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Abstract

Sensory gating (SG) is a neurophysiological phenomenon whereby the response to the second 

stimulus in a repetitive pair is attenuated. This filtering of irrelevant or redundant information is 

thought to preserve neural resources for more behaviorally-relevant stimuli and thereby reflect the 

functional inhibition of sensory input. Developing a SG paradigm in which optimal suppression of 

sensory input is achieved requires investigators to consider numerous parameters such as stimulus 

intensity, time between stimulus pairs, and the inter-stimulus interval (ISI) within each pair. While 

these factors have been well defined for the interrogation of auditory gating, the precise 

parameters for eliciting optimal gating in the somatosensory domain are far less understood. To 

address this, we investigated the impact of varying the ISI within each identical pair of stimuli on 

gating using magnetoencephalography (MEG). Specifically, 25 healthy young adults underwent 

paired-pulse electrical stimulation of the median nerve with increasing ISIs between 100 and 1000 

ms (in 100 ms increments). Importantly, for correspondence with previous studies of 

somatosensory gating, both time-domain and oscillatory neural responses to somatosensory 

stimulation were evaluated. Our results indicated that gating of somatosensory input was optimal 

(i.e., best suppression) for trials with an ISI of 200–220 ms, as evidenced by the smallest gating 

ratios and through statistical modeling estimations of optimal suppression. Importantly, this was 

true irrespective of whether oscillatory or evoked neural activity was used to calculate SG. 

Interestingly, oscillatory metrics of gating calculated using peak gamma (30–75 Hz) power and 

frequency revealed more robust gating (i.e., smaller ratios) than those calculated using time-

domain neural responses, suggesting that high frequency oscillations may provide a more sensitive 
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measure of SG. These findings have important implications for the development of optimal 

protocols and analysis pipelines to interrogate SG and inhibitory processing with a higher degree 

of sensitivity and accuracy.
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1. Introduction

Sensory gating (SG) is a neurophysiological phenomenon whereby the response to the 

second stimulus in an identical pair is attenuated. This weakened response to stimuli 

presented in rapid succession is thought to reflect the brain’s capacity to filter irrelevant 

information to preserve neural resources for more behaviorally relevant stimuli (Adler et al., 

1982, 1998; Cromwell et al., 2008; Nagamoto et al., 1989, 1991; Venables, 1964). SG has 

been examined in many clinical populations and across multiple sensory modalities (e.g., 

auditory and somatosensory) and broadly is known to be aberrant in aging, as well as many 

psychiatric and neurological conditions (e.g., schizophrenia, bipolar disorder, cerebral palsy, 

neuroHIV (Brinkman and Stauder, 2007; Cheng et al., 2015a; Cheng et al., 2016a; Cheng et 

al., 2015b; Cheng and Lin, 2013; Kisley et al., 2003; Kurz et al., 2017; Light and Braff, 

1999; Spooner et al., 2018; Spooner et al., 2019; Thoma et al., 2017)). Historically, SG 

paradigms have used a paired-stimulus presentation design, whereby pairs of auditory tones 

or electrical stimulations are administered in close temporal proximity to evaluate gating in 

the auditory or somatosensory domain, respectively. Such gating is generally quantified as a 

ratio or difference score between the response pairs. For example, a higher gating ratio 

(response to stimulation 2/response to stimulation 1) is indicative of worse suppression of 

redundant information, while a higher gating difference score (response to stimulation 1 - 

response to stimulation 2) reflects better gating. The ratio approach is the most common as it 

is less affected by individual differences in response amplitude across both stimulations. 

Importantly, regardless of the tested modality or clinical population, aberrations in SG are 

thought to reflect alterations in functional inhibitory processing (Cheng et al., 2016b; 

Cromwell et al., 2008; Gao et al., 2013; Spooner et al., 2018, 2019), making the application 

of such protocols in human neurophysiology extremely desirable.

While the overall paired-pulse design of SG experiments has been in place for decades, there 

are a host of other experimental parameters that must be considered during task design, such 

as stimulus intensity, time between the individual stimuli, and time between the pairs. For 

example, it is exceedingly common for SG protocols to present the identical stimuli in rapid 

succession separated by a fixed, relatively short inter-stimulus interval (e.g., 500 ms), while 

the pairs of identical stimuli are separated by larger temporal windows (e.g., 5000 ms) that 

can be randomly jittered to eliminate anticipatory responses (Cheng et al., 2016b; Kurz et 

al., 2017; Spooner et al., 2019; Wiesman et al., 2017). These pairs of stimuli are always 

presented at identical intensities within the same person, to ease the interpretation of any 

experimental effects, and these intensities are often determined by individual-specific 
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thresholds. Importantly, the experimental parameters that best elicit the SG response have 

received considerable attention. In the auditory domain, there are numerous reports of 

optimal inter-stimulus and inter-pair intervals for eliciting robust gating responses. Rentzsch 

et al. (2008) tested the effect of inter-pair interval (IPI; i.e., time between trials) on auditory 

gating of the P50 response and found that, regardless of whether the time between stimulus 

pairs was long (i.e., 8 s) or short (i.e., 2.8 s), gating and response amplitudes were equivalent 

across all participants and both protocols (Rentzsch et al., 2008). Further, the effect of inter-

stimulus interval (ISI), or the time between identical stimuli in a trial, has been extensively 

studied in the context of auditory gating. For example, Adler et al. (1982) demonstrated very 

strong SG in controls using a 500 ms ISI, with reduced SG at longer ISIs ranging from 1000 

to 2000 ms; of note, SG was reduced at all ISIs in patients with schizophrenia (Adler et al., 

1982). Other studies evaluating the effect of ISI on auditory gating have largely replicated 

Adler et al.’s findings, showing that SG is strongest when stimuli are presented 500 ms 

apart, slightly reduced for stimuli greater than 1000 ms apart, and undetectable for stimuli 

closer than ~50–150 ms from one another (Adler et al., 1998; Nagamoto et al., 1989, 1991). 

Surprisingly, while these experimental parameters have been well studied and optimized in 

the context of auditory gating, they have not been widely tested in the context of 

somatosensory gating, despite their frequent direct extension to this modality.

The most common method for characterizing changes in SG in human neurophysiology is 

through analysis of auditory and somatosensory event-related potentials (ERP). This 

includes analysis of time-domain neural responses to the first and second stimulus in the pair 

to derive metrics of basic sensory processing (e.g., response amplitude and latency) and 

gating. However, several recent studies of SG have employed advanced oscillatory analysis 

methods and found rich, multi-spectral recruitment of neural populations following the 

paired stimuli. For example, in the context of the somatosensory system, recent studies have 

shown that electrical stimulation of the median nerve elicits robust oscillatory activity up to 

90 Hz (e.g., 20–90 Hz; (Cheng et al., 2016b; Spooner et al., 2018; Spooner et al., 2019; 

Wiesman et al., 2017). These high-frequency or gamma oscillations (>30 Hz) are critical to 

the basic processing of fine stimulus features across modalities and may ultimately provide 

mechanistic insight into intracortical inhibitory processing. Essentially, gamma oscillatory 

activity has been shown to critically rely on GABA-ergic inhibitory architecture and 

functionality, and thus alterations in high-frequency oscillatory gating may be a more direct 

link to intracortical inhibition (Bartos et al., 2007; Buzsáki and Wang, 2012; Fries, 2009, 

2015; Fries et al., 2007; Salkoff et al., 2015; Singer, 1999; Uhlhaas and Singer, 2012; Vinck 

et al., 2013), making neural oscillations an attractive avenue for probing SG deficits in the 

context of clinical populations.

In the current study, we utilized magnetoencephalography (MEG) and a paired-pulse 

electrical stimulation paradigm to investigate how an essential SG task parameter (i.e., ISI) 

affects somatosensory gating metrics and inhibitory processing in 25 healthy young adults. 

Specifically, we tested the impact of ISIs ranging from 100 to 1000 ms, in 100 ms 

increments, using advanced oscillatory and time-domain analysis methods and curve 

estimation to derive optimal gating at the millisecond timescale. Our primary hypotheses 

were that (1) shorter ISIs would lead to better suppression of redundant somatosensory input 

Spooner et al. Page 3

Neuroimage. Author manuscript; available in PMC 2020 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and (2) oscillatory and time-domain analysis approaches would suggest different ISIs for 

optimal gating.

2. Methods

2.1. Participants

Twenty-five healthy young adults (12 females, Mage = 25.34 years, range 21–32 years old) 

participated in this study. All participants were right-handed. Exclusionary criteria were 

assessed via self-report and included any medical illness affecting the CNS (e.g., HIV/

AIDS), neurological or psychiatric disorder, history of head trauma, current substance abuse, 

and the MEG Laboratory’s standard exclusion criteria (e.g., ferromagnetic implants). After a 

full description of the study was given to participants, written informed consent was 

obtained following the guidelines of the University of Nebraska Medical Center’s 

Institutional Review Board, which approved the study protocol.

2.2. Experimental paradigm

Participants were seated in a nonmagnetic chair with their head positioned within the MEG 

helmet-shaped sensor array. Electrical stimulation was applied to the left median nerve using 

external cutaneous stimulators connected to a Digitimer DS7A constant-current stimulator 

system (Digitimer Ltd, Garden City, UK). For each participant, we collected 500 paired-

pulse trials (i.e., 50 trials of each condition) with an ISI that varied from 100 to 1000 ms in 

100 ms increments for a total of 10 conditions, and an inter-pair interval that randomly 

varied between 2700 and 3000 ms across all 10 conditions. Each pulse consisted of a 0.2 ms 

constant-current square wave that was set to a limit of 10% above the motor threshold that 

was required to elicit a subtle twitch of the thumb. The amplitude of the pulse was held 

constant across the 10 conditions in each participant.

2.3. MEG data acquisition

All recordings were performed in a one-layer magnetically shielded room with active 

shielding engaged for environmental noise compensation. With an acquisition bandwidth of 

0.1–330 Hz, neuromagnetic responses were sampled continuously at 1 kHz using an Elekta/

MEGIN MEG system (Elekta, Helsinki, Finland) with 306 magnetic sensors, including 204 

planar gradiometers and 102 magnetometers. Throughout data acquisition, participants were 

monitored using a real-time audio-video feed from inside the magnetically shielded room. 

MEG data from each participant were individually corrected for head motion and subjected 

to noise reduction using the signal-space separation method with a temporal extension 

(tSSS; (Taulu and Simola, 2006; Taulu et al., 2005)).

2.4. Structural MRI processing and MEG coregistration

Prior to MEG measurement, four coils were attached to the participant’s head and the 

locations of these coils, together with the three fiducial points and scalp surface, were 

determined with a 3-D digitizer (Fastrak 3SF0002, Polhemus Navigator Sciences, 

Colchester, VT, USA). Once the participant was positioned for MEG recording, an electric 

current with a unique frequency label (e.g., 322 Hz) was fed to each of the coils. This 

induced a measurable magnetic field and allowed each coil to be localized in reference to the 
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sensors throughout the recording session. Since coil locations were also known in head 

coordinates, all MEG measurements could be transformed into a common coordinate 

system. With this coordinate system (including the scalp surface points), each participant’s 

MEG data were coregistered with T1-weighted structural magnetic resonance images 

(sMRI) prior to source space analyses using BESA MRI (Version 2.0; BESA GmbH, 

Gräfelfing, Germany). All sMRI data were acquired with a Philips Achieva 3T X-series 

scanner using an 8-channel head coil (TR: 8.09 ms; TE: 3.7 ms; field of view: 240 mm; slice 

thickness: 1 mm; no gap; in-plane resolution: 1.0 × 1.0 mm). All sMRI data were aligned 

parallel to the anterior and posterior commissures and transformed into standardized space, 

along with the functional data, after beamforming (see below).

2.5. MEG preprocessing, time-frequency transformation, and sensor-level statistics

Cardiac and ocular artifacts were removed from the data using signal-space projection (SSP) 

and the projection operator was accounted for during source reconstruction (Uusitalo and 

Ilmoniemi, 1997). Epochs were of 2700 ms duration, with 0 ms defined as the onset of the 

first stimulation and the baseline being the −700 to −300 ms window. Of note, we shifted our 

baseline away from the period immediately preceding stimulus onset to avoid potential 

contamination by any anticipatory responses, although there was no evidence of such 

anticipatory responses in our final analyses. Epochs containing artifacts were rejected based 

on a fixed threshold method, supplemented with visual inspection. On average, 45.8 trials 

per participant and condition remained after artifact rejection (i.e., 46.3 for 100 ms ISI, 46.0 

for 200 ms ISI, 45.7 for 300 ms ISI, 45.4 for 400 ms ISI, 46.7 for 500 ms ISI, 45.8 for 600 

ms ISI, 45.0 for 700 ms ISI, 46.1 for 800 ms ISI, 45.4 for 900 ms ISI, and 46.2 for 1000 ms 

ISI). Importantly, the number of trials used for final analyses did not significantly differ 

between conditions (F(9,207) = 1.67, p = .13).

Artifact-free epochs were further processed following two parallel pipelines. For the time 

domain (i.e., evoked) analyses, all epochs per condition and participant were averaged with 

respect to stimulus onset for each sensor in the array and normalized using the baseline. For 

the oscillatory analyses, all epochs were transformed into the time-frequency domain using 

complex demodulation (Kovach and Gander, 2016), and the resulting spectral power 

estimations per sensor were averaged over trials to generate time-frequency plots of mean 

spectral density. These sensor-level data were normalized using the respective bin’s baseline 

power, which was calculated as the mean power during the −700 to −300 ms time period.

For the oscillatory analyses, the specific time-frequency windows used for source 

reconstruction were determined by statistical analysis of the sensor-level spectrograms 

across all participants’ trials, task conditions, and gradiometers. Each data point in the 

spectrogram was initially evaluated using a mass univariate approach based on the general 

linear model. To reduce the risk of false positive results while maintaining reasonable 

sensitivity, a two-stage procedure was followed to control for Type 1 error. In the first stage, 

paired sample t-tests against baseline were conducted on each data point and the output 

spectrogram of t-values was thresholded at p < 0.05 to define time-frequency bins containing 

potentially significant oscillatory deviations across all participants. In stage two, time-

frequency bins that survived the threshold were clustered with temporally and/or spectrally 
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neighboring bins that were also significant, and a cluster value was derived by summing all 

of the t-values of all data points in the cluster. Nonparametric permutation testing was then 

used to derive a distribution of cluster values and the significance level of the observed 

clusters (from stage 1) were tested directly using this distribution (Ernst, 2004; Maris and 

Oostenveld, 2007). For each comparison, 10,000 permutations were computed to build a 

distribution of cluster values. Based on these analyses, the time-frequency windows that 

contained significant oscillatory events across all participants were subjected to the 

beamforming analysis.

2.6. MEG source imaging

Cortical oscillatory networks were imaged through the dynamic imaging of coherent sources 

(DICS) beamformer (Gross et al., 2001), which uses the cross-spectral density matrices to 

calculate source power for the entire brain volume. These images are typically referred to as 

pseudo-t maps, with units (pseudo-t) that reflect noise-normalized power differences (i.e., 

active vs. passive) per voxel. Following convention, we computed noise-normalized, source 

power per voxel in each participant using baseline periods of equal duration and bandwidth 

(Hillebrand et al., 2005). MEG preprocessing and imaging used the Brain Electrical Source 

Analysis (Version 7.0; BESA) software. Further details of our analysis pipeline can be found 

in Wiesman and Wilson (2020).

Normalized source power was computed over the entire brain volume per participant at 4.0 × 

4.0 × 4.0 mm resolution for the time-frequency periods identified through the sensor level 

analyses. Prior to statistical analysis, each participant’s MEG data, which were coregistered 

to native space structural MRI prior to beamforming, were transformed into standardized 

space using the transform previously applied to the structural MRI volume and spatially 

resampled. The resulting 3D maps of brain activity were averaged across all participants, 

both stimulations and task conditions (i.e., ISI) to assess the neuroanatomical basis of the 

significant oscillatory responses identified through the sensor-level analysis, and to allow 

identification of the peak voxels per oscillatory response.

Voxel time series data (i.e., “virtual sensors”) were extracted from each participant’s data 

individually per condition using the peak voxel from the grand-averaged beamformer 

images. To compute the virtual sensors, we applied the sensor weighting matrix derived 

through the forward computation to the preprocessed signal vector, which yielded a time 

series for the specific coordinate in source space. Note that virtual sensor extraction was 

done per participant, once the coordinates of interest were known. Once the virtual sensor 

time series were extracted, we computed the envelope of the spectral power within the 

frequency range used in the beamforming analysis. From this time series, we computed the 

relative (i.e., baseline-corrected) response time series of each participant per task condition.

In regard to the time domain analyses, source images were computed using standardized 

low-resolution brain electromagnetic tomography (sLORETA; regularization: Tikhonov 

0.01%; (Pascual-Marqui, 2002)). The resulting whole-brain maps were 4-dimensional 

estimates of current density per voxel, per time sample across the experimental epoch. These 

data were normalized to the sum of the noise covariance and theoretical signal covariance, 

and thus the units are arbitrary. Using the temporal clusters identified in the sensor-level 
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analysis, these maps were averaged over time following each somatosensory stimulation 

(e.g., 0–50 ms and 500–550 ms for the 500 ms ISI condition) for all ISI conditions. The 

resulting maps were then grand-averaged across the two stimulations to determine the peak 

voxel of the time-domain neural response to the stimuli across participants. From this peak, 

sLORETA units were extracted per stimulation and ISI condition to derive estimates of the 

time-domain response for each participant.

2.7. Statistical analysis

To examine the effect of ISI on gating metrics (e.g., amplitude and frequency) across 

participants, we conducted polynomial regression analyses to find a model estimate of the 

best somatosensory gating (i.e., smallest numerical ratios). Briefly, a linear, quadratic and 

cubic term of ISI was entered into the model and change in R2 was assessed for model fit of 

increasing ISI on somatosensory neural indices. These indices included the oscillatory 

sensory gating ratio (relative response power to stimulus 2/relative response power to 

stimulus 1), peak oscillatory frequency in response to stimulation, and the gating ratio in the 

time domain. Further, model estimates demonstrating significantly better fit to our data were 

then used to derive the ISI necessary to elicit optimal gating at the millisecond timescale. 

Finally, to compare the sensitivity of these oscillatory and evoked gating metrics, paired 

sample t-tests were conducted between these measures for neighboring ISIs.

3. Results

3.1. Sensor-level time-frequency analyses

Robust increases in response to electrical stimulation of the left median nerve were found in 

many sensors near the sensorimotor and parietal regions from about 10 to 90 Hz following 

the first and second stimulation (p < .001, corrected; Fig. 1). To evaluate the oscillatory 

dynamics in the gamma range, we focused our beamformer analyses on the higher 30–75 Hz 

frequency range and the 50 ms time interval immediately following each electrical 

stimulation (e.g., 0–50 ms and 500–550 ms for the 500 ms ISI condition), as the neural 

responses were strongest during this period. Note that we limited our analyses to 75 Hz on 

the high end because relative power sharply decreased thereafter, especially following the 

second stimulus.

3.2. Source-level analyses

Beamformer images revealed peak gamma activity in the contralateral primary 

somatosensory cortex, with virtually identical peak locations in response to the first and 

second stimulation for all ISIs (Fig. 1). As described in the methods, these images were 

grand-averaged across all participants, ISIs, and both stimulations, and virtual sensor data 

were extracted from the peak voxel. The resulting baseline-corrected (i.e., relative) power 

envelope for the 30–75 Hz band was used in the subsequent statistical analyses.

3.3. Oscillatory profiles of somatosensory gating depend on ISI

To investigate how the ISI duration (i.e., time between stimulations within a trial) impacted 

sensory gating, a polynomial regression of ISI on the somatosensory gating ratio was 

conducted and curve estimation was used to derive the ISI for which optimal gating may be 
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achieved based on our data. Of note, higher gating ratios are indicative of worse suppression 

of redundant somatosensory input (i.e., reduced gating). First, pairwise t-tests between 

stimulation response power revealed that the response to the second stimulation was 

significantly reduced compared to the first for each ISI, revealing significant gating across 

all ISI conditions (i.e., 100–1000 ms ISI; ps < .05). Interestingly, optimal gating was seen 

during trials where the ISI between electrical stimulations was 200 ms, as evidenced by the 

overall smallest numerical ratios (i.e., better suppression, Fig. 2). In addition, polynomial 

regression of linear, quadratic and cubic terms of ISI on somatosensory gating in the gamma 

band were conducted to assess model fit. These analyses revealed that the cubic model of ISI 

on oscillatory gating ratios yielded significantly better model fit than linear or quadratic 

terms, as evidenced by a significant change in R2 (F(3,9) = 128.89, p < .001; ΔR2 = .09, p 
= .001) when the cubic term was entered into the model. Further, using the cubic model 

equation derived from our regression analysis, we estimated the local minima of the curve, 

which is indicative of the best suppression of somatosensory input. This analysis suggested 

that an ISI of 220 ms would elicit optimal gating ratios (i.e., better suppression), which 

corresponds well with the overall smallest ratios evident in the 200 ms ISI condition (Fig. 2). 

Importantly, to ensure that our gating ratio differences as a function of varying ISIs were not 

due to changes in response power to the first stimulation in the identical pair, we conducted 

pairwise analyses between neighboring ISI conditions (e.g., 100 vs. 200 ms, 200 vs. 300 

ms). This indicated no significant differences in oscillatory response power to the first 

stimulation between any neighboring ISI conditions, suggesting that our changes in gating 

were not attributable to differences in the neural response to the first stimulation (ps > .153).

Given recent data suggesting that the peak frequency is a key parameter of oscillatory 

responses, especially in the gamma range, paired sample t-tests between response frequency 

for each ISI were conducted to evaluate the impact of ISI on the spectral information 

comprising somatosensory gating. This analysis revealed significant elevations in the peak 

gamma frequency for the second stimulation in the pair compared to the first for trials with 

an ISI of 200, 300 and 400 ms (ps < .003; Fig. 2).

3.4. Somatosensory gating in the time domain

To facilitate comparison with previous studies of evoked somatosensory processing, we 

computed time-domain sLORETA source images to derive phase-locked response estimates 

for each participant. Time series data were then extracted in each participant from the grand-

averaged peak voxel of the sLORETA source images to derive the somatosensory gating 

ratio. Similar to our oscillatory analysis, time-domain response amplitudes were 

significantly weaker in response to the second stimulation compared to the first in all ISI 

conditions (ps < .041). Interestingly, gating ratios were the smallest (i.e., best suppression of 

redundant information) in trials with an ISI of 200 ms. For correspondence with our analysis 

of the oscillatory sensory gating, a polynomial regression of linear, quadratic and cubic 

terms of ISI on time-domain somatosensory gating ratios was conducted to assess model fit. 

These analyses revealed no significant improvement in model fit (i.e., change in R2) with 

subsequent addition of polynomial terms, suggesting that neither linear, quadratic nor cubic 

models were significantly better at estimating our data (ΔR2 = .002, ps > .841). Thus, 

optimal gating in the time-domain was restricted to the overall smallest ratios as seen in the 
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200 ms ISI condition, while gating during trials with ISIs of 300 ms and above abruptly 

flattened and changed only slightly with increasing ISI (Fig. 3). Finally, similar to our 

analysis of oscillatory power, we conducted pairwise t-tests to evaluate whether varying ISI 

modulated the response power to the first stimulation in an identical pair. Importantly, we 

observed no significant changes in sLORETA source power to the first stimulation between 

neighboring ISI conditions (ps > .127), suggesting that our changes in sensory gating as a 

function of ISI were not confounded by changes in the response power to the first 

stimulation.

3.5. Sensitivity of time and spectral components for detecting optimal gating

Finally, to evaluate the sensitivity of our analysis pipelines (i.e., oscillatory versus evoked) 

for detecting gating, we conducted paired t-tests between the gating ratios derived from our 

analyses of oscillatory gamma power and sLORETA time-domain responses. Interestingly, 

these analyses revealed more robust gating (i.e., smaller ratios) of oscillatory compared to 

time-domain responses for trials with an ISI ranging from 100 to 600 ms (all ps < .003, Fig. 

4). This suggests that the spectro-temporal profile of high frequency gamma oscillations 

may be a more sensitive index of somatosensory gating (i.e., elicits more robust gating) 

compared to time-domain approaches alone.

4. Discussion

The goal of the current study was to evaluate the impact of different ISIs on the gating of 

somatosensory responses using two established signal processing pipelines. Specifically, we 

used a paired-pulse electrical stimulation paradigm and MEG to derive metrics of gating in 

the time-and oscillatory domains using advanced source imaging techniques. These evoked 

and oscillatory responses were used to calculate gating ratios, which indicated significant 

sensory gating across all participants at each ISI. Across both oscillatory and time domain 

analyses, our results indicated that gating of somatosensory input was optimal when 

identical stimuli were presented 200 ms apart. Further, these results were validated through 

cubic fit curve estimations derived from regression analyses, which estimated that optimal 

oscillatory gating ratios would be elicited at an ISI of 220 ms, corresponding well with the 

current data. Interestingly, our gating curves as a function of ISI indicated that oscillatory 

activity was more robustly gated compared to evoked activity, suggesting that high 

frequency oscillations (>30 Hz) may be a more sensitive measure of sensory gating. 

Importantly, this study is the first to directly test for optimal SG task parameters in the 

somatosensory system, which may ultimately aid in experimental design and functional 

interpretations. The implications for these novel findings are discussed below.

In line with the most recent studies of somatosensory gating, we evaluated the effect of ISI 

on the dynamics of high-frequency gamma (>30 Hz) oscillations in response to the first and 

second stimulation (Cheng et al., 2016b; Kurz et al., 2017; Spooner et al., 2018, 2019; 

Wiesman et al., 2017). Critically, we found that the gating of somatosensory input was 

optimal (i.e., smaller gating ratios) when stimulations were presented 200 ms apart from one 

another, irrespective of whether this ratio was calculated using peak oscillatory power or 

peak frequency. Interestingly, gating ratios calculated using peak oscillatory power were 
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found to follow a significant cubic trend, such that ratios during trials with ISIs greater than 

300 ms were significantly higher and would eventually plateau around 700 ms, compared to 

the local minima seen at an ISI of 200 ms. Further, this cubic model fit was used to estimate 

the best suppression of somatosensory information on the millisecond timescale. 

Specifically, the model derived from our data suggested that 220 ms is the ISI necessary for 

eliciting optimal gating of high frequency oscillatory power, which corresponded well to the 

overall smallest ratios seen in the 200 ms ISI condition. Notably, these results align well 

with our hypothesis that shorter intervals would result in better suppression of redundant 

information compared to longer ones, with the exception of the 100 ms ISI condition where 

gating ratios were generally higher (i.e., worse suppression) compared to stimulations 

separated by 200 ms. This finding was not totally surprising, as previous studies evaluating 

even shorter temporal windows separating identical auditory stimuli (e.g., ~50–100 ms) 

found either a complete lack of gating or, alternatively, no discernable deficits in gating 

among patients with psychiatric disorders that had previously been linked to gating 

aberrations (Nagamoto et al., 1989, 1991). Thus, from an experimental design standpoint, 

our findings suggest that paired-pulse somatosensory stimulation paradigms using an ISI of 

200 ms are likely to see the strongest gating, and that ISIs greater than ~400–600 ms may 

not yield optimal gating.

In regard to peak oscillatory frequency, we observed similar findings, such that significant 

elevations in peak gamma frequency to the second stimulus in a redundant pair were seen for 

ISIs ranging from 200 to 400 ms. These results were not surprising, as our previous study 

evaluating somatosensory gating in the context of HIV infection revealed that peak gamma 

frequency was significantly elevated in response to the second stimulation compared to the 

first across all participants and further, this elevation was accentuated in HIV-infected adults, 

despite relatively equivalent gating ratios across groups (Spooner et al., 2018). The current 

findings, and those observed in our previous study, may suggest that elevation of peak 

oscillatory frequency in response to the second stimulation may serve as a mechanism to 

attenuate oscillatory power to the second stimulation (given the inverse relationship between 

oscillatory power and frequency), thereby contributing to effective gating in the 

somatosensory cortex and, potentially, serving as a compensatory mechanism for clinical 

populations exhibiting alterations in sensory processing. Thus, it is not surprising that we 

observed this change in peak gamma frequency for ISIs ranging from 200 to 400 ms, as this 

aligns well with ISIs exhibiting optimal gating of oscillatory power (i.e., better suppression) 

in the same participants. However, these interpretations are speculative and further studies 

are necessary to disentangle these relationships.

Sensory gating is the “filtering” of repetitive, peripheral information, and this preservation of 

neural resources is ubiquitous across sensory systems. Our focus on high-frequency gamma 

activity was based on numerous prior studies of somatosensory gating from our laboratory 

and others (Cheng et al., 2016b; Kurz et al., 2017; Spooner et al., 2018, 2019, in press; 

Wiesman et al., 2017), as well as the extensive literature linking GABAergic inhibitory 

function and gamma oscillatory activity. Many previous electrophysiological studies have 

provided direct evidence that GABAergic inhibitory drive modulates local pyramidal 

synchrony, and that this modulation is reflected in higher frequency (>30 Hz) oscillatory 

activity (Bartos et al., 2007; Buzsáki and Wang, 2012; Fries, 2009, 2015; Fries et al., 2007; 
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Salkoff et al., 2015; Singer, 1999; Uhlhaas et al., 2009; Uhlhaas and Singer, 2012; Vinck et 

al., 2013). This relationship has also extended to recent human studies. For example, using 

GABA magnetic resonance spectroscopy (MRS), Muthukumaraswamy and colleagues 

showed a positive association among peak gamma frequency in the visual cortex during 

visual grating presentation and total resting GABA concentration in the same region 

(Muthukumaraswamy et al., 2009). A later study replicated this finding and, in addition, 

showed that both increased GABA concentration and elevated peak gamma frequency in the 

primary visual cortex were predictive of better visual orientation discrimination (Edden et 

al., 2009). Similar studies of gamma oscillatory activity and GABA concentrations have 

been conducted in the motor system and these also replicated the established gamma-GABA 

link described in the visual cortex of humans (Gaetz et al., 2011), and in some cases have 

extended this relationship to other spectral components of movement (Hall et al., 2011; 

Muthukumaraswamy et al., 2013). However, of note, not all studies have replicated this 

gamma-GABA relationship in sensory systems (Cheng et al., 2017; Cousijn et al., 2014). 

For example, a recent study by Cheng and colleagues evaluated the relationship between 

GABA concentration in the sensorimotor cortex and somatosensory gating ratios. They 

observed no significant association among the two variables, suggesting that at least some 

measures of sensory gating are not related to changes in GABA concentration (Cheng et al., 

2017). However, importantly, this study used the P35 time-domain response to compute 

gating ratios and the degree to which this response reflects gamma-frequency activity is 

unclear. Thus, while this study did not observe a significant relationship among GABA and 

time-domain gating responses, it is unclear how informative this negative finding is in regard 

to the linkage among GABA levels and oscillatory gamma-based metrics of SG. Despite 

these discrepancies, the majority of relevant cellular and cortical neurophysiological studies 

have provided a mechanistic link between GABA levels and gamma oscillatory activity 

throughout the cortex and, while our study did not directly measure levels of GABA, our 

findings of altered SG as a function of important task parameters may be due to sub-second 

changes in local intracortical inhibition. Thus, future studies of sensory gating in the gamma 

range and GABAergic inhibition will be paramount to further the field’s understanding of 

the role of local inhibition in somatosensory gating.

For comparison with previous studies of SG, an analysis of evoked neural activity in 

response to various ISIs was conducted, and the results were incredibly informative. 

Essentially, similar to the oscillatory data, we found that gating was optimal (i.e., smaller 

ratios) for trials where stimulations were separated by 200 ms compared to longer (300–

1000 ms) temporal windows. This finding is especially important as it indicates that 

regardless of the analysis pipeline implemented in a particular study, a 200 ms ISI is likely 

to generate the strongest gating effects and thus be the parameter of choice. Interestingly, a 

previous study evaluating the impact of varying ISI on BOLD and MEG neural responses to 

somatosensory stimulation showed robust gating of the P35 time-domain component with an 

ISI of 500 ms, but not with ISIs of shorter (e.g., 250 ms) or longer (e.g., 750–2000 ms) 

intervals (Stevenson et al., 2012). However, comparing these findings to the current data is 

difficult, as there were no empirical comparisons between neighboring ISI conditions in the 

previous study to evaluate whether the gating at 500 ms was in fact “optimal” (i.e., elicited 

best suppression) above and beyond other tested ISI conditions. Further, shorter ISIs of 250 
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ms employed in the previous study yielded qualitatively similar gating ratios to the 500 ms 

ISI condition, albeit with larger variability than other conditions, suggesting that gating of 

evoked neural responses could also be effectively elicited at ISIs less than 500 ms, which 

would align well with the current findings. One possible explanation for the lack of 

significant gating at the other ISIs could be the rather small sample size used in the earlier 

study (i.e., eight participants (Stevenson et al., 2012)). Nevertheless, the current study 

empirically determined that the degree of gating of evoked neural activity was relatively 

similar for trials with ISIs greater than 200 ms, and this was especially true for trials with 

ISIs from 300 to 700 ms, as neither linear, quadratic nor cubic model estimates produced 

adequate model fit of increasing ISI on time-domain gating ratios. Finally, our analysis of 

gating across signal processing methods revealed more robust gating (i.e., better 

suppression) to the different ISIs for gating ratios based on gamma oscillations compared to 

those derived from time-domain analyses, which may suggest that measures of gamma 

activity provide a more sensitive (i.e., dynamic range of gating) index of inhibitory 

processing in the somatosensory cortex. Beyond increased sensitivity to task parameters, 

some studies have found that gating based on oscillatory indices is also more sensitive to 

participant characteristics. For example, in a previous study of healthy aging, our laboratory 

observed significantly decreased somatosensory gating, based on gamma oscillatory activity, 

with increasing age (Spooner et al., 2019). While our results were consistent with previous 

studies of SG and aging using time-domain approaches (Cheng and Lin, 2013; Lenz et al., 

2012), in our study the effect sizes for the time-domain analysis were smaller than the 

oscillatory and consequently the aging effect did not reach significance for the time domain 

component (Spooner et al., 2019). In short, the findings of the current study and previous 

work suggest that evoked and oscillatory analyses may have different sensitivities to SG 

deficits in particular populations, as well as unique task parameters.

In conclusion, this study was the first to examine the impact of various ISIs on SG in the 

somatosensory system. To date, paradigms used to study SG in the somatosensory domain 

have largely relied on the early, seminal work evaluating gating of auditory information, 

which has broadly suggested that an ISI of 500 ms is optimal for maximizing SG and 

distinguishing clinical populations from their healthy counterparts compared to shorter (e.g., 

50–100 ms) and longer (e.g., 1000 ms) intervals (Adler et al., 1998; Adler et al., 1982; 

Nagamoto et al., 1989; Nagamoto et al., 1991). In contrast, we found that gating in the 

somatosensory system is optimal (i.e., best suppression) when the time between identical 

stimuli is 200 ms, compared to both shorter and longer intervals and further, cubic model 

estimation found this optimal temporal window to be 220 ms. This optimal gating was seen 

regardless of whether time-domain or oscillatory analyses were used to derive gating ratios. 

However, gating ratios computed from gamma oscillatory power were significantly lower 

(i.e., better suppression) compared to those calculated from phase-locked time-domain data, 

suggesting that high frequency oscillatory activity may provide a more sensitive measure of 

SG in the somatosensory system. Ultimately, the data described herein provide novel insight 

into the effect of various ISIs on the filtering of redundant somatosensory information and 

may dramatically influence the design, analysis, and interpretation of future studies of SG. 

With numerous clinical conditions known to be associated with altered somatosensory 

processing, gating, and functional inhibition (e.g., HIV, posttraumatic stress disorder, 
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cerebral palsy, schizophrenia; Badura-Brack et al., 2015; Spooner et al., 2018; Wilson et al., 

2015; Wilson et al., 2019; Wilson et al., 2007; Wilson et al., 2009), the current study 

recommends that the use of paired-pulse paradigms with an ISI of ~200–220 ms may be 

ideal for eliciting optimal gating (i.e., best suppression of redundant information), and this 

may be most effective for distinguishing clinical populations from their healthy counterparts. 

However, previous studies have shown that the ISI optimal for distinguishing deficits in 

clinical populations (e.g., 500 ms) may differ from the ISI eliciting the best suppression 

(e.g., 100 ms) in the same patient group, suggesting that the two may serve dissociable 

mechanisms for sensory gating (Nagamoto et al., 1991). Further, work has shown that 

schizophrenia-related SG deficits in one modality (e.g., auditory) do not always extend to 

other modalities (e.g., somatosensory; (Edgar et al., 2005)). Thus, further investigation of 

SG task parameters and signal processing methods within clinical populations will be 

incredibly important to derive the optimal analytical approach for distinguishing different 

patient groups and detecting optimal gating.
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Fig. 1. Neural Responses to Paired-Pulse Electrical Stimulation of the Left Median Nerve.
(Top Left): Grand-averaged time-frequency spectrogram of a MEG sensor near the 

sensorimotor cortices illustrating the somatosensory spectral responses to paired-pulse 

electrical stimulation with an inter-stimulus interval of 500 ms. Time is shown on the x-axis 

(ms) and frequency is denoted on the y-axis (Hz). All signal power is expressed as a percent 

change from baseline (−700 to −300 ms), with the corresponding color scale bar displayed 

below the graphic. (Right): Time-frequency spectrograms of the same MEG sensor 

illustrating the somatosensory responses at each of the tested inter-stimulus intervals (ISIs) 

ranging from 100 to 1000 ms, respectively. Note that all axes and scales are held constant 

across the time-frequency spectrograms. (Bottom Left): Grand-averaged beamformer images 

(pseudo-t) for stimulation 1 and stimulation 2 across all participants and ISIs. Strong 

increases in power were found in the contralateral hand region of the somatosensory cortex 

in virtually identical locations across both stimulations and all ISIs.
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Fig. 2. The Effect of ISI on Oscillatory Sensory Gating.
(Left): Virtual sensor data were extracted from the contralateral primary somatosensory 

cortex of each participant using the peak voxel in the grand-averaged image. (Middle): From 

these time series, gating ratios (response power to stimulus 2/response power to stimulus 1) 

were computed and subjected to statistical analysis with temporally-neighboring ISIs. Trials 

with electrical stimulations separated by 200 ms exhibited the smallest gating ratios (i.e., 

better gating), with larger ratios evident for trials with other ISIs. (Right): Relative amplitude 

of the response to the first and second stimulation separately is shown for each ISI at the top, 

with dark blue reflecting responses to the first stimulation and light blue reflecting the same 

for the second stimulation. The spectral specificity of sensory gating (i.e., peak gamma 

frequency) is shown at the bottom, with significant elevations in peak gamma frequency in 

response to the second stimulation compared to the first for trials with an ISI of 200–400 ms.
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Fig. 3. The Effect of ISI on Evoked Sensory Gating.
(Left): Peak voxel sLORETA source image estimates were extracted from grand-averaged 

time-domain images to derive gating ratios for each ISI (Middle): Gating ratios were 

smallest (i.e., better suppression) for trials with an ISI of 200 ms. Electrical stimulations 

separated by 300 ms or greater revealed no discernable differences in gating. (Right): Power 

of the response to the first and second stimulation separately is shown for each ISI, with dark 

blue reflecting responses to the first stimulation and light blue reflecting the same for the 

second stimulation. For a time series depicting traditional somatosensory components, see 

Fig. S1 in supplementary materials.
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Fig. 4. Sensitivity of Time-Domain and Oscillatory Responses to Gating.
Paired sample t-tests of time-frequency domain (i.e., oscillatory) compared to time-domain 

gating ratios at each ISI revealed more robust gating (i.e., smaller ratios) in the oscillatory 

domain compared to time-domain evoked approaches for ISIs separated by 100–600 ms.
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