters match the data, and the stability

of configurations resulting from different runs. The final centroid

configuration has to be stable against repeated applications of the

algorithm to a fixed data set with different initial conditions and

should stay valid under variations of the data set.

Variation of the data set. Clustering results have to

generalize from the specific data set in order to be reliable and

replicable instead of representing just a special island solution.

Therefore, we need to define suitable data set variations. Some

recent approaches to evaluate clustering results are based on

resampling the data by applying random selections of subsets of

the data [33,34]. In [35] P. Smyth favours a random selection of

data points to form different subsets over partitioning the data into

subsets of fixed size. He stated the main difference to be that for

the random selection each data point is taken into account several

times within different data constellations.

For our application of clustering sequentially recorded behav-

ioural data, leaving out randomly selected data points, results in a

kind of temporal subsampling of the data. Therefore, we decided

to systematically leave out subsequences of data and cluster the

remaining data. This procedure corresponds to analysing less data

in the sense of fewer recordings of fewer individuals and smaller

sequences of behaviour. Generally, the systematic leave out system

may increase the sensitivity of results to periodicity within the data.

This effect is minimized by leaving out very differently sized

subsequences and by ensuring that each data point is involved in

different constellations for clustering. We determine the size of the

subsequences to leave out 10%, 20% or 50% of the data and cut

them at 50 equidistantly distributed positions (each 2%) within the

data set.

Stability. For a given fixed data set, centroid configurations

directly correspond to data partitions. Different clustering results

for different initial conditions can be compared with respect to

stability by determining the similarity of the data clusters [28]. For

each pair of data points it is tested, whether both points are

assigned to the same or different partitions for two clustering

results. In this way the similarity between resulting partitions can

be estimated. The requirement to test cluster stability also for

varying data sets leads to several approaches to extend the idea of

comparing partitions resulting from non-equal, but overlapping

data sets [33,36], or even disjoint data sets [34,37].

Instead of comparing data partitions, we propose to evaluate the

stability of clustering on the basis of distances between resulting

centroids. This approach is much simpler in the presence of large

amounts of data and, additionally, a criterion is obtained for

interpreting each centroid to represent a stereotypic behaviour.

For calculating the distance between two sets of centroids with the

same cardinality, we assign each centroid of the first set to one

centroid of the second set. The sum of distances between the

assigned centroids is taken as the distance between the two

centroid configurations.

Identifying Prototypes
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To assign the individual centroids of two sets to each other we

demand each centroid to occur exactly within one assignment and

determine the assignments to minimize the sum of occurring

distances. For solving the matching problem we apply the so-called

Hungarian algorithm (e.g. [38]) that efficiently delivers the optimal

match between two data sets based on distance values given for

each pair of data elements. We choose squared Euclidian distances

for comparing the centroids because we also used this measure for

generating the centroids during the clustering process (see above).

We evaluate the stability of two sets of centroids resulting from

repeated runs of the clustering procedure based on the distance

calculated for the matched centroids. To improve the compara-

bility of the result we, finally, normalize this value for all centroids

within each set and for the number of features each centroid

contains. This normalised centroid-based stability measure can be

used to validate the results of clustering runs with random starting

positions, with a variable number of predefined clusters, with a

varying data base and even with variable features. For evaluating

more than two runs, the distances between all possible pairs of sets

are calculated to determine the mean set of centroids, which is the one

providing the smallest mean distance to the other sets. The mean

distance between this mean set and the others is taken as a

measure of instability. The mean error of the mean value is

calculated based on the standard deviation divided by the number

of trials.

Figure 3A shows the instability values for clustering the artificial

data of Figures 1 and 2 in dependence on the number of clusters.

In addition to the complete data set subsets containing only 90%

and 80% of the data were clustered. 50 subsets for each condition

were built by leaving out a subsequence of an appropriate size and

shifting the leave-out position evenly over the whole data set. The

centroids resulting from clustering the 50 reduced data sets for

each condition are compared and their stability is shown. For the

complete data set ten runs with different random start positions

were analysed accordingly. Taking all data into account, the

resulting cluster centroids for different starting configurations are

stable for two to ten clusters. For the reduced data sets the

instability increases on the whole, but has a minimum for

generating five clusters. The minimum is even more pronounced

when the data base is further reduced.

The stability of centroids under varying parameters of the

clustering process is essential for their interpretation. However,

stability alone is not sufficient for deciding about a meaningful

number of clusters and whether the centroid configuration

represents significant structures of the data.

Quality. A quality criterion should quantify how well the

defined clusters represent distinct clouds of data points within the

feature space. Many criteria to validate clustering results with

respect to the number of clusters were suggested and compared

[39,40]. It should be distinguished between criteria that have to be

applied during the clustering procedure to decide whether

intermediate clusters should be merged or split and those that

evaluate the final results of the clustering procedure. To validate

our k-means results we are just interested in the latter ones. They

work either with statistics about the membership of data points to

clusters based on external knowledge or internal criteria (literature

as in data variation), which both require high computational

efforts. Or they exploit more general characteristics that are suited

to describe a qualitatively good clustering.

These approaches determine, whether a centroid constellation

leads to dense clusters of data that are well separated from each

other. Dense clusters provide small variances within one cluster,

where s2
c~

1

nc

Xnc

i~1

xi
c{�xxc

� �2
h i

is the variance of the data of

cluster c, which is the mean squared distance between the data

points xi
c and their centroid �xxc~

1

nc

Xnc

i~1

xi
c. Well separated clusters

are characterised by large distances between them. This outer

distance is often calculated based on the centroids of each pair of

clusters c and g as dcg~(�xxc{�xxg). Qualitatively good clusters

should provide small inner and large outer distances, which can be

combined to one criterion by relating the two values. Kanungo

Figure 3. Evaluations for k-means clustering the artificial data
of Figures 1 and 2. The number of clusters and the data sets are
varied. A) Instability values. B) Mean quality values. C) Mean quality of
mean set for each number of clusters, respectively.
doi:10.1371/journal.pone.0009361.g003
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et.al. [32] calculate one index for the whole clustering result as:

r~

1

2
min
c=g

dcg

max
c

sc

, while Coggins and Jain [41] determine the

separation of each individual cluster to be: sc~

min
c=g

dcg

sc

. For our

application, we use the clusterwise criterion with respect to our

goal to interpret and evaluate the individual centroids and clusters

as distinct components of behaviour. For simplicity we further use

the squared index as our quality measure qc~sc
2, which changes

the absolute quality values but does not make any difference in

comparing values from different runs. We take the mean

cluster quality q~
1

k
qc as an index for the quality of the whole

clustering in order to compare results from differently parame-

terised runs.

Figure 3B shows the quality calculated for clustering the

artificial data of Figures 1 and 2 in dependence on the number of

clusters and for varying datasets. As for the stability measure-

ment, in addition to the complete data set subsets containing 90%

and 80% of the data were clustered. For the complete data set ten

runs with different random starting configurations were analysed,

while for the reduced data set conditions, the clustering results

based on 50 different data sets for each condition are compared.

The depicted quality value is the mean value for all sets resulting

from one condition. For the complete data set the quality index

reaches its global maximum for nine clusters, another local one

for five clusters. However, for the reduced data sets we get the

global maxima for four clusters, while the quality for five clusters

is similar to that for nine clusters. This means that among the

reduced data sets there are ones that provide four clusters of

better quality rather than five clusters. These four cluster

solutions for the reduced data set have even higher quality than

the five clusters obtained with the complete data set. However,

since four clusters do not lead to stable results for the reduced

data sets, these isolated results of good quality for special data sets

do not represent general significant structures of the data. For

calculating the stability we determined the mean set of centroids

for each number of clusters and size of the data base (see before).

Assuming that these mean sets of centroids are best suited for

representing the data, we calculated their quality, which clearly

provides a maximum with five clusters, as shown in Figure 3C.

Combining the quality and stability criterion leads to five

meaningful clusters for this data.

Besides validating the clustering result as a whole, we designed

the quality criterion to evaluate individual clusters. Figure 4

shows the quality values for the mean set of centroids for

determining four and five clusters, respectively, based on the

complete artificial data. Generating five clusters instead of four

decreases the variances within the clusters (Figure 4, lower part).

In all of the clusters, except the red one, these decreases

overcompensate the also occurring decreases in the outer

distances between the clusters, resulting in higher cluster

Figure 4. Quality values and centroid visualisation for individual clusters within the complete artificial data set. Clusters result from
determining the mean set of four and five centroids, respectively. Visualisation of the five centroids as modified star plots, see text for explanation.
doi:10.1371/journal.pone.0009361.g004
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qualities. The quality values generally differ for individual

clusters. For our application of clustering behavioural feature

data and using the centroids for identifying prototypical

behaviours this quality measure allows us a differentiated

evaluation of the individual feature prototypes and the resulting

prototypical behaviours.

In summary, the quality and the stability criterion in combination

constitute a reliable tool for validating clustering results. Thereby the

stability of results constitutes the prerequisite for further interpretation

because it insures reproducibility and indicates that the results

generalise from the concrete dataset. Stable results can be compared

to each other by evaluating their quality.

Visualization of Centroids
The centroids represent, where required after renormalization,

feature prototypes. For a closer look at the prototypes a

visualisation of the high-dimensional centroids is necessary, that

depicts the values within the feature value space and allows us to

easily compare the individual prototypes. Several visualisation

methods for high-dimensional data are in use (e.g. [28,31]) that are

based on generating suitable two- or three-dimensional views on

the high dimensional data cloud or showing the high-dimensional

content of individual data points. For visualizing the centroids we

use a representative of the latter class, the star plot [31], in a

somewhat modified way.

A star plot of a centroid is a two dimensional star-shaped

diagram with one ray for each feature, where the length of each

ray is proportional to the corresponding feature value and the rays

are drawn equi-angular around the centre. Positive feature values

are depicted in the upper half of the star, while negative feature

values occur on the corresponding ray with the respective opposite

orientation. We modify the star plot by introducing colour for

better discrimination of the individual rays and mark the end of

each ray with an error bar indicating the standard deviation of the

centroids mean value. For better visibility of this error coding we

leave out the lines originally connecting the centre with the end of

each ray (Figure 4, right column).

The artificial data set as well as the software used for the analysis

and plotting the results that extends Matlab (R2009b) functionality

is given in the supporting material S1.

Results

We applied the clustering approaches to semi- free flight

trajectories of the blowfly Calliphora vicina [26]. The clustering

procedure delivers a set of feature prototypes that we use to

determine a segmentation of the trajectory into repeatedly

occurring prototypical elementary flight movements. Flight

behaviour of Calliphora vicina was previously analysed in

[27,42,43]. Our new method confirms these results and, in

addition, differentiates the behavioural components characterised

previously on the basis of visual inspection of the data.

Database
We analysed head positions and gaze direction during cruising

flights of Calliphora vicina that were recorded by C. Schilstra and

J.H. van Hateren in a flight arena of about 40cm640cm640cm

size surrounded by a Helmholtz coil. Small sensor coils were

attached to the fly’s head that induce voltages during motion

within the surrounding magnetic field. The signals allow

determining the three-dimensional position and the three-

dimensional orientation of the fly’s head with a temporal

resolution of 1ms (for details see [26]).

The recorded flights range in their length from 1s to 24s. We

selected for the clustering analysis all flights of at least 3s duration

to ensure the data to contain cruising flight instead of starting and

landing behaviour. This selection results in a data base containing

556343 data points, corresponding to about 556s of flight.

Feature Extraction and Normalisation
As discriminative features for distinguishing different prototyp-

ical movements from the raw six dimensional trajectory data we

selected the translational and rotational velocities measured within

a fly-centred coordinate system. Generally, velocities are the most

prominent features to describe movements of rigid bodies and the

fly-centred coordinate system ensures the velocities to be

independent from the location and orientation of the head within

the arena. For calculating the velocities within the fly’s coordinate

system we transform the difference between the trajectory data at

time tz1 and t into the fly-centred coordinate system at time t

and determine the forward, sideward, and upward velocity as well

as the yaw, pitch, and roll velocity as shown in Figure 5A.

The original trajectory data is noisy due to the experimental

procedure. We, therefore, smoothed the original data by applying

two times (forward and backward) a Butterworth filter of order two

with a relative border frequency of 0.1. The filter parameters were

chosen to be suitable to just marginally influence the trajectory

slope and thereby the information content of the velocity data

while strongly suppressing noise in the velocity data.

Figure 5. Calculating fly head velocity features. A) The fly head
fixed coordinate system used for calculating three translational and
three rotational velocities. B) PCA analysis of the two different sets of
Calliphora head velocity data. Part of the covered data variance in
dependence on the number of principal components taken into
account. C) Visualisation of the principal components sorted in
decreasing order of variance content, each.
doi:10.1371/journal.pone.0009361.g005
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The translational and rotational velocities serve as features for

the clustering process. As discussed above, the feature extraction

step aims at generating feature values that are similar for similar

movements and are separated for movements to be distinguished

from each other. Ideally dense clouds of data are well separated

from each other and spread over the feature space to be

automatically detectable by the clustering process. For our

application of categorizing trajectory data we should keep in

mind that velocities change continuously between prototypical

values. Those smooth transitions constitute noise for the clustering

approach. However, the difficulty to handle transitions between

more or less stable states exists independent from the selected

features if we do not apply prior knowledge about the

segmentation of the trajectory.

Extracting the velocity data from the filtered trajectory data

delivers a six dimensional feature value vector for each trajectory

point. Concerning the reduction of the feature set to the most

variant, which are assumed to be the most relevant features, we

applied principal component analysis (PCA) to the three

dimensional translational velocities and the three dimensional

rotational velocities independently. Figure 5B shows the variances

within the two data sets as it is divided over the three principal

components, respectively, and the corresponding principal com-

ponents as they are composed of the original features visualized as

star plots. For the rotational velocities the first principal

component takes about 80% of the total variance, while the

remaining two take about 10% each. The first component is

dominated by the yaw velocity, the second by roll and the last by

pitch. For the translational velocities the variances are spread

wider over the three components with the first containing less than

50% of the total variance. The first component contains a mixture

of forward and somewhat less downward velocity. This velocity

combination, measured within the fly-centred coordinate system

and the fly being pitched relative to the ground, corresponds

roughly to horizontal flight. The second translatory principal

component contains sideward velocity, while the last contains the

counterpart to the first with dominating upward and less forward

velocity.

The results of the PCA show that there are no feature

combinations within the rotational and translational velocity

groups that represent sufficiently well in lower dimensions the

variances within the data. Therefore, we did not reduce the feature

dimensions for our special application.

To ensure the comparability of the translational and rotational

velocity values for clustering, we normalise the values for each kind

of velocity independently to zero mean and standard deviation

one.

Hierarchical Clustering for Constraining the Number of
Clusters

Applying agglomerative hierarchical clustering using Ward’s

joining criterion on the Calliphora head velocity feature data

constrains the range of numbers of clusters to be built by the

following k-means clustering. Since the hierarchical approach is,

due to its extensive distance calculations, only suited for small data

sets, we randomly selected three sub sequences from the large

database each containing 5000 data points and clustered them

individually.

Figure 6 shows that the joining costs for the three data sets differ

only slightly. A distinct number of clusters cannot be identified in

this data. On the one hand, the data fragments may to be too small

to be representative. On the other hand, the approach is, owing to

its focus on local data characteristics, sensitive to the noise

contained within the experimental behavioural data. However,

based on hierarchical clustering we selected cluster numbers

between two and 50 for k-means clustering.

Validating K-Means Clustering Results and Determining
Suitable Numbers of Clusters

Given a range of suitable numbers of clusters we repeatedly

applied k-means clustering to the whole velocity feature data as

well as to the different sets of reduced data. For validating the

clustering results we calculated the instability and quality for the

resulting centroid configurations (Figure 7). The instability analysis

(Figure 7A) reveals that, independent of the special data base,

several numbers of clusters below twelve lead to stable results.

Clustering the complete data set with different random starting

positions leads to very small instabilities (,0.003) for the whole

range from two to twelve clusters. In contrast, the instability curve

calculated for centroid configurations based on varying reduced

data sets provides clear local minima and maxima within this

range of cluster numbers. The obviously instable points at six and

eight clusters are caused by two distinct centroid configurations

arising for variations within the data. Hence, it is necessary to

validate the stability of the centroid configuration against varying

data bases before generalizing the results and drawing conclusions

from it. So far, we compared the centroids resulting for either the

complete data or one of the reduced data set configurations. What

is left to do is the analysis, whether stable centroids occur across

Figure 6. Hierarchical clustering of normalised Calliphora head velocity data. Three different data segments containing 5000 data points
each were clustered using Ward’s joining criterion. A) Joining costs in dependence on the remaining number of clusters. B) The deviation of the cost
function for the most interesting range of fewer than 100 clusters.
doi:10.1371/journal.pone.0009361.g006
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the data set conditions. The instability for the different mean sets

of centroids again is very small for up to ten clusters and only

increases significantly if more clusters are generated (Figure 7B).

From the instability analysis promising numbers of clusters are

three, four, five, seven and nine. However, the quality criterion

(Figure 7C) suggests the choice of nine clusters, because here the

mean quality has a local maximum. Although the mean quality

increases slightly with larger numbers of clusters, more clusters are

not suitable for the data because of their instability.

The quality values corresponding to the individual clusters of the

mean set of nine clusters for the complete data set are shown in

Figure 7D. The mean quality for all clusters is 1.49. We get four

clusters that provide large variances within their assigned data (inner

distance), but also large (outer) distances to the nearest neighbouring

centroid. The five other clusters provide significantly smaller

variances but are also closer to their neighbours. The quality values

for the two types of clusters are approximately the same.

K-Means Clustering Results
We identified nine clusters to represent the most suitable

structure of our behavioural feature data (Figure 8). Amongst the

resulting centroids we can distinguish one group comprising four

centroids (Figure 8, 1–4) that are dominated by the normalised

rotational velocities. A second group (Figure 8, 5–9) comprises the

remaining five centroids with virtually no rotations but only

translations. Each of the centroids dominated by rotational

velocity features represents about 4% of the data, summing up

to 16.62% for all of them. Within the other group the two

centroids containing large normalised sideward velocities represent

18% and 19%, respectively, and the remaining ones each about

15% of the data. Hence, translational prototypes occur much

more frequently than the rotational ones. Furthermore, the

absolute values of the prototypical normalised rotational velocity

features are higher than the translational ones, even though all

original velocity data was normalised equally to zero mean and

standard deviation one before clustering. The rotational velocity

features mainly assume either rather large (positive or negative)

values or are close to zero. In contrast, the translational velocity

features within the centroids take additionally intermediate values.

This finding indicates different characteristics for the distributions

of the rotational and translational feature values. The four clusters

dominated by rotational velocities provide large inner variances,

but also large outer distances to their neighbours (Figure 7D). To

analyse the centroids further we renormalize them to get the

feature prototypes with their respective physical units, i.e. the

translational and rotational velocities of Calliphora heads measured

in m/s and deg/ms, respectively (Figure 9).

The separation of the nine prototypes into groups dominated by

rotational and translational velocities, respectively, is in agreement

with previous conclusions that flies tend to decouple translational

and rotational movements by their saccadic flight and gaze

strategy, thereby simplifying visual information processing by the

nervous system [2,42]. The prototypes dominated by rotational

velocities provide yaw velocities with mean absolute values of

about 1100 deg/s; roll and pitch velocities are smaller (100 to 660

deg/s) but also significantly different from zero. The mean

rotational velocities of the other prototypes are close to zero. These

velocity values allow us to identify four saccade and five

intersaccade prototypes within our data.

Two of the saccadic prototypes correspond to left turns, the

other two to right turns, respectively. Yaw and roll velocities are

coupled: a left turn (positive yaw velocity, see Figure 5A), is

accompanied by a right/clockwise roll (positive roll velocity,

Figure 5A) and vice versa. The prototypes with similar roll and

Figure 7. Criteria for validating the k-means clustering results for the normalised Calliphora head velocity data. Instability A) within
and B) between data set configurations and C) quality of clustering results in dependence on the number of clusters for varying data sets. D)
Individual quality values for mean nine centroids of the complete data set.
doi:10.1371/journal.pone.0009361.g007
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yaw velocities mainly differ in their pitch velocities; we find

negative (head up) as well as positive (head down) pitch velocities.

These head velocity combinations differ from the ones expected

for the body of the fly. Hence, blowflies fly their turns as so-called

banked turns (see also [27]), as also aircrafts do. This means that

turns are flown as a combination of yaw, pitch and roll

movements, instead of just applying yaw movements like cars on

the street do. In our fly-centred coordinate system a banked turn of

the body would corresponds to a combination of yaw with pitch up

Figure 8. Mean set of nine centroids calculated based on the
normalised complete data set for Calliphora free flight head
velocity data. The part of the data in percent assigned to the
individual centroid is given with each centroid.
doi:10.1371/journal.pone.0009361.g008

Figure 9. Mean set of nine velocity prototypes for Calliphora
head data. Feature values are accomplished with physical units: m/s
for translational, deg/ms for rotational velocities. Note the different
scales for the rotationally and translationally dominated prototypes.
doi:10.1371/journal.pone.0009361.g009
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(negative velocity) and roll of opposite sign. For the head we find

different combinations of yaw and roll and more variations for

pitch velocity. This can be explained by the fly compensating for

body roll and pitch in order to keep its head orientation to be as

horizontal as possible for stabilizing gaze. The four prototypes

representing saccades all contain also translational velocities,

mainly forward velocities of about 0.4 m/s.

The five prototypes characterising intersaccades are dominated

by the forward velocity, which takes values from 0.23 m/s up to

0.64 m/s. The forward velocities are coupled with downward

velocities of 0.02 m/s up to 0.31 m/s. The combination of

forward and downward velocities within the fly-centred coordinate

system leads to horizontal movement of the head in the flight

arena, if it takes a non-zero negative pitch angle. The prototype

that combines the largest forward velocity (0.64 m/s) with the

largest downward velocity (0.31 m/s) describes horizontal flight

with a pitch angle of 226 deg. This pitch angle corresponds well to

the mean pitch angle within the original trajectory data of 223

deg. Sideward velocities occur symmetrically within the proto-

types. This is expected, because neither direction should be

preferred over the other during sufficiently long sequences of

cruising flight. Two prototypes contain the maximal sideward

velocities of about 0.15 m/s, positive and negative, respectively,

combined with intermediate values for forward and downward

velocities.

Segmentation of Behavioural Sequences into
Prototypical Movements

The velocity prototypes result from clustering the velocity data

sets that are calculated from each two sequential trajectory points

independent from each other. However, the trajectory delivers a

sequence of velocities that can be assigned to a sequence of

prototype indices. Detecting subsequences of constant indices

allows the segmentation of the trajectory into prototypical

movements, where each subsequence length corresponds to the

duration of the prototypical movement. Figure 10A depicts all the

occurring durations of the prototypical Calliphora head movements

and shows that saccades are shorter, on average, and less variable

in their duration than intersaccades. For saccades few sequences

are longer than 20ms, while for intersaccades about half of the

sequences take longer than 20ms. This finding confirms the

saccadic flight style and gaze strategy that aims at minimizing the

duration of rotational head movements, while the intersaccadic

interval has a duration of some tens of milliseconds [2,27].

Figure 10B and C shows the results for an exemplary part of a

trajectory, which provides, for the longest time, prototypical

movements of considerable duration. Occasionally all prototypes

do also occur for very short durations (Figure 10A). This is the

result of uncertainties in classification. We should keep in mind

that reducing the complexity of behaviour to few prototypical

components inevitably omits many details. Variations within

individual velocities compared to the velocity prototypes lead to

uncertain classifications, which results in faster transitions between

prototypes (Figure 10 B,C, intersaccadic interval beginning at

about 400ms) or even changes from point to point (data not

shown). These uncertain classifications also occur for saccades,

because all saccadic prototypes contain large yaw velocities

accompanied with smaller pitch and roll velocities, while also

saccades occur characterised by just one or combinations of two

rotational velocities (Figure 10B). Additionally, transitions between

two stable prototypes may provide velocities that fit best to a third

prototype, as happened in the short sequence shown in yellow just

before the last saccade of the example data at about 1210ms. In

spite of these difficulties, prototypical movements of considerable

Figure 10. Segmentation of behavioural sequences into
prototypical movements. A) Overall occurring lengths of prototyp-
ical movements for the individual prototypes. B) Velocity data and
individually assigned velocity prototypes (prototype numbers as in
Figure 9) for an exemplary part of a fly head trajectory. C) Segmentation
of the example trajectory into prototypical movements. For better
visualisation the trajectory is projected into two dimensions, just yaw
rotation is shown, and the four saccadic prototypes are summarized
resulting in six remaining differently coloured prototypes.
doi:10.1371/journal.pone.0009361.g010
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duration indicate a meaningful classification and deliver an

appropriate segmentation of the trajectory into prototypical

behavioural components.

Discussion

We determined prototypical movements from flight trajectories

of the blowfly Calliphora as an application of a new approach for

objectively classifying behavioural data. This approach automat-

ically identifies behavioural components by applying appropriately

parameterized k-means clustering to a quantitative representation

of behavioural data in the form of high dimensional feature values.

The selection of suitable features is guided by the designated

behavioural description, which depends on the question to be

answered. Generally, features have to be selected to deliver feature

values that can be extracted reliably from the experimental data

and that are valid for distinguishing those behavioural components

from each other that are relevant for answering the experimental

question. Feature selection and the extraction of feature values

determine the kind of categories that can be identified and thereby

which aspect of the behavioural data is to be analysed. For

example, for distinguishing prototypical movements of the

Calliphora head we selected velocities as features and calculated

their local values from the experimental trajectory data, while

other aspects, like their spatial location, do not play a role for

discrimination. The issue of selecting and extracting suitable

feature values has to be addressed individually for each type of

experiment.

In contrast, the approach for automatically identifying catego-

ries follows the general strategy to detect significant structures

within the distribution of feature values. This strategy does not

change with the individual set of selected features as long as the

feature values are continuous numeric values that are normalized

to zero mean and standard deviation one in order to allow for the

quantitative comparison of the individual feature values as it is

done by the general purpose k-means clustering approach

implemented as Lloyd’s iteration.

The iterative k-means locates the given number of k clusters

within the noisy feature values. For determining a suitable number

of clusters k the investigator has to test different numbers with k-

means and evaluate whether the resulting clusters represent

significant accumulation points of the data. This is a time

consuming procedure if one has to test a large range of possible

numbers of clusters. For abbreviating this, the range of suitable

numbers of clusters can be restricted by applying prior knowledge

about the behaviour to be analysed, if available. Generally,

without such knowledge, we propose the application of a

hierarchical clustering approach for identifying with less compu-

tational effort at least a range of suitable cluster numbers. For a

restricted range of clusters numbers we calculate the k-means

clusters and then apply criteria for evaluating whether the clusters

represent significant accumulation points of the data. These

structures are generally significant, if they lead to distinct clusters,

if they stay stable for different random starting positions of the

iteration, and if they generalise from the given data set to varying

data sets.

We defined two criteria for the quality and stability of clusters,

respectively. Analysing these criteria for varying data sets and

cluster numbers allows us to identify sets of clusters that represent

well the accumulation points of the feature values. The

applications to artificial and real behavioural data show that we

cannot expect both criteria to identify just one number of clusters

to be most stable and of highest quality. Instead, quality generally

increases with increasing number of clusters, because more clusters

may better represent the details of the feature value distribution.

However, usually instability increases accordingly, because

dependent on the starting positions and the specific composition

of the data base different details of the distribution become

important leading to different cluster configurations.

To identify significant behavioural components that are

independent from algorithmic details, like different random

starting positions, and from the special properties of a given

behavioural data set, we consider stability as a prerequisite for

further analysing a set of clusters. Among the stable cluster

configurations we select the one providing the best quality in

representing the feature values within distinguished clusters. The

evaluation determines, on the one hand, the number of clusters

that leads to the best representation of significant structures in the

data, and, on the other hand, indicates quantitatively the quality of

this representation. Even for applications, where the number of

classes seems to be clear, like the different C.elegans phenotypes

used in [12,24] or their locomotion states addressed in [13], the

objectively determined classes that provide the best representation

of the data can be useful to confirm the prior knowledge or

improve it, if different categories occur within the data.

Feature values are calculated from the sequence of behavioural

data by extracting one set of values per time step, i.e. one

millisecond for the Calliphora data. Individually categorising these

values per time step makes, on the one hand, the categorisation

task more difficult but, on the other hand, delivers a categorisation

without making prior assumptions about the temporal character-

istic. If the independent categorisation of short time steps

according to feature prototypes is successful in the sense of

delivering meaningful behavioural classes the following identifica-

tion of sequences of invariant prototypes deliver a segmentation of

the behavioural sequence into prototypical components, which

allows us investigating the temporal characteristics of the

individual components. The evaluation of the durations of the

components serves as a criterion for this success and clearly

depends on the application, namely the kind of behaviour to be

analysed. It can be assumed that investigating the temporal

characteristics of behaviour instead of segments of previously

defined length [14–17] might reveal additional insights in

behavioural control. The clustering approach is more generally

applicable in comparison to those relying on application

dependent knowledge for segmentation, like zero velocity points

as used in [18,19].

The clustering of feature values together with the evaluation

step delivers a set of cluster centroids that represents feature

prototypes. This set of prototypes is suited for automatically

categorising appropriate behavioural data, which clearly provides

advantages in comparison to the common way of defining classes

before starting the analysis. Even, if prior knowledge about the

behaviour leads the selection of appropriate features the proposed

clustering approach is able to automatically deliver a suitable

quantitative description of behaviour.

By categorising behavioural data into few prototypes we do not

take into account detailed variations of behaviour within the

classes. This classification is too coarse for synthesising behavioural

sequences, as it is done in [25] for artificial game characters using

several hundreds of clusters. However, the few prototypes reduce

the complexity to few general components that reveal the structure

of behaviour. Given the classification into the prototypes allows us

to investigate the variations within each prototype in order to

analyse the influence of internal or external parameters.

The prototypes resulting from analysing Calliphora head

trajectories show, in accordance with previous results [2,42], that

cruising Calliphorae show a saccadic flight and gaze strategy which
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means performing purely translational movements disrupted by

short and fast manoeuvres dominated by rotations. Within the set

of determined prototypes we can separate those that are

characterised by high rotational velocities from those that describe

virtually pure translations. Saccadic movements are shorter than

intersaccadic ones. In addition to this distinction, our cluster

analysis delivers nine velocity prototypes that constitute the basis

for quantitatively describing prototypical movements as behav-

ioural components.

The analysis of Calliphora head movements constitutes a

successful application of the proposed approach for automatically

classifying behavioural data. Clustering of suitable feature values

and evaluating the results with respect to quality and stability turns

out to be a robust method for determining behavioural

components within large and noisy data bases. Due to the

standardized method, prototypical components resulting from

different behavioural contexts, including different environments,

different tasks, and also different species can be compared to each

other in order to investigate the influence of external factors on

behaviour.

We applied in a parallel study the clustering approach to

trajectory data originating from the hoverfly Eristalis tenax and

were able to quantitatively describe their flight behaviour

(Geurten et. al. submitted). Hoverflies reveal significantly more

variance within the prototypical movements in comparison to

Calliphora, including, among others, a prototype containing both

translational and rotational velocities close to zero as is

characteristic of hovering. Part of the prototypical movements

of Eristalis was found to differ in two flight arenas of largely

different size. In experiments with honeybees (Apis mellifera)

navigation performance in environments with different visual

landmark configurations around a feeder was tested. Our

clustering approach revealed that the spatial distribution of

particular velocity prototypes depends on the distance to visual

landmarks (Braun et. al. in preparation).

Beyond insect locomotion our approach may well be applied to

other areas of quantitative behavioural analysis, as, for example,

for characterising the influence of genetic modifications [3,4] or of

drug treatment on behaviour [9,16]. In this type of experiments

the automatic identification of behavioural components may

reveal new insights into behavioural differences that support the

detection of the underlying control mechanisms. The segmenta-

tion of behavioural sequences into prototypical components

additionally allows relating behaviour, for example, to visual

input and to the corresponding neuronal activity by appropriately

designed stimuli [44]. We just started to apply the proposed

clustering approach to identify prototypical components within

neuronal data helping to understand the structure of neuronal

information.

Generally, prototypical components constitute the basis of

structurally describing more complex sequences as rule-based

sequences of these components [5,45,46]. The derivation of

probabilistic rules based on the transition probabilities between

individual prototypes is the stringent extension of the presented

approach for describing complex sequences (Geurten et. al.

submitted).

Supporting Information

Supporting Material S1 Artificial data set and matlab function

toolbox implementing the methods proposed within this paper.

Found at: doi:10.1371/journal.pone.0009361.s001 (1.01 MB ZIP)
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