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Abstract 

Ras family proteins are membrane-bound GTPases that control proliferation, survival, and motility. Many forms of cancers are driven 

by the acquisition of somatic mutations in a RAS gene. In pancreatic cancer (PC), more than 90% of tumors carry an activating 
mutation in KRAS . Mutations in components of the Ras signaling pathway can also be the cause of RASopathies, a group of 
developmental disorders. In a subset of RASopathies, the causal mutations are in the LZTR1 protein, a substrate adaptor for E3 

ubiquitin ligases that promote the degradation of Ras proteins. Here, we show that the function of LZTR1 is regulated by the glycogen 

synthase kinase 3 (GSK3). In PC cells, inhibiting or silencing GSK3 led to a decline in the level of Ras proteins, including both wild 

type Ras proteins and the oncogenic Kras protein. This decline was accompanied by a 3-fold decrease in the half-life of Ras proteins 
and was blocked by the inhibition of the proteasome or the knockdown of LZTR1. Irrespective of the mutational status of KRAS , 
the decline in Ras proteins was observed and accompanied by a loss of cell proliferation. This loss of proliferation was blocked by 
the knockdown of LZTR1 and could be recapitulated by the silencing of either KRAS or GSK3. These results reveal a novel GSK3- 
regulated LZTR1-dependent mechanism that controls the stability of Ras proteins and proliferation of PC cells. The significance of 
this novel pathway to Ras signaling and its contribution to the therapeutic properties of GSK3 inhibitors are both discussed. 
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Introduction 

Ras proteins are membrane-bound GTPases implicated in the regulation
of cell motility, proliferation, and survival [ 1 , 2 ]. Ras proteins exhibit high-
affinity binding to GDP and GTP and act as binary switches. Ras proteins
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ycle between an active GTP-bound state and inactive GDP-bound form, and 
he ratio between these forms is regulated by GEFs (guanine exchange factors) 
nd GAPs (GTPase-activating proteins), which are, in turn, regulated by 
pstream growth factor receptors. GEFs activate Ras proteins by promoting 
he release of GDP and loading of GTP, whereas GAPs deactivate them by
timulating their intrinsic GTPase activity. In their active GTP-bound state, 
as proteins interact with and activate their downstream effectors, many of 
hich involved in promoting proliferation and survival (MAPK, PI3K, Rac1 
athways). Defects in Ras signaling have been associated with cancers and can 
lso be the source of developmental disorders, termed RASopathies. 

More than 30% of all human tumors carry an oncogenic mutation 
n a RAS gene, most commonly the HRAS, KRAS , or NRAS gene.
ancreatic cancer (PC) is the prototypical Ras-driven cancer. Oncogenic 
RAS mutations are the earliest and most commonly detected genetic 
lterations in PC [3–7] . Close to 95% of PC tumors carry an activating
utation in the KRAS gene, almost always at codon 12. These mutations 
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impair the GTPase activity of the Kras protein and its interaction with GAPs,
which leaves Kras constitutively activated along with its downstream effectors
[ 8 , 9 ]. In mice, the pancreas-specific expression of oncogenic KRAS drives
the formation of PanIN precursor lesions and cooperates with the loss of
p53 (encoded by the mouse Trp53 gene) to give rise to PC [10–12] . In
these animals, the tumors that form are addicted to the KRAS oncogene,
to the extent that its subsequent repression results in cell death and tumor
regression [13–16] . In a recent report, more than 50% of human PC cell
lines were addicted to oncogenic KRAS , especially those exhibiting a ductal
epithelial phenotype [17] . In KRAS -addicted lines, but not in normal cells
or KRAS -independent cancer cells, this repression leads to the induction of
apoptosis [16–18] . This important role of oncogenic Ras proteins in tumor
maintenance has made them prime targets for the development of novel
cancer therapies [ 8 , 9 ]. 

Malignancies are not the only maladies associated with Ras mutations.
RASopathies are a group of rare developmental disorders caused by
mutations in components of the Ras-MAPK pathway [ 19 , 20 ]. Some of these
mutations elevate Ras signaling in tissues during development, which leads to
malformations and developmental defects [ 19 , 20 ]. In Noonan syndrome, the
causal mutation is frequently found in the LZTR1 gene [21–26] . The LZTR1
protein is the substrate adaptor for an E3 ubiquitin ligase complex that
targets Ras family proteins for proteasomal degradation, including the Kras,
Hras, Nras, Mras, Rit1, and Rin proteins [ 21 , 22 , 24 ]. LZTR1 has a Kelch
domain that binds Ras family proteins and a pair of BTB-BACK domains
with which it interacts with the Cul3 protein. The resulting LZTR1-Cul3-
Rbx1 trimer (BCR 

LZTR1 ligase) catalyzes the K48-linked polyubiquitination
of Ras proteins and regulates their stability [ 21 , 22 , 24 ]. How the function
of these LZTR1-directed E3 ligase complexes is regulated under normal and
pathological conditions is not well understood. 

Glycogen synthase kinase 3 (GSK3) is a highly-conserved ubiquitously
expressed serine/threonine protein kinase. In humans, the enzyme is
comprised of two related isoforms produced by separate genes, GSK3 α
and GSK3 β [27–29] . The kinase is found in virtually all subcellular
compartments, sometimes in association with other proteins that carry
GSK3 β-interacting domains (GID) [ 28 , 30-32 ]. GSK3 has a preference for
primed substrates, which have already been phosphorylated by another kinase
[ 28 , 29 ]. GSK3 phosphorylates serine/threonine residues when located 4
amino acids upstream of an already phosphorylated serine or threonine
(i.e. (S/T)XXX( S/T ) sites, in which the underlined S/T must first be
phosphorylated). Unlike other kinases, GSK3 is constitutively active under
resting conditions and is instead regulated through its inhibition, by for
example the AKT kinase [27] . In PC specimens, GSK3 β is reportedly
overexpressed [33–35] and in mouse models of KRAS -driven PC [10] ,
GSK3 β is required for acinar-to-ductal metaplasia (ADM), an early
manifestation of oncogenic KRAS signaling [36] . In the GSK3 β-deficient
animals, the formation of PanIN precursor lesions was delayed and disease
progression was blunted. Further, in animals with pre-established pancreatic
tumors, GSK3 inhibitors could block tumor growth [37] and sensitize tumor
cells to DNA damaging agents [ 35 , 38 , 39 ]. In a recent screen for drugs
that can selectively kill Ras-addicted cancer cells, inhibitors of GSK3 were
identified as potent candidates [40] . In a panel of cancer cell lines, GSK3
inhibition induced apoptosis in the Ras-dependent cell lines, but not in Ras-
independent lines [40] . This induction of apoptosis was accompanied by the
accumulation of c-Myc and β-catenin proteins and reportedly took place with
little to no change in the level of Ras proteins [40] . 

In PC cell lines, we investigated the effects of GSK3 inhibition on the Ras
signaling pathway. In PC cells, GSK3 deficiency led to a degradation of Ras
family proteins, including both wild-type Ras proteins and the oncogenic
Kras protein. This loss of Ras proteins was dependent on the expression
of LZTR1 and was accompanied by an inhibition of proliferation. This
inhibition of proliferation was blocked by the knockdown of LZTR1 and
could be recapitulated by the silencing of either KRAS or GSK3. These
ndings reveal a novel GSK3-regulated LZTR1-mediated mechanism that 
ontrols the stability of Ras family proteins and the proliferation of PC cells.
he potential significance of this new mechanism in Ras signaling and its
otential contribution to the therapeutic properties of GSK3 inhibitors are
iscussed. 

aterials and methods 

aterials 

Fetal bovine serum (FBS) was from Atlas Biologicals (Fort Collins,
O). Gentamycin, Penicillin/Streptomycin, Dulbecco’s modified Eagle’s 
edium (DMEM), and recombinant human EGF were purchased from 

hermoFisher Scientifics (Waltham, MA). Medium M3 (cat# M3: BaseF) 
as from InCell Corp. (San Antonio, TX). Insulin Aspart (NovoLog®; 100
/ml) was purchased from the UNMC pharmacy. Cycloheximide and the
ammalian proteases inhibitor cocktail were from Sigma-Aldrich (Saint- 
ouis, MO). All other chemicals were from purchased from Fisher Scientific
Pittsburgh, PA, USA). CHIR98014 (catalogue # S2745) was obtained 
rom Selleck Chemicals (Houston, TX, USA). MG132 (cat# BML-PI102- 
025) was purchased from Enzo Life Sciences, Inc. (Farmingdale, NY, USA),
issolved in DMSO, and stored at -80 °C. 

ell lines 

The AsPC1, HPAF/CD18, L3.6pl, and BxPC3 cells used in the
xperiments were authenticated by STR profiling performed by Genetica, 
abCorp (Burlington, NC). The first three lines were cultivated in DMEM
edia supplemented with 10% FBS and 50 μg/ml gentamycin. BxPC3 cells
ere cultivated in RPMI media, also supplemented with 10% FBS and 50
g/ml gentamycin. hTERT-HPNE cells (referred therein as HPNE cells) are
 line of human pancreatic ductal cells previously immortalized by us using
he catalytic subunit of telomerase [ 41 , 42 ]. HPNE cells were cultivated in
edium “D”, as described before [42] . All cell lines were cultivated at 37 °C

n a humidified atmosphere containing 5% CO 2 . 

iRNA knockdowns 

Cells were reverse transfected with siRNA using DharmaFECT 1 (cat# T-
001) according to the manufacturer’s instructions (Dharmacon, Lafayette, 
O). Two days later, cells were examined for expression of the knocked-down

argets (GSK3 α, GSK3 β, LZTR1, and Kras proteins) and for differences
n Ras protein level or stability. ON-TARGETplus siRNA were purchased
rom Dharmacon (Lafayette, CO), including the non-targeting control pool 
cat# D-001810-10) and SMARTpools against GSK3A (cat# L-003009-00), 
SK3B (cat# L-003010-00), LZTR1 (cat# L-012318-00), or KRAS (cat# L-
05069-00). 

estern blot analysis 

With a rubber policeman, adherent cells were released into the medium,
fter which cells were recovered by centrifugation (300 g x 5 min), lysed
n Laemmli buffer (200 μl per 35 mm dish), and stored at -20 °C. Equal
olume of each samples (20-35 μl) were analyzed by Western blot analyses, as
reviously described [43] . When probing for proteins of identical sizes (e.g.
ERK(T202/Y204) and total ERK), two approaches were alternatively used. 
n the first approach, the same samples were serially loaded on multiple gels
o produce replicate membranes that were subsequently probed separately 
ith the different antibodies. In the second approach, a single membrane
as produced, probed with the first antibody, stripped, and subsequently re-
robed with the second antibody. Ponceau S staining was used to confirm
qual loading and transfer. GAPDH and/or β-actin were also used as internal
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controls, whose levels were not expected to change during the treatments.
Ras family proteins were detected using a pan Ras antibody that recognizes
Hras, Kras, and Nras (RAS10 antibody) [44] . An antibody that binds
selectively to the G12D mutants of Ras proteins (Ras G12D ) was also used
(cat# 26036; NewEast Biosciences, King of Prussia, PA). Antibodies against
GAPDH (cat# sc-47724), β-actin (cat# sc-1616), LZTR1 (cat# sc-390166),
ERK (cat# sc-154-G), p-ERK(T202/Y204)(cat# sc-7383) were from Santa
Cruz Biotechnology (used at 1:200 dilution). Rabbit monoclonal antibodies
against cleaved caspase 3 (clone 5A1E), AKT (clone C67E7), p-AKT(T308)
(clone D25E6), p-AKT(S473) (clone D9E), GSK3 α (clone D80E6), p-
GSK3 α(S21) (clone D1G2), GSK3 β (clone D5C5Z), p-GSK3 β(S9) (clone
D85E12), cMyc/N-Myc (clone D3N8F), and p-cMyc(T58) (clone E4Z2K),
GS (clone 15B1), and p-GS(S641) (clone D4H1B) were from Cell Signaling
Technology (mostly used at 1:1000 dilution). Secondary antibodies used were
horseradish peroxidase-conjugated goat antibodies against mouse or rabbit
IgG (Jackson ImmunoResearch). Size markers used were the Precision Plus
Protein TM Dual Color Standards (cat# 1610374) from Bio-Rad (Hercules,
CA). 

Measuring Ras protein stability 

In duplicates, AsPC1 cells were reversed transfected with the different
siRNA SMARTpools (NT, GSK3 α, GSK3 β, or GSK3 α+ β). Two days later,
cycloheximide (CHX; 50 μg/ml) was added to block protein synthesis and
samples were collected before (t = 0) and at different times after CHX. Levels
of Ras (pan Ras) and Actin ( β-Actin) proteins were quantified by Western blot
and signals were quantified using the ImageJ program. Relative amounts of
Ras proteins (normalized to 1 for t = 0) were plotted as a function of time
after CHX addition ( Fig. 2 D), and the data was fitted by non-linear regression
to an exponential decay curve to allow calculation of Ras Proteins half-lives
under each condition ( Fig. 2 E). Ras protein half-lives were estimated as the
mean ± S.D. of two independent experiments done in parallel in AsPC1 cells.

Quantitation of the KRAS mRNA by real-time RT-PCR 

RNA were isolated from independently treated triplicates with TRIzol
(ThermoFisher Scientifics). Isolated RNA were reversed transcribed (1
μg RNA/reaction) using the iScript TM Reverse Transcription Supermix
according to the manufacturer’s instructions (Bio-Rad). Quantitation of
the abundance of KRAS and GAPDH transcripts was done by real-time
PCR. TaqMan Gene Expression Assays with FAM-conjugated MGB (minor
groove binder) probes were used for the quantification of KRAS (cat#
Hs00364282_m1) and GAPDH (cat# Hs99999905_m1) transcripts. These
MGB probes incorporate a 5 ′ -FAM reporter dye and a 3 ′ non-fluorescent
quencher (NFQ). Standard curves were produced to allow for the precise
calculation of the abundance of each transcript. PCR was performed in a
Light cycler 480 II PCR System (PCR System, Roche Applied Science). 

Measuring cell proliferation 

In 6-well plates, each cell line was seeded in duplicates at 2.5-5.0 × 10 4 
cells/well, depending on the cell line. The next day, cells were given fresh
medium containing different concentrations of CHIR98014 (0 to 10 μM).
On day 0 and after 1, 2, and 3 days of each treatment, duplicate dishes were
harvested and immediately fixed and stained with crystal violet. Under the
microscope, cells were counted in 5 random fields/well to produce an average
cell count for each well. For each concentration of CHIR98014 (0, 0.5, 1,
2, 5, and 10 μM), cell numbers were plotted for each day of treatment (0, 1,
2, and 3 days) as the mean ± S.D. of two or three independent wells ( n = 2
or 3), depending on the experiment. Proliferation rates were estimated based
on the numbers of cells counted after 3 days of treatment. Proliferation rates
were expressed in population doublings per day (PD/day) and were plotted as
 function of the concentration of CHIR98014 to produce a dose-response 
urve. For each curve, an EC 50 value was calculated by non-linear regression 
nd fitted to a four parameter logistic curve by SigmaPlot v. 11. 

HIR99021 treatment of mice implanted with PC tumor cells 

All animal experiments were reviewed and approved by the Institutional 
nimal Care and Use Committee of the University of Nebraska Medical 
enter. Xenograft study was performed as described previously [ 45 , 46 ].
riefly, AsPC1 cells (1 × 10 6 viable cells in 50 μL PBS) were subcutaneously

mplanted in the right flank of ten 6-8 weeks old athymic nude mice (NU/J;
n house breeding). Two weeks later, tumor volumes were measured with 
 digital caliper and mice were randomized into two groups ( n = 5 per
roup) receiving either half the maximum tolerated dose of CHIR99021 
37.5 mg/kg twice/day by oral gavage; [47] ) or vehicle (PBS). Every 3-
 days, mice were weighted and tumor volumes were measured with a 
igital caliper. Tumor volumes were calculated using the formula for an 
emiellipsoid (volume = 0.5236 × length × width × height), as this form 

est approximated the tumors’ shapes. Mice were treated 5 days/week for 16 
ays, after which the animals were sacrificed. At the end of the experiment,
umors were harvested, weighted, and cut in two halves. The first half of each
umor was pulverized in liquid nitrogen and subsequently lysed in Laemmli 
uffer (4 ml/g of tissues) with the help of a loose and then tight fitting Dounce
estles. After sonication, samples were cleared by centrifugation (12,000 g for 
 minutes) and the supernatants were collected, heated at 95 °C for 2 minutes,
nd stored at -20 °C. An equal volume of each extract was analyzed by Western
lot. The second half of each tumor was formalin-fixed, paraffin embedded, 
nd set aside for immunohistochemical (IHC) analysis. 

mmunohistochemical analysis 

IHC analysis of tumor specimens was performed as we have done 
reviously [48] . Antibodies used included a rabbit polyclonal antibody 
gainst cleaved caspase 3 (Cell Signaling Technology # 9661; used at a 1:200
ilution) and a mouse monoclonal antibody against Ki-67 (Cell Signaling 
echnology # 9449; used at a 1: 400 dilution). Numbers of positive cells per
igh power field were quantified by one of us, board certified pathologist Jesse
. Cox. 

esults 

SK3 inhibition reduces the level of Ras family proteins in PC cells 

The GSK3 isoforms had been reported to be essential to the viability 
f oncogenic KRAS -addicted cancer cells, but to be dispensable to Ras- 
ndependent cancer cells [40] . To follow-up on this report by another group,
e sought to examine the effects of GSK3 inhibition on the Ras signaling
athway itself. Initial experiments were performed in pancreatic cancer (PC) 
ell lines AsPC1 and HPAF/CD18, both carrying an oncogenic mutation in 
he KRAS gene [ 49 , 50 ]. 

In a first series of experiments, PC cells were exposed to CHIR98014, a
SK3 inhibitor that selectively blocks the two isoforms of GSK3 [51] . In
ilot studies, the drug inhibited colony formation with EC 50 values in the 
ange of 1-4 μM (Fig. S1). In a first series of experiments, we treated AsPC1
ells and HPAF/CD18 cells with 10 μM CHIR98014 and examined the cells 
or changes in levels of Ras proteins and markers of Ras signaling. To quantify
as proteins, we have used two antibodies: a pan Ras antibody against the
ras, Kras, and Nras proteins (pan Ras antibody)(44) and a second antibody 

hat binds selectively to their G12D mutants (Ras G12D antibody), employed 
ere to detect the oncogenic Kras G12D protein. Used as surrogate markers of 
SK3 kinase activity, the T58-phosphorylation of cMyc and level of cMyc 
rotein were also monitored. The T58-phosphorylation of cMyc by GSK3 
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Figure 1. GSK3 inhibition reduces the level of Ras family proteins. (A) GSK3 inhibition reduces Ras signaling and the level of Ras proteins. AsPC1 cells were 
harvested at the indicated time points after the addition of CHIR98014 (10 μM). Samples were Western blotted with the indicated antibodies, including Ras 
family proteins (pan Ras) and their G12D mutant proteins (Ras G12D ). Phosphorylated and total cMyc proteins were used as surrogate markers of GSK3 kinase 
activity. Positions of Bio-Rad dual color standards are shown in KDa. The experiment was done twice with the same outcome. (B) Abundance of the KRAS 
mRNA is unchanged after GSK3 inhibition. AsPC1 cells were harvested at the indicated time points after CHIR98014 (10 μM). Real-time RT-PCR was used 
to quantify the abundance of KRAS and GAPDH mRNA. KRAS/GAPDH mRNA ratio is shown as the mean ± S.D. of triplicate samples ( n = 3). (C) Insulin 
induces the phosphorylation and inhibition of GSK3. Top panel: Insulin/IGF signaling has been shown to promote the T308- and S473-phosphorylation 
and activation of the Akt kinase. Akt can then phosphorylate GSK3 α (at S21) and GSK3 β (at S9), thereby inhibiting the two kinases. This inhibition of 
GSK3 allows for the activation of glycogen synthase, which otherwise is kept inhibited by the phosphorylation of its S641 residue by GSK3. Bottom panel: 
HPAF/CD18 cells were exposed to Insulin Aspart (0.04 U/ml). Three hours later, cells were examined for changes in Akt and GSK3 phosphorylation. The 
experiments was repeated 3 times with the same outcome. (D) Insulin reduces the level of Ras family proteins. The levels of Ras proteins (pan Ras) and 
S641-phosphorylated glycogen synthase (p-GS) were monitored in HPAF/CD18 cells after the addition of Insulin Aspart (0.04 U/ml). The experiment was 
repeated twice with the same results. (E) KRAS mRNA is unchanged after the addition of Insulin Aspart (0.04 U/ml). AsPC1 cells were harvested at the 
indicated time points after insulin. KRAS/GAPDH mRNA ratio is shown as the mean ± S.D of triplicate samples ( n = 3). 
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promotes its proteolytic degradation [52] . As expected, CHIR98014 led to
a rapid loss of cMyc T58-phosphorylation and concomitant increase in total
cMyc protein, all of which indicative of GSK3 inhibition. Also starting after
2 hours of exposure, a slow decline in Ras proteins (pan Ras) and oncogenic
Kras protein (Ras G12D ) was observed, with both markers reaching their lowest
levels by 16 hours ( Figs. 1 A, S2). Downstream of Ras proteins [53] , the ERK
kinases were initially activated by the GSK3 inhibitor, between 2 and 8 hours
of exposure, but as Ras proteins continued to decline, this activation was
eventually followed by a complete inhibition of the ERK kinases by 16 hours
of exposure ( Figs. 1 A, S2). To determine if the declining levels of Ras proteins
were driven by changes at the mRNA level, we have measured the KRAS
mRNA by quantitative real-time RT-PCR. No changes in the abundance of
the KRAS mRNA were observed in response to the GSK3 inhibitor ( Fig. 1 B).

GSK3 is typically active in resting cells, but can be inhibited by insulin
signaling to promote glycogen synthesis [27] ( Fig. 1 C; top panel). Insulin
signaling stimulates the PI3K-Akt pathway, which results in the Akt-
mediated phosphorylation of GSK3 α (at S21) and GSK3 β (at S9). This
phosphorylation inhibits GSK3 and allows for the stimulation of glycogen
synthase (GS), whose activity is otherwise inhibited by the phosphorylation of
its S641 residue by GSK3. In HPAF/CD18 cells, exposure to insulin activated
the PI3K/Akt/GSK/GS cascade ( Fig. 1 C; bottom panel). Three hours after
insulin, Akt was activated (S308- and S473-phosphorylation) and GSK3 was
 t  
nhibited, as indicated by the increase in S9/S21-phosphorylated GSK3 and
educed phosphorylation of GS. Next, we assessed the effects of insulin of
he level of Ras proteins. HPAF/CD18 cells were exposed to 0.04 U/ml of
nsulin Aspart, after which Ras family proteins were monitored. Employed as
 surrogate marker of GSK3 kinase activity, the level of S641-phosphorylated
S was also monitored. Insulin led to a time-dependent decline in the level

f both S641-phosphorylated GS and Ras proteins ( Fig. 1 D). By 16 hours
f exposure, a parallel decrease in both markers was clearly observed. We also
ave quantified the KRAS mRNA by real-time RT-PCR. Again, no changes

n the abundance of the KRAS mRNA were observed in response to GSK3
nhibition, this time elicited by insulin ( Fig. 1 E). Collectively, the results
uggested that the activity of GSK3 was regulating the abundance of Ras
roteins in PC cells, at the level of either Ras protein stability and/or mRNA
ranslation. 

ilencing of GSK3 reduces the level and stability of Ras family proteins 
n PC cells 

To confirm the involvement of GSK3 in the regulation of Ras protein
evels, AsPC1 cells were transfected with siRNA against GSK3 α alone,
SK3 β alone, or both kinases ( Fig. 2 A). Cells transfected with a non-

argeting siRNA were used as controls. Two days later, cells were analyzed
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Figure 2. GSK3 silencing reduces the stability of Ras family proteins. AsPC1 cells were transfected with a non-targeting (NT) siRNA or with siRNA against 
GSK3 α alone, GSK3 β alone, or both kinases. Two days later, cells were analyzed by Western blotting (panel A) or real RT-PCR (panel B) or else were exposed 
to cycloheximide (panels C-E). (A) The silencing of GSK3 reduces the level of Ras proteins. Two days post-transfection, cells were analyzed by Western 
blotting for the presence of the indicated proteins. Positions of Bio-Rad dual color standards are shown in KDa. The experiment was done twice with same 
outcome. (B) The abundance of the KRAS mRNA remains unchanged after the silencing of GSK3. Two days post-transfection, RNA samples were isolated 
and subjected to real-time RT-PCR quantification of KRAS and GAPDH transcripts. KRAS/GAPDH mRNA ratio is shown as the mean ± S.D of triplicate 
samples ( n = 3). (C) GSK3 α and GSK3 β co-regulate the stability of Ras family proteins. Two days post-transfection, duplicate wells cells were exposed to 
cycloheximide (CHX) and the level of Ras proteins was monitored over time (Pan Ras). Actin, a protein known to have a much longer half-life, was used as 
an internal control. (D) Line graph shows the level of Ras proteins as a function of time after CHX addition. Levels are shown for cells transfected with the 
non-targeting siRNA (black circles) or with siRNA against GSK3 α (blue squares), GSK3 β (green triangles), or both kinases (red diamonds). Dotted lines are 
non-linear regressions of each data set to an exponential decay equation. (E) Bar graph shows the calculated half-lives of Ras proteins under the four conditions. 
Mean ± S.D. of two independent experiments. 
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for differences in the level of Ras proteins ( Fig. 2 A) and KRAS mRNA
( Fig. 2 B) and were also used for determination of the half-life of Ras
proteins ( Fig. 2 C-E). Two days post-transfection, the depletion of GSK3 α
and GSK3 β was almost complete ( Fig. 2 A). In cells depleted of both
GSK3 isoforms, Ras family proteins were greatly reduced to the limit of
detection (pan Ras), including the oncogenic Kras G12D protein (Ras G12D ).
Downstream of Ras, the phosphorylation and activation of ERK correlated
with the level of Ras proteins and was undetectable after the silencing of
both GSK3 isoforms. In KRAS -addicted cancer cells, interrupting Ras-ERK
signaling can induce apoptosis [ 14 , 17 , 18 ]. In line with this expected response,
the loss of Ras proteins was accompanied by the induction of apoptosis
( Fig. 2 A; cleaved Casp3). Depleting just one isoform of GSK3, either
GSK3 α or GSK3 β, led to more modest decreases in Ras proteins (Pan Ras,
Ras G12D ) and did not suffice to reduce pERK or induce apoptosis. We also
have measured the abundance of the KRAS mRNA by real-time RT-PCR
( Fig. 2 B). In cells transfected with the GSK3 siRNA, the abundance of the
KRAS mRNA was unchanged ( Fig. 2 B). 

Certain members of the Ras family are regulated at the level of protein
stability [ 21 , 22 , 24 ]. To investigate this possibility, we used the cycloheximide
chase assay [54] to measure the half-life of Ras family proteins. Two days post-
transfection, AsPC1 cells transfected with the different siRNA (NT, GSK3 α,
 i  
SK3 β, and GSK3 α+ β) were exposed to cycloheximide (50 μg/ml) to block
rotein synthesis, after which Ras proteins was monitored over time ( Fig. 2 C-
). In cells transfected with the NT siRNA, Ras proteins were determined to

ave a relatively short half-life (9.5 ± 1.5 hours; Fig. 2 E), at least compared
o β-actin ( > 24 hours). In cells depleted of both of their GSK3 isoforms
GSK3 α + GSK3 β), Ras protein stability was markedly reduced by more 
han 3-fold, to reach a half-life of just ∼3.0 ± 1.6 hours ( Fig. 2 E). In cells
ransfected with the GSK3 α or GSK3 β siRNA, the half-life of Ras proteins 
as similar to that observed in the NT-transfected cells. Taken together, the 

esults of Fig. 2 show that the two isoforms of GSK3 are regulating the
tability of Ras family proteins in PC cells. 

ZTR1 is required for Ras protein degradation after GSK3 

nhibition/depletion 

To assess the role of the ubiquitin-proteasome system (UPS) in the 
estabilization of Ras proteins induced by the inhibition of GSK3, we used 
roteasome inhibitor MG132. Prior to the addition of the GSK3 inhibitor, 
sPC1 cells were pre-treated for 2 hours with MG132 (20 μM) or else vehicle

DMSO). In cells pre-treated with vehicle, CHIR98014 led to a sharp decline
n Ras protein level ( Fig. 3 A). But in cells pre-treated with MG132, Ras
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Figure 3. LZTR1 is required for the degradation of Ras proteins induced by the inhibition or silencing of GSK3. (A) Degradation of Ras proteins elicited by 
CHIR98014 is blocked by the proteasome inhibitor MG132. AsPC1 were first treated with proteasome inhibitor MG132 (20 μM) or else vehicle (DMSO). 
Two hours later, CHIR98014 (10 μM) was added and samples were collected at the indicated time points. (B) Levels of LZTR1 protein in a panel of four 
PC cell lines and HPNE cells. HPNE, HPAF/CD18, AsPC1, and BxPC3 cells were loaded in duplicates. Two arrows respectively point to the 150 kDa 
and 85 kDa species detected by the LZTR1 antibody. (C, D) LZTR1 is required for Ras protein degradation induced by CHIR98014. AsPC1 (C) and 
HPAF/CD18 (D) cells were transfected with LZTR1 siRNA or with a non-targeting siRNA (NT). Two days later, cells were exposed to CHIR98014 (10 
μM), with samples collected at the indicated time points after CHIR98014. Left panels: LZTR1 levels two days post-transfection. (E) LZTR1 is required 
for Ras protein degradation induced by Insulin. HPAF/CD18 cells were transfected with LZTR1 siRNA or with a non-targeting siRNA (NT). Two days 
later, cells were exposed to Insulin Aspart (0.04 U/ml), with samples collected at the indicated time points after Insulin. Left panel: LZTR1 levels two days 
post-transfection. (F) LZTR1 is required for Ras protein degradation induced by the silencing of GSK3. AsPC1 cells were transfected with a non-targeting 
siRNA (NT) or with siRNA against LZTR1 (LZTR1) and/or the GSK3 kinases (GSK3 α+ β). Two days later, cells were analyzed for changes in Ras protein 
levels. 
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proteins instead accumulated over time after the addition of CHIR98014.
These results indicated that the UPS was involved in the loss of Ras proteins
induced by the inhibition of GSK3. 

The LZTR1 protein is a substrate receptor for E3 ubiquitin ligases that
targets Ras proteins for proteasomal degradation, including Kras, Hras, Nras,
and others [ 21 , 22 , 24 ]. LZTR1 uses its BTB-BACK domains to associate with
Cul3 and its Kelch domain to interact with Ras proteins. In a panel of four PC
cell lines, we detected LZTR1 as a 150 kDa protein ( Fig. 3 B). The protein was
also detected in HPNE cells, a line of normal human pancreatic ductal cells
immortalized with telomerase [ 41 , 42 ]. In HPNE cells, LZTR1 was expressed
at much lower levels and was also detected as both a 150 kDa and 85 kDa
protein ( Fig. 3 B). 
To assess the role of LZTR1 in the regulation of Ras proteins by GSK3,
e have silenced the expression of LZTR1 in AsPC1 and HPAF/CD18

ells. Two days after their transfection with an LZTR1 siRNA or non-
argeting siRNA, cells were exposed to CHIR98014 and Ras proteins were
onitored over time. In both the AsPC1 ( Fig. 3 C) and HPAF/CD18

 Fig. 3 D) cells, knocking-down LZTR1 prevented the decline in Ras proteins
nduced by CHIR98014. This requirement for LZTR1 was also observed
fter the treatment of HPAF/CD18 cells with insulin ( Fig. 3 E). Insulin
ed to time-dependent decrease in the level of Ras proteins, but not in
he LZTR1-depleted cells. The requirement for LZTR1 was also observed
fter the knockdown of the two GSK3 isoforms ( Fig. 3 F). AsPC1 cells
ere transfected with a non-targeting siRNA (NT) or with siRNAs against
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GSK3 α+ β only, LZTR1 only, or both LZTR1 and GSK3 α+ β. Two days
later, cells were analyzed for differences in Ras proteins. As Fig. 3 F shows,
the silencing LZTR1 prevented the loss of Ras proteins induced by the
knockdown of GSK3. Taken together, the results of Fig. 3 demonstrate that
the LZTR1 protein is required for the degradation of Ras proteins induced
by the silencing or inhibition of GSK3. 

GSK3 inhibition reduces PC cell proliferation, irrespective of KRAS 
mutations 

In Fig. 3 B, we detected high levels of LZTR1 protein in a panel of four PC
cell lines. The panel included three lines carrying an oncogenic mutation in
KRAS (AsPC1, HPAF/CD18, and L3.6pl) and the BxPC3 cells, known to be
wild type for KRAS [ 49 , 50 , 55 ]. We examined the effects of GSK3 inhibition
in each of these four cell lines, including its impact on Ras protein level,
induction of apoptosis, and cell proliferation. HPNE cells, which also express
the wild-type Kras protein, were included as a normal control. 

In a first experiment, the different cell lines were cultivated for 3 days
in the presence of 10 μM CHIR98014. Once a day, cells were counted and
set aside for Western blot analysis of Ras proteins and markers of apoptosis.
At the end of the experiment, cells were crystal violet-stained and counted.
In the four PC cell lines, CHIR98014 led to a time-dependent decline in
the level of Ras proteins ( Fig. 4 A). HPNE cells express much less of the
150 kDa LZTR1 protein compared to PC cells and Ras proteins were not
affected by the inhibitor. In the three PC cell lines that carried an oncogenic
KRAS mutation, the decline in Ras proteins induced by CHIR98014 was
accompanied by the induction of apoptosis, as shown by the induction
of cleaved caspase 3 ( Fig. 4 A). In the BxPC3 cells, which only carry wild
type KRAS , this apoptosis was only minimally induced after three days of
treatment ( Fig. 4 A). In the HPNE cells, which express only a small amount
of the 150 kDa LZTR1 protein, Ras proteins were not down-regulated by
the drug and cleaved caspase 3 was also not induced. These results were
reminiscent of those previously reported by Kazi et al. [40] . Similar to Kazi
et al., GSK3 inhibition induced apoptosis in the mutant KRAS-expressing
cell lines, but not in Ras-independent cell lines. Yet, when cells were counted
at the end of the experiment, the growth of all four PC cell lines was equally
and potently inhibited by the GSK3 inhibitor ( Fig. 4 B), irrespective of the
mutational status of KRAS or induction of apoptosis. 

To further investigate the relationship between the inhibition of GSK3,
loss of Ras proteins, and induction of apoptosis, dose-response experiments
were performed. In a first experiment, AsPC1 were exposed to different
concentrations of CHIR98014 ranging from 0.5 μM to 10 μM. Two days
later, cells were analyzed for differences in Ras protein levels (pan Ras) and
markers of apoptosis (cleaved caspase 3) and of GSK3 kinase activity (cMyc
accumulation). In cells treated with just 0.5 μM CHIR98014, the cMyc
protein was already maximally up-regulated ( Fig. 4 C). The same was true
for the induction of apoptosis. Yet, to reduce the level of Ras proteins, much
higher doses of CHIR98014 were needed ( Fig. 4 C). The EC 50 value for the
loss of Ras proteins after CHIR98014 was determined to be equal to 1.1 ±
0.3 μM ( Fig. 4 C; graph on the right). These results indicated that the dose of
GSK3 inhibitor needed to reduce Ras proteins was higher than that required
to simply up-regulate cMyc and induce apoptosis. 

In a second experiment, the different cells lines were cultivated in the
presence of different concentrations of CHIR98014, also ranging from 0.5
μM to 10 μM. On four consecutive days, cells were counted once a day
to determine growth rates ( Fig. 4 D-G). In AsPC1 cells, the drug inhibited
proliferation in a dose-dependent manner ( Fig. 4 D). Proliferation was only
minimally inhibited by the 0.5 μM dose, but was completely inhibited
by the 5-10 μM concentrations. For each concentration of CHIR98014,
we calculated the growth rate of the cells in population doublings per
day (PD/day). In a dose-response curve, we plotted this growth rate as a
function of CHIR98014 concentration ( Fig. 4 D; right panel). In AsPC1 cells,
HIR98014 led a dose-dependent decrease in proliferation with a calculated 
C 50 value of 1.1 ± 0.2 μM, in agreement with the concentrations needed 

o reduce Ras proteins (Right panels of Fig. 4 C) as well as clonogenic growth
Fig. S1A). In HPAF/CD18 cells, proliferation was only minimally inhibited 
y CHIR98014 concentrations of 0.5 to 2 μM, but was completely blocked 
y the 5-10 μM doses ( Fig. 4 E). In HPAF/CD18 cells, the EC 50 value for
he inhibition of proliferation by CHIR98014 was 3.7 ± 0.3 μM (Fig. S3A). 
n the L3.6pl cells, the EC 50 was calculated to be 2.4 ± 0.5 μM (Fig. S3B).
n the Ras-independent BxPC3 cells expressing wild type Kras, proliferation 
as also inhibited by CHIR98014 in a dose-dependent manner ( Fig. 4 F). In
xPC3 cells, the EC 50 value for the inhibition of proliferation was equal to
.9 ± 0.5 μM (Fig. S3C). However, in the HPNE cells, which do not down-
egulate Ras proteins in response to CHIR98014 ( Fig. 4 A), there were no
nhibition of cell proliferation ( Fig. 4 G). These results show that in GSK3-
nhibited cells, there is a direct relationship between the declining levels of Ras
roteins and the inhibition of cell proliferation. They also show that these 

nhibitory effects are seen irrespective of the mutational status of KRAS or 
nduction of apoptosis. 

egulation of BxPC3 cell proliferation by the GSK3/LZTR1/Ras 
athway 

Our results suggest the existence of a novel GSK3/LZTR1/Ras pathway 
hat control the level of Ras proteins and proliferation of PC cells. To
nvestigate the regulation of cell proliferation by this pathway, BxPC3 cells 
rovide an ideal system to study proliferation without the confounding effects 
f ongoing apoptosis. We detect only minimal level of apoptosis in these 
ells after GSK3 inhibition ( Fig. 4 A). In a first experiment, BxPC3 cells were
ransfected with siRNA against both GSK3 α and GSK3 β (GSK3 siRNA) 
r else a non-targeting siRNA (NT siRNA). Plated cells were subsequently 
ounted once a day for four days (on day 0, 1, 2, and 3). Two days
ost-transfection, un-drugged samples were collected separately to assess the 
nockdown. The analysis showed an almost complete knockdown of the two 
SK3 isoforms and a reduced level of Ras proteins after transfection of the
SK3 α+ β siRNA ( Fig. 5 A; left panel). In the growth curves, cells transfected
ith the NT siRNA grew exponentially to reach high densities ( Fig. 5 A;
iddle and right panels). In contrast, those transfected with the GSK3 α+ β

iRNA did not significantly increase in numbers. Identical results were also 
bserved in HPAF/CD18 cells (Fig. S4A). Overall, these results show that, in 
C cells, the knockdown of GSK3 is sufficient to inhibit cell proliferation. 

To determine if the inhibition of proliferation could be recapitulated by 
he knockdown of KRAS alone, BxPC3 cells were transfected with a KRAS 
iRNA (KRAS siRNA) or with a non-targeting siRNA (NT siRNA). Western 
lot analysis performed 2 days post-transfection showed a reduced level of 
otal Ras proteins after transfection of the KRAS siRNA ( Fig. 5 B; left panel).
he reduction was of 57%, with the remaining Ras proteins likely represented
y the Hras and Nras proteins, which the antibody also recognizes. In growth
urves, BxPC3 cells transfected with the non-targeting siRNA grew much 
aster compared to those exposed to the KRAS siRNA ( Fig. 5 B; middle and
ight panels). Overall, these results show that reducing the level of wild type
ras protein is sufficient to inhibit the proliferation of BxPC3 cells. Identical 

esults were also observed in HPAF/CD18 cells (Fig. S4B). 
Next, we sought to determine if the effects of CHIR98014 on the 

roliferation of BxPC3 cells requires the LZTR1 protein. BxPC3 cells were 
ransfected with an LZTR1 siRNA (LZTR1 siRNA) or non-targeting siRNA 

NT siRNA). The next day, transfected cells were divided in two groups that
ere either cultivated in the presence of CHIR98014 (10 μM) or DMSO 

vehicle). On four successive days, cells were counted (day 0, 1, 2, and
). Western analysis performed two days post-transfection showed a 60% 

eduction in LZTR1 protein in cells transfected with the LZTR1 siRNA 

 Fig. 5 C; left panel). In growth curves, cells transfected with the LZTR1
iRNA grew slower than those transfected with the NT siRNA ( Fig. 5 C;
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Figure 4. GSK3 inhibition in a panel of PC cell lines: its effects on Ras protein levels, cell proliferation, and apoptosis. The different cell lines were cultivated 
in the presence or absence of CHIR98014 to determine its effects on cell proliferation. Three of the PC lines carried an oncogenic KRAS mutation (AsPC1, 
HPAF/CD18, and L3.6pl) but the fourth line was wild type for KRAS (BxPC3). HPNE cells were included as a normal control. (A) GSK3 inhibition reduces 
Ras protein levels and induces apoptosis in mutant KRAS -expressing PC cells. The indicated cell lines were cultivated in the presence of 10 μM CHIR98014 for 
three days, with combined floating/adherent cells harvested on each day for Western blotting analysis of the levels of Ras proteins and cleaved caspase 3 (Casp 
3), a markers of apoptosis. p, pro-caspase 3 precursor. ∗ Cleaved caspase 3 fragments. (B) GSK3 inhibition blocks the proliferation of PC cells, irrespective of 
the mutational status of KRAS . Indicated cell lines were plated at low density and allowed to grow for three days in either the presence or absence of 10 μM 

CHIR98014, after which cells were stained with crystal violet. C) Dose-dependent effects of CHIR98014 on apoptosis and Ras protein levels. In duplicates, 
AsPC1 were exposed to the indicated concentrations of CHIR98014. Two days later, cells were analyzed for changes in Ras protein levels (pan Ras), markers 
of apoptosis (cleaved caspase 3) and markers of GSK3 kinase inhibition (c-Myc protein accumulation). Graph to the right shows the relative amount of Ras 
proteins detected (Ras/GAPDH) for each concentration of CHIR98014 ( n = 2). Dotted line is a non-linear regression to a four parameter logistic curve. 
EC 50 value ± SEM for the loss of Ras proteins by CHIR98014 is shown. D) GSK3 inhibition blocks the proliferation of AsPC1 cells. In triplicates, cells were 
cultivated in the presence of different concentrations of CHIR98014 (0, 0.5, 1, 2, 5, and 10 μM). Every day for three days, cells were set aside to be fixed, 
stained, and counted under the microscope. The number of cells per field is shown as a function of days in culture (mean ± SD; n = 3). Stars: Significantly 
different from the control samples (0 μM) in a Student’s t-test at p < 0.05 ( ∗), p < 0.01 ( ∗∗), or p < 0.001 ( ∗∗∗). Graph on the right shows the growth rate 
of the cells (in PD/day) for each concentration of CHIR98014 ( n = 3). Dotted line is a non-linear regression to a four parameter logistic curve. EC 50 value 
± SEM for the inhibition of proliferation by CHIR98014 is shown. E-F) GSK3 inhibition block the proliferation of PC cells, irrespective of the mutational 
status of KRAS . In triplicates, HPAF/CD18 (E) and BxPC3 (F) cells were cultivated in the presence of different concentrations of CHIR98014 (0, 0.5, 1, 2, 
5, and 10 μM), as described in panel D. The number of cells per field is shown as a function of days in culture (mean ± SD; n = 3). G) GSK3 inhibition fails 
to block proliferation of HPNE cells. In triplicates, HPNE cells were cultivated in the presence of different concentrations of CHIR98014, as in panel D. The 
number of cells per field is shown as a function of days in culture (mean ± SD; n = 3; left panel). Graph on the right shows the growth rate (in PD/day) for 
each concentration of CHIR98014 ( n = 3). Dotted line is a linear least squares regression curve. 
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middle and right panels). However, cells transfected with the NT siRNA
were sensitive to the GSK3 inhibitor and did not proliferate in the presence
of 10 μM CHIR98014. In contrast, cells transfected by the LZTR1 siRNA
initially grew to reach a plateau and their proliferation was not affected by
CHIR98014 and grew equally fast in the presence or absence of the drug.
These results show that the expression of LZTR1 is required for the inhibition
of proliferation observed in BxPC3 cells after the inhibition of GSK3. 

GSK3 inhibitor reduces Ras proteins in implanted PC tumors and 
inhibits their growth 

We tested the effects of a GSK3 inhibitor on the level of Ras proteins
and the growth of implanted PC tumors. AsPC1 cells were subcutaneously
mplanted in ten athymic nude mice (10 6 cells per site). Two weeks later,
fter animals had developed palpable tumors, mice were randomized into
wo groups ( n = 5 per group) receiving half the maximum tolerated dose
f CHIR99021 (37.5 mg/kg twice/day by oral gavage; [47] ) or else vehicle.
HIR99021 is a CHIR98014 derivative with improved biodistribution and 
ioavailability [47] . Mice were treated 5 days/week for 16 days, after which
he animals were sacrificed. CHIR99021 was well-tolerated and did not affect
ouse body weights ( Fig. 6 A). Tumor volumes were measured with calipers

wice a week ( Fig. 6 B). During the course of experiment, tumors grew in all
f the vehicle-treated animals, albeit at very different rates for each tumor. In
ontrast, in the CHIR99021-treated animals, tumors did not substantially 
row in any of the animals. At 11 and 16 days, these differences between the
HIR99021-treated and vehicle-treated groups were statistically significant 
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Figure 5. Regulation of PC cell proliferation by GSK3, KRAS, and LZTR1. (A) The knockdown of GSK3 inhibits the proliferation of BxPC3 cells. In 
triplicates, cells were transfected with a non-targeting siRNA (NT siRNA) or siRNA against both GSK3 α and GSK3 β (GSK3 siRNA). Starting the next day 
(Day 0), transfected cells were counted once a day for four days (days 0, 1, 2, and 3). To assess the knockdown, separate samples harvested two days after 
transfection (day 1) were analyzed by Western blotting (left panel). The middle panel shows the average number of cells counted per field as a function of days 
in culture (middle panel; mean ± SD; n = 3). On the last day, transfected cells were fixed and stained with crystal violet. Representative images of counted 
fields are shown (right panel). (B) The knockdown of KRAS inhibits the proliferation of BxPC3 cells. In triplicates, cells were transfected with a non-targeting 
siRNA (NT siRNA) or with siRNA against the KRAS mRNA (KRAS siRNA). Effects on cell proliferation (middle, and right panels) and assessment of the 
knockdown (left panel) were done as described in A. (C) The knockdown of LZTR1 eliminates the effects of CHIR98014 on cell proliferation. In triplicates, 
BxPC3 cells were transfected with a non-targeting siRNA (NT siRNA) or with siRNA against LZTR1 (LZTR1 siRNA). The next day, transfected cells were 
given fresh medium containing CHIR98014 (10 μM) or DMSO (vehicle). Cells were counted once a day for four days (days 0, 1, 2, and 3). The middle 
panel shows the average number of cells per field as a function of days in culture (middle panel; mean ± SD; n = 3). On the last day, transfected cells were 
fixed and stained with crystal violet. Representative images of counted fields are shown (right panel). To assess the LZTR1 knockdown, separate un-drugged 
samples were collected two days post-transfection (day 1) and analyzed by Western blotting (left panel). 
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( p = 0.012, Mann-Whitney U test). In the CHIR99021-treated animals,
dermal ulcerations were also visible at the locations of the tumors ( Fig. 6 C;
arrows). At the end of the experiment, tumors were harvested and weighted
( Fig. 6 C). Tumor weights were significantly reduced in the CHIR99021-
treated group compared to the vehicle-treated animals ( p = 0.029, Student’s
t test). 

Harvested tumors were analyzed for differences in Ras protein levels, as
well as markers of apoptosis and cell proliferation. At the time they were
ollected, tumors were split in halves, with one half saved for IHC analysis
 Fig. 6 D-E) and the other set aside for Western blot ( Fig. 6 F). IHC using
he pan Ras antibody failed to label sufficient numbers of cells ( ≤ 1%) and
ould not be used to quantify Ras proteins. IHC analysis for markers of
poptosis and cell proliferation revealed a statistically significant increase in 
aspase 3 staining ( Fig. 6 D; p = 0.010) and a decrease in Ki-67 staining
 Fig. 6 E; p = 0.084) in the tumors of CHIR99021-treated animals compared
o those of the vehicle-treated animals. As an alternative approach to quantify 
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Figure 6. GSK3 inhibitor reduces Ras proteins in implanted PC tumors and inhibits their growth. AsPC1 cells were subcutaneously implanted in 10 athymic 
nude mice. Once animals developed palpable tumors, mice were randomized to two groups ( n = 5 per group) receiving CHIR99021 (37.5 mg/kg twice/day 
by oral gavage) or else vehicle (PBS). After 16 days of treatment, mice were euthanized and tumors were harvested for analysis. A) CHIR99021 treatment 
did not affect body weights. Mice were weighted every 3-4 days, with their weights plotted as a function of days of treatment. B) CHIR99021 inhibited 
the growth of subcutaneously-implanted PC tumors. The volume of each tumor was measured with calipers every 3-4 days and expressed as a fold-change 
relative to their corresponding volume at day 0. ∗ The difference between the two animals groups was statistically significant ( p = 0.012, Mann-Whitney U 

test). C) CHIR99021 reduced weights of subcutaneously-implanted PC tumors. At the end of the experiment, tumors were harvested and weighted. In the 
CHIR99021-treated animals, dermal ulcerations were visible at the location of tumors (Arrows). Bar graph shows the difference in tumor weight between the 
groups reported as the mean ± S.D. ( n = 5). ∗ The difference between the two animals groups was statistically significant ( p = 0.029, two-tailed Student’s t 
test). D-E) IHC analysis of tumor specimens for markers of apoptosis and cell proliferation. Formalin-fixed paraffin-embedded tumors samples were stained 
with antibodies against cleaved caspase 3 and Ki-67. Representative light microscopic images of cytoplasmic staining for cleaved caspase 3 (D) and of nuclear 
staining for Ki-67 (E) are shown for each animal group. Graph to the right shows the number of positive cells per high power field, either for the individual 
tumors (dots) or as the mean ± SEM (bar graph). In tumors of CHIR99021-treated animals, the staining for cleaved caspase 3 was statistically higher than 
in the vehicle-treated group ( p = 0.010, one-tailed Student’s t test). A decrease in Ki-67 staining was also noted in tumors of CHIR99021-treated animals, 
albeit not to a statistically significant level ( p = 0.084, one-tailed Student’s t test). F) CHIR99021 reduces the level of Ras proteins in the implanted tumors. 
Harvested tumors were pulverized in liquid nitrogen, lysed in Laemmli buffer, and analyzed by Western blot for differences in levels of Ras family proteins. Bar 
graph shows the difference in Ras/GAPDH ratio between the groups reported as the mean ± S.D. ( n = 5). ∗The difference between the two animals groups 
was statistically significant ( p = 0.046, one-tailed Student’s t test). 
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the levels of Ras proteins in tumor samples, Western blot analysis was
performed on extracts of tumors. Levels of Ras proteins varied greatly among
the vehicle-treated tumors, but levels were consistently lower in tumors of the
CHIR99021-treated mice ( Fig. 6 F; p = 0.046). These results show that the
level of Ras proteins and the growth of PC tumors can be reduced by the
administration of a GSK3 inhibitor. 

Discussion 

The LZTR1 protein uses its Kelch repeats (K1-K6) to interact with
members of the Ras family, including the Kras, Hras, and Nras proteins
[ 22 , 24 , 25 ]. LZTR1 can also associate with Cul3 to form an E3 ubiquitin
ligase (BCR 

LZTR1 ) that poly-ubiquitinates Ras proteins and targets them for
degradation [ 21 , 22 , 24 ]. But in spite of the potential importance of LZTR1
in Ras signaling, how these BCR 

LZTR1 complexes are regulated is still largely
unknown. In this article, we show evidence that the function of LZTR1
is regulated by the GSK3 kinases, GSK3 α and GSK3 β. In a panel of four
PC cell lines, levels of Ras proteins were markedly and consistently reduced
after the inhibition ( Figs. 1 A, 3 A, 3 C-D, 4 A, C) or the silencing of both
SK3 isoforms ( Figs. 2 A, 3 F, 5 A, S4A), as well as in PC cells treated with
ther structurally-unrelated GSK3 inhibitors, in particular SB216763 and 
ithium chloride (Fig. S5). The decline in Ras proteins was also observed
nder the physiological conditions of insulin stimulation ( Figs. 1 D, 3 E),
s well as in PC tumors of live animals treated with CHIR99021 ( Fig. 6 F).
ollow-up studies indicated that this regulation of Ras protein level by GSK3
as mediated by changes in the stability of Ras proteins. Knocking-down
oth isoforms of GSK3 led to a three-fold decrease in the half-life of Ras
amily proteins ( Fig. 2 C-E). Importantly, both the 26S proteasome ( Fig. 3 A)
nd LZTR1 protein ( Fig. 3 C-F) were required for the degradation of Ras
roteins induced by the inhibition/depletion of GSK3. In LZTR1-depleted
C cells, Ras protein level was no longer affected by the GSK3 inhibitor
 Fig. 3 C-D), insulin ( Fig. 3 E) or the knockdown of the GSK3 isoforms
 Fig. 3 F). Thus, the LZTR1 protein was determined to be critical for the
oss of Ras proteins induced by the inhibition or silencing of GSK3. 

In recent experiments, we investigated the regulation of LZTR1 function
y GSK3. Inhibiting GSK3 did not cause LZTR1 level to increase in
ither the AsPC1 (Fig. S6A) or HPAF/CD18 cells (Fig. S6B). LZTR1 can
hysically interact with Ras proteins using its Kelch repeats [ 22 , 24 , 25 ]. To
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n  
assess the impacts of GSK3 inhibition on the binding of Ras proteins to
LZTR1, we have used a co-immunoprecipitation assay. AsPC1 cells were
first treated with MG132 to block Ras protein degradation, after which
cells were exposed or not to CHIR98014. Sixteen hours later, extracts were
made and subjected to immunoprecipitation with an LZTR1 antibody. Ras
proteins were captured by the LZTR1 antibody, but not by the normal mouse
IgG control (Fig. S6C). Strikingly, an LZTR1/Ras interaction was detected,
but only in those cells treated with CHIR98014. These results suggest a
model according to which GSK3 inhibits LZTR1 in its ability to bind Ras
proteins. LZTR1 uses Kelch repeats to interact with Ras proteins [ 22 , 24-
26 ] and several GSK3 consensus phosphorylation sites are located in and
around these repeats (at T159, T266, T378, and S382). SDS-PAGE gels
containing PhosTag TM acrylamide can be used to separate proteins according
to the extent of their phosphorylation [56] . In recent experiments, we used
PhosTag TM gels to analyze the phosphorylation of LZTR1 after the silencing
of GSK3 (Fig. S6D). Unexpectedly, the silencing of GSK3 resulted in the
hyper-phosphorylation of LZTR1. These results suggest the involvement of
a second kinase, whose activity is directly or indirectly inhibited by GSK3.
Follow-up studies will be needed to identify the phosphorylation events
involved and the kinases and phosphatases responsible for their regulation.
Consensus phosphorylation sites for GSK3 are also present in the Kras protein
(at T35, T148), but changing these amino acids to alanine did not destabilize
the Kras protein (data not shown). 

One striking aspect of this regulation of Ras protein stability by GSK3
is its high requirement for the almost complete inhibition of GSK3. In
the cycloheximide chase assays ( Fig. 2 E), knocking-down a single GSK3
isoform had little effects on Ras protein stability, whereas the silencing of
both isoforms led to a 3-fold decrease in the half-life of these proteins.
Also, for each of the three GSK3 inhibitors we have used (CHIR98014,
SB216763, and lithium chloride), the concentrations needed to reduce Ras
proteins were always higher than those typically required to inhibit the bulk of
GSK3 activity ( Figs. 4 C, S5), as based on published EC 50 values [ 51 , 57 , 58 ].
CHIR98014 reportedly stimulates the activity of glycogen synthase with
an EC 50 of 0.1 μM [51] . Likewise, when we treated AsPC1 cells with 0.5
μM CHIR98014, cMyc levels were already maximally induced ( Fig. 4 C),
a telltale sign of GSK3 inhibition [59] . However, to reduce the level of
Ras proteins, higher concentrations of inhibitor were clearly needed, up
to 10 μM for complete Ras protein depletion ( Fig. 4 C). Are these higher
requirements a reflection of off-target effects? We do not think so, given that
the effects on Ras protein levels were also observed after the silencing of GSK3
( Figs. 2 , 3 F) and exposure of the cells to insulin ( Figs. 1 D, 3 E), which we know
inhibits GSK3 under physiological conditions. Instead, we are proposing
that the requirements for the higher doses of inhibitors are a reflection of
the biochemical properties of GSK3 itself or alternatively, of the specific
GSK3 substrate involved. GSK3 is often found in large complexes where
it interacts with other proteins, some of which carrying GSK3 β-interacting
domains [60–62] . In some cases, as in the β-catenin destruction complex, the
kinase itself is an integral part of the complex. If GSK3 is part of a complex
that regulates LZTR1, the kinase could control the function of this complex
in more than one way, using both protein-protein interactions and its own
kinase activity to block the activation of BCR 

LZTR1 complexes. Activating
LZTR1 could thus require, not only the inhibition of GSK3’s kinase activity,
but also the disruption of these protein-protein interactions. For disrupting
these interactions, the pharmacological inhibition of the kinase’s active center
with a drug, such as CHIR99014, may not be as efficacious as the knockdown
of GSK3 or its S9/S21-phosphorylation, which causes vast conformational
changes [ 63 , 64 ]. Another possibility could be that the GSK3 substrate
involved contains multiple GSK3 phosphorylation sites, which are acting
together to control the biochemical activity of the protein. In regulatory
proteins, multisite phosphorylation can produce switch-like transitions but
at higher thresholds and EC 50 values [65–68] . The LZTR1 protein itself
contains many putative GSK3 phosphorylation sites in and around its Kelch
omains (at T159, T266, T378, and S382) and would be a good candidate
or this type of regulation, if GSK3 happens to be directly involved. 

Two types of biological responses to GSK3 inhibition/depletion were 
bserved in cultivated PC cells. The first type of response was apoptosis, 
hich we detected using cleaved caspase 3 as a marker. Concomitantly 
ith the loss of Ras proteins, apoptosis was induced in the three PC cell

ines that carried an oncogenic KRAS mutation, but only minimally in the 
xPC3 cells expressing wild type Kras. This selectivity for the killing of 
ancer cell potentially addicted to oncogenic KRAS is reminiscent of the 
poptotic response to GSK3 inhibition previously described by Kazi et al. 
40] . As in Kazi et al., the apoptosis was induced as soon as the bulk of
SK3 was inhibited, such as when AsPC1 cells were exposed to 0.5 μM
HIR98014 ( Fig. 4 C). At this concentration, cMyc was already maximally 

nduced, presumably because of its reduced T58 phosphorylation by GSK3. 
n Kazi et al., this accumulation of cMyc was necessary and sufficient for the
nduction of apoptosis after GSK3 inhibition [40] . But in spite of its potential
alue for the selective killing of Ras-addicted cancer cells, this apoptotic 
esponse to GSK3 inhibition did not appear to have a strong impact on
he overall proliferation of the cells. When cultivated in the presence of 0.5
M CHIR98014, AsPC1 grew almost as fast as the untreated controls (1.05 

0.09 PD/day versus 1.21 ± 0.03 PD/day; n = 3) ( Fig. 4 D), in spite of
he already maximal induction of apoptosis by the drug ( Fig. 4 C). We thus
oncluded that the apoptotic response to GSK3 inhibition must therefore 
nly affect a small fraction of the cells, not enough to impede population
rowth. 

The second type of response to GSK3 deficiency was a reduction in 
ell proliferation and clonogenic growth, which we have observed at the 
igher concentrations of CHIR98014 (1-5 μM range). In AsPC1 cells, the 

nhibition of proliferation (EC 50 = 1.1 ± 0.2 μM; Fig 4 D) and clonogenic
rowth (EC 50 = 1.7 ± 0.2 μM; Fig. S1A) by CHIR98014 correlated with 
he declining levels of Ras proteins (EC 50 = 1.1 ± 0.3 μM; Fig. 4 C). This
nhibition of proliferation was seen in all four PC cell lines, irrespective of
he mutational status of KRAS or induction of apoptosis. In both wild type
nd mutant KRAS -expressing PC cells, a reduction in cell proliferation was 
lso observed after the knockdown of the two GSK3 isoforms ( Figs. 5 A,
4A) or KRAS itself ( Figs. 5 B, S4B). Moreover, in BxPC3 cells transfected
ith LZTR1 siRNA, the inhibition of proliferation by CHIR98014 was no 

onger observed and the cells grew as fast with or without 10 μM CHIR98014
 Fig. 5 C). These results show that the loss of proliferation observed in GSK3-
nhibited PC cells is a direct consequence of LZTR1 function and its impacts
n the level of Ras proteins. 

GSK3 plays an important role in PC development [33–36] and 
SK3 inhibitors have shown promises in animal models of PC and 

ther malignancies [ 35 , 38 , 39 , 69 ]. Several clinical trials of GSK3 inhibitor
–ING–41 are now underway in patients with advanced solid tumors 
NCT03678883, NCT04239092, NCT05010629, and NCT04832438). 
n Kazi et al. [40] , the GSK3 kinases were reported to be essential to the
iability of Ras-addicted cancer cells, but dispensable to Ras-independent 
ancer cells [40] . This selective targeting of Ras-addicted cells makes the 
SK3 kinases ideal targets for the treatment of Ras-driven malignancies, 

uch as PC. However, as suggested by our results, this apoptosis appears to
ffect only a small fraction of Ras-addicted PC cells, not enough to impact
opulation growth. Unless, new approaches are developed to maximize this 
poptotic response so as to affect the bulk of the tumor cells, the drugs
re unlikely to have an impact on patient survival. Instead, dose-limiting 
oxicities driven by the activation of LZTR1 could have an impact on normal
issues. The LZTR1 protein is expressed in many normal tissues, based on 
EO profiles, and the Ras proteins are critical regulators of many normal 
rocesses. Because LZTR1 interacts with many members of the Ras family 
 21 , 22 , 24 ], Ras signaling in normal tissues could be affected by a GSK3
nhibitor. On the other hand, in our mouse studies, the GSK3 inhibitor did
ot appear to have any obvious side effects ( Fig. 6 A), except for the inhibition
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of PC tumor growth ( Fig. 6 B-E). Future and ongoing human clinical trials
will be needed to determine if the benefit of these inhibitors for cancer therapy
outweighs their potential risks of toxicity to normal tissues. 
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