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SUMMARY
The generation of in vivo repopulating hematopoietic cells from in vitro differentiating embryonic stem cells has remained a long-stand-

ing challenge. To date, hematopoietic engraftment has mostly been achieved through the enforced expression of ectopic transcription

factors. Here, we describe serum-free culture conditions that allow the generation of in vivo repopulating hematopoietic cells in the

absence of ectopically expressed factors. We show that repopulating activity arises immediately upon the commitment of mesodermal

precursors to the blood program, within the first wave of hematopoietic specification. We establish that the formation of these progen-

itors is extremely transient and exquisitely sensitive to the cytokinemilieu. Our findings define the precise differentiating stage at which

hematopoietic repopulating activity first appears in vitro, and suggest that during embryonic stem cell differentiation, all hematopoietic

programs are unraveled simultaneously from themesoderm in the absence of cues that restrict the coordinated emergence of each lineage

as is normally observed during embryogenesis.
INTRODUCTION

Recent advances in the generation, propagation, and differ-

entiation of pluripotent stem cells (PSCs) offer great prom-

ise in the field of regenerative medicine. Both embryonic

stem cells (ESCs) and induced PSCs (iPSCs) provide limit-

less sources of self-renewing cells endowed with the poten-

tial to generate tissue-specific cell populations that can be

used in transplantation therapy (Grabel, 2012; Keller,

2005). However, one major hurdle in realizing this poten-

tial is the lack of specific and efficient protocols for differen-

tiating these PSCs to specific populations that can be used

for therapeutic applications. Although stem-cell-based re-

generative medicine is still a distant goal, outstanding

progress has been made in generating and engrafting

ESC-derived lineages such as dopamine neurones (Kriks

et al., 2011) and cardiomyocytes (Shiba et al., 2012; Yang

et al., 2008). In contrast, since the first report of blood

cell generation from ESCs 30 years ago (Doetschman

et al., 1985), progress in deriving hematopoietic cells that

are able to engraft in vivo has been rather modest. To

date, the most successful in vitro derivation of hematopoi-

etic cells capable of repopulating mouse models has relied

on the ectopic expression of transcription factors such as

HOXB4 (Kyba et al., 2002), CDX4 (Wang et al., 2005b),

LHX2 (Kitajima et al., 2011), and RUNX1a (Ran et al.,

2013). However, although HOXB4 overexpression has

been shown to confer reproducible engraftment capability

in differentiating mouse ESCs (Bonde et al., 2008; Kyba

et al., 2002; Lesinski et al., 2012; Matsumoto et al., 2009),

this approach has not been successfully translated to hu-
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man ESCs (Wang et al., 2005a). An alternative approach

to the use of HOXB4 in differentiated human ESCs was

recently reported by Doulatov et al. (2013), who showed

that the ectopic expression of transcription factors

(HOXA9, ERG, RORA, SOX4, and MYB) in differentiating

ESCs promotes short-term erythroid and myeloid engraft-

ment. Few reports have documented the in vitro genera-

tion of hematopoietic repopulating potential from unma-

nipulated ESCs (Burt et al., 2004; Hole et al., 1996; Müller

and Dzierzak, 1993; Potocnik et al., 1997). However, these

approaches have not been reproduced or pursued, suggest-

ing that they involve serum-dependent conditions that

cannot be easily replicated. The use of high serum concen-

trations (Wang et al., 2005a) and/or stroma cell lines (Le-

dran et al., 2008) to support the formation of repopulating

hematopoietic cells derived from human ESCs has also

shown promising results, but to date, no follow-up studies

have further validated or extended these differentiation

protocols. It is likely that the reported successes in deriving

repopulating hematopoietic cells relied on specific factors

present in rare batches of serum—parameters that are im-

possible to control for and thus are extremely difficult to

reproduce.

It is thought that a better understanding of themolecular

and cellular mechanisms that regulate the emergence and

maintenance of long-term repopulating hematopoietic

stem cells (HSCs) during embryonic development would

aid in the development of optimal protocols to generate

such cells in vitro from PSCs. HSCs have been shown to

emerge first from the aorta-gonad-mesonephros (AGM)

region around embryonic day 10.5 (E10.5) in murine
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embryos (Medvinsky and Dzierzak, 1996). This occurs

several days after the actual onset of hematopoietic activity,

which is observed first in the yolk sac from E7.5 and next in

the embryo proper fromE9.0 (Palis et al., 1999). These early

waves of hematopoiesis successively give rise to primitive

erythroid, myeloid, definitive erythroid, and lymphoid

progenitors (Costa et al., 2012; Lin et al., 2014). Several

studies, including lineage tracing (Zovein et al., 2008)

and in vivo imaging (Boisset et al., 2010) studies, have re-

vealed the endothelial origin of HSCs emerging from a he-

mogenic endothelium (HE) population within the AGM

region. Similarly, earlier waves of hematopoietic progeni-

tors were also shown to derive from the HE (Ema et al.,

2006; Lancrin et al., 2010; Nishikawa et al., 1998).

The in vitro differentiation of ESCs has been widely used

as a model system to dissect and understand the early

events of hematopoietic specification in terms of both mo-

lecular mechanisms and cellular steps. The careful dis-

section of this in vitro program has demonstrated that,

similarly to in vivo development, blood cells are generated

from mesodermal hemangioblast precursors through an

HE intermediate (Choi et al., 1998, 2012; Eilken et al.,

2009; Fehling et al., 2003; Huber et al., 2004; Kennedy

et al., 2007; Lancrin et al., 2009; Wang et al., 2004) and

that the same network of transcription factors orchestrates

both in vivo and in vitro processes (Moignard et al., 2013).

Detailed studies of the generation of primitive erythroid,

myeloid, and lymphoid progenitors have suggested a tem-

poral emergence of these blood lineages in vitro, reflecting

their sequential emergence in vivo during embryonic

development (Irion et al., 2010). This led to the concept

that repopulating activity might emerge at late stages of

the hematopoietic program during ESC differentiation

(Kardel and Eaves, 2012; Lis et al., 2013; Sturgeon et al.,

2013) and that the emergence of lymphoid potentialmarks

the establishment of the definitive program (Kennedy

et al., 2012; Slukvin, 2013). To date, however, attempts to

derive in vivo repopulating hematopoietic cells from late

stages of ESC differentiation have been largely unsuccess-

ful. To revisit this long-standing challenge, we took an

alternative approach and explored the very first step of

hematopoietic specification from the mesoderm. We hy-

pothesized that multilineage progenitors with in vivo

repopulating ability might be specified very early upon

commitment of mesoderm to the blood program, and

might be difficult to maintain as such in the presence of

serum or hematopoietic cytokines. We first evaluated the

growth factor requirement for optimal specification of he-

mangioblast to HE. Next, defining the full hematopoietic

potential of this emerging population, we observed the

concomitant emergence of erythroid, myeloid, and lymp-

hoid progenitors. Interestingly, this early population was

also endowed with the capability to engraft immunocom-
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promised mice and to confer multilineage, long-term

engraftment. Further studies allowed us to define the

temporal emergence of this repopulating ability and to

determine the growth factor requirement and immuno-

phenotypic characteristic of this population. Collectively,

our findings demonstrate that in vitro repopulating cells

emerge very rapidly from mesoderm precursors, are ex-

tremely transient, and are exquisitely sensitive to the

growth factors present in the differentiating conditions.
RESULTS

BMP4, Activin A, and VEGF Are Critically Required for

the Generation of HE and CD41+ Progenitor Cells

We previously showed that a combination of BMP4, Acti-

vin A, FGF, and VEGF was sufficient to efficiently drive

the formation of blood precursors from differentiating

ESCs in serum-free culture conditions (Pearson et al.,

2008). However, optimal specification to each differentia-

tion stage is likely to require precise temporal exposure to

cytokine stimuli. Therefore, we set out to define which cy-

tokines were specifically required for the transition from

hemangioblast to HE, and then from HE to hematopoietic

progenitors, with a particular emphasis on HE, fromwhich

repopulating cells are known to emerge in vivo (Bertrand

et al., 2010; Boisset et al., 2010; Kissa and Herbomel,

2010). As depicted in Figure 1A, ESCs were differentiated

via embryoid body (EB) for 3 days in serum-free culture

with the successive addition of BMP4 at day 0, and then

Activin A and FGF at day 2.5. This sequential exposure to

growth factors was previously shown to promote heman-

gioblast specification efficiently in developing mesoderm

(Pearson et al., 2008). At day 3 of the EB culture, FLK1+ cells

enriched for hemangioblast were isolated and then further

cultured with no added factors, a combination of four fac-

tors (BMP4 [B], Activin A [A], FGF [F], and VEGF [V]), or

various combinations of these factors. The successful differ-

entiation of FLK1+ cells into HE was measured at day 2 of

the culture by the coexpression of TIE2 and cKIT, as previ-

ously described (Lancrin et al., 2009). The efficient genera-

tion of hematopoietic progenitors was assessed at day 3 by

CD41 expression, which is known to mark emerging pro-

genitors (Ferkowicz et al., 2003; Mikkola et al., 2003). In

the absence of added factors, few cells coexpressed TIE2

and cKIT (Figure 1B), and the generation of CD41+ cells

was limited (Figure 1C). In contrast, the addition of all fac-

tors (BAFV) led to the detection of a substantial TIE2+cKIT+

population and the enhanced generation of CD41+ cells.

Dissecting the role of each factor individually or in com-

bination revealed that individual factors on their own

and most combinations were not able to generate or main-

tain an HE population (Figure 1B) and/or to produce a
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Figure 1. Optimal Cytokine Combina-
tions for HE and Blood Cell Generation
from FLK1+ Mesoderm Cells
(A) Schematic representation of the exper-
imental strategy. ESCs were differentiated
via embryoid body (EB) formation in serum-
free culture supplemented with BMP4 at day
0 and with Activin A and FGF2 at day 2.5.
FLK1+ cells sorted from day 3 EBs were
seeded on gelatinized plates in serum-free
media supplemented or not with cytokines
(�, no cytokines; B, BMP4; A, ActivinA; V,
VEGF; F, FGF2).
(B) Representative flow cytometry of cells
analyzed at day 2 of the culture for the
coexpression of TIE2 and cKIT marking HE.
(C) Representative flow cytometry of cells
analyzed at day 3 of the culture for CD41
expression marking the emergence of blood
cells. Data are representative of four inde-
pendent experiments.
See also Figure S1.
substantial frequency of CD41+ cells (Figure 1C). Both Ac-

tivin A and VEGF appeared to be critically required for

the generation andmaintenance of HE cells, since only cul-

ture conditions containing both factors led to the forma-

tion of a clear TIE2+cKIT+ population (AV, AFV, and BAV).

As observed in V, BV, and BFV culture conditions, the

absence of Activin A in the culture led to CD41 cell produc-

tion associated with a decrease in TIE2+cKIT+ frequency

that was already observed at day 2 (Figures 1B and 1C). In

contrast, the absence of BMP4 in the culture led to a dra-

matic decrease in CD41+ cell production, as observed in

A, AV, and AFV culture conditions, suggesting that while

this factor is dispensable for the generation ormaintenance

of a TIE2+cKIT+ population, BMP4 is required for the emer-

gence of CD41+ cells. To address this issue, we supple-

mented AV culture with BMP4 at day 2 and assayed for

CD41 expression at day 3 (Figures S1A and S1B). However,

the delayed addition of BMP4 did not enhance the genera-

tion of CD41+ cells, suggesting that although it does not

impact the generation of a TIE2+cKIT+ immunophenotypic

population fromFLK1+ cells, BMP4 exposure is nonetheless

critical for shaping the hematopoietic potential of this pop-

ulation at the onset of FLK1 differentiation. The expression

of a panel of endothelial markers, such as ICAM2, FLK1,

and CD144 (VE-cadherin), further revealed that the pres-
Stem C
ence of both BMP4 and Activin A was critical to maintain

the endothelial identity of the cKIT+ population at day 2

of the culture (Figure S1C). Only a fraction of cKIT+ cells

maintained the expression of these endothelial markers

when cultured in the presence of AFV or BFV. Altogether,

these data revealed that the combination of BMP4, Activin

A, and VEGF is critical for the generation of both HE

and CD41+ cells. Interestingly, early exposure to BMP4 ap-

pears to confer hematopoietic potential to the TIE2+cKIT+

population.

Inhibitory Effect of FGF and Activin A on Further

Hematopoietic Commitment

We next compared the emergence and frequency of HE

when FLK1+ cells were cultured with BAV and BAFV, as

these two conditions were themost effective for generating

HE (Figure 1B). In both cases, a low frequency of TIE2+cKIT+

cells was observed at day 1 of the culture; the frequency of

this population peaked at day 2 and decreased thereafter

(Figure 2A). No noticeable differences were observed in

the temporal emergence and frequency of this population

regardless of whether FGF was added to the culture or not

(Figures 2A and 3D). In contrast, the formation of CD41+

cells was negatively affected by the presence of FGF in the

culture, with on average a 2-fold increase in the frequency
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Figure 2. FGF2 Impairs the Generation of CD41+ Cells from HE
FLK1+ cells sorted from day 3 EBs were seeded on gelatinized plates in serum-free media supplemented with a BAV or BAFV cytokine
combination (B, BMP4; A, Activin A; V, VEGF; F, FGF2).
(A and B) Cells were analyzed daily by flow cytometry for (A) coexpression of TIE2 and cKIT marking HE and (B) CD41 expression marking
blood cells.
(C) At day 2 of the culture, cells were plated in clonogenic assay for hematopoietic precursors, and colonies were counted at day 5 for
primitive erythroid (EryP) and day 8 for all other colonies (Mac, macrophages; Mac/Ery, macrophages and erythroid; Mix, multilineage
myeloid and erythroid). Data shown are representative of at least three experiments. In (C), data are presented as the mean number of
colonies from three dishes from one representative experiment; bars represent SEM.
of CD41+ cells produced in the absence of FGF from day 2

onward (Figures 2B and 3E). Both cultures gave rise to prim-

itive erythroid and definitive colonies upon replating in

clonogenic assays; however, FLK1+ cells cultured in the

BAV condition resulted in the production of higher fre-

quencies of hematopoietic precursors (Figure 2C), in agree-

ment with the CD41 flow cytometry data. Altogether,

these data suggest that although FGF does not affect the

temporal emergence and frequency of HE, this growth

factor negatively impacts the formation of hematopoietic

progenitors.

We next assessed the influence of Activin A on the emer-

gence of CD41+ progenitor cells because this factor was

previously shown to negatively affect the generation of

definitive hematopoiesis (Kennedy et al., 2012). For this

purpose, sorted FLK1+ cells were cultured for 1 day in the

presence of BMP4, Activin A, and VEGF (BAV), and then

switched to media containing only BMP4 and VEGF (BV)

as depicted in Figure 3A. Flow cytometric analysis revealed

that removing Activin A after 1 day of culture significantly

enhanced the frequency of TIE2+cKIT+ cells (Figures 3B and
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3D), as well as the generation of CD41+ cells (Figures 3C

and 3E). Time-lapse imaging of these cultures over a

3-day period illustrated the formation of adherent colonies

of endothelial cells followed by the emergence of individ-

ual floating blood cells (Figures 3F and 3G), as previously

shown in serum-supplemented cultures (Lancrin et al.,

2009). The BAV-BV culture condition led to the emergence

of large and healthy clusters of round floating cells (Figures

3F and S2A). In contrast, maintenance of Activin A in the

culture (BAV) appeared to reduce the viability and size of

the clusters of round floating cells (Figures 3G and S2B).

This was further highlighted by the overall growth of the

cultures in which a change of media from BAV to BV led

to a marked increase in cell confluency (Figure S2C).

Altogether, these data reveal that restricting the temporal

exposure to Activin A is critically important for optimal

specification of HE and hematopoietic precursors.

Multilineage Hematopoietic Potential of cKIT+ Cells

Having defined the optimal serum-free culture condition

for the early steps of hematopoietic specification, we next
ors
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Figure 3. Activin A Impairs the Maintenance of HE
(A) Schematic representation of the experimental strategy. FLK1+ cells sorted from day 3 EBs were seeded on gelatinized plates in serum-
free media supplemented with BAV for the first day and then with BV from day 1 onward (B, BMP4; A, Activin A; V, VEGF).
(B) Flow cytometry analysis of TIE2 and cKIT coexpression at day 1 and 2 of FLK1+ cell culture grown in a BAV or BAV-BV cytokine
combination.
(C) Flow cytometry analysis of CD41 expression at days 2 and 3 of the same cultures.
(D and E) Graph of data obtained from BAFV, BAV, and BAV-BV cultures, showing the frequencies of TIE2+cKIT+ cells at day 2 (D) and CD41+

cells at day 3 (E). Each point represents an independent experiment.
(F and G) Representative time-lapse imaging of FLK1+ sorted cells cultured in serum-free media supplemented with a BAV-BV (F) or BAV (G)
cytokine combination. Data shown are representative of at least three independent experiments (n.s., nonsignificant).
See also Figure S2.
evaluated the biological characteristics of cKIT-expressing

cells generated in this condition. As shown bymultiparam-

eter flow cytometry analysis, cKIT+ cells coexpressed all

endothelial markers tested (Figure 4A), including ICAM2

andCD40, whichwere previously shown tomark HE (Pear-

son et al., 2010). At this stage of the culture, a small fraction

of cKIT+ cells also coexpressed low levels of CD41, but none

expressed CD45 (Figure 4A; both of thesemarkers are indic-

ative of a further commitment to hematopoiesis). We next

evaluated the biological potential of this cKIT+ population

sorted at day 2 of BAV-BV culture. When cKIT+ cells were

plated in clonogenic assays for hematopoietic progenitors,

we observed the formation of both primitive erythroid col-
Stem C
onies and definitive colonies (Figures 4B, S3A, and S3B). Af-

ter 1 week, the culture of cKIT+ cells on OP9 or OP9-DL1

stroma in lymphoid-promoting conditions led to the

formation of clusters of free-floating cells in the culture

media and cobblestone-like areas underneath the stromal

layer (Figure 4C). Analysis of cells derived from the OP9-

DL1 cocultures after 3–4 weeks revealed the generation of

T lymphocytes as defined by the expression of T cell-spe-

cific genes (Figure S3C); CD4, CD8, and CD3 expression;

an immature CD4+CD8+ population; and low frequencies

of moremature CD4+ and CD8+ cells (Figure 4D). Similarly,

analysis of cells derived from OP9 cocultures demons-

trated the generation of B lymphocytes as marked by the
ell Reports j Vol. 4 j 431–444 j March 10, 2015 j ª2015 The Authors 435
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Figure 4. The cKIT+ Cell Population Derived from FLK1+ Hemangioblast Contains Erythroid, Myeloid, and Lymphoid Potential
(A and B) FLK1+ cells sorted from day 3 EBs were seeded on gelatinized plates in serum-free media supplemented with BAV for the first day
and then with BV from day 1 onward (B, BMP4; A, Activin A; V, VEGF). At day 2 of culture, cells were analyzed for the coexpression of cKIT
with a panel of endothelium and hematopoietic cell-surface markers.
(B) Day 2 sorted cKIT cells were plated in clonogenic assay for hematopoietic precursors. Primitive Ery: primitive erythrocytes; all definitive
colonies: macrophages, macrophages/erythrocytes, GM, and GEMM colonies. Data are presented as the mean number of colonies from three
dishes; bars represent SEM.
(C) Bright-field picture taken at 1 week of culture. Blue arrows mark cobblestone areas; red arrowheads mark free-floating hematopoietic
clusters.
(D) Cells derived from OP9-DL1 culture were stained at the indicated time for the coexpression of CD4, CD8, and CD3 marking T lym-
phocytes.
(E) Cells derived from OP9 culture were stained at the indicated time for the coexpression of B220, CD19, and IgM marking B lymphocytes.
Data shown are representative of at least three experiments.
See also Figure S3.
expression of B cell-specific genes (Figure S3D) and the co-

expression of B220 andCD19,with a small fraction of these

cells expressing immunoglobulin M (IgM; Figure 4E). Alto-

gether, these data reveal that FLK1+ mesodermal progeni-

tors that have grown for 2 days in the sequential presence

of BMP4, Activin A, and VEGF (BAV) followed by BMP4

and VEGF (BV) give rise to a population of cKIT+ cells en-

dowed with the capacity to generate erythroid, myeloid,

and lymphoid cells.

Long-Term and Multilineage Engraftment Potential

of the cKIT+ Population

Given the in vitro multilineage capacity of the cKIT+ popu-

lation isolated from FLK1+ cells that had differentiated for

2 days, we next investigated whether this population con-
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tained cells that were able to engraft in vivo. For this pur-

pose, cKIT+ cells were isolated from BAV-BV culture at day

2 and injected into sublethally irradiated recipient mice

as depicted in Figure 5A. Blood samples were taken every

4 weeks over a 16-week period and analyzed by flow cytom-

etry for the expression of CD45.1 (marking recipient cells)

and CD45.2 (marking in vitro-derived donor cells). In the

initial experiments, the persistence of a small CD45.2+

population was observed in four out of ten mice over the

16-week period (Figures 5B and 5C). The in vitro origin of

the CD45.2+ cells was further confirmed by detection of

the Brachyury-GFP knockin allele, which was present

in the starting ESC line but absent from the recipient

mice (Figure 5D). Similar in vivo engraftment results were

also obtained with cKIT+ cells derived from the in vitro
ors
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(A) Schematic representation of the experimental strategy.
(B) Blood cells from control and engrafted mice were stained for CD45.1 expression (marking recipient cells) and CD45.2 expression
(marking ESC-derived cells).
(C) Frequency of CD45.2+ cells (blue circles) in the blood at the indicated week. Each point represents a mouse (n = 2, with 5 mice per
experiment).
(D) PCR detection of the Brachyury endogenous and Brachyury-GFP knockin alleles carried by ESC-derived blood cells (BM, bone marrow; S,
spleen).
(E) Bone marrow and spleen cells harvested 22 weeks after engraftment were stained for CD45.1 and CD45.2.
(F) Staining for lineage analysis is shown for CD45.1+ recipient and CD45.2+ ESC-derived cells from bone marrow and spleen at 22 weeks
after engraftment. CD71 and TER119 mark erythroid cells, CD11b and GR1 mark myeloid cells, and IgM and B220 mark B lymphocytes.
See also Figure S4.
differentiation of two other ESC lines (Figures S5D and

S5G–S5J). Analysis of the lineage contribution in bone

marrow and spleen at 22 weeks after engraftment revealed

the presence of CD45.2+ cells expressing cell-surface

markers characteristic of erythroid (TER119 and CD71),

myeloid (Gr1 and CD11b), and B lymphoid (IgM and

B220) lineages (Figures 5E and 5F). The B lymphocytes

generated upon engraftment coexpressed IgM, CD19, and

B220 (Figure S4A), and were able to secrete immunoglobu-

lins (Figure S4B). It has been shown that embryonic he-

matopoietic precursors preferentially give rise to B-1 B

lymphoid cells involved in innate immunity (Montecino-

Rodriguez and Dorshkind, 2012). In addition to IgM

expression, these B lymphocytes are characterized by the

expression of CD11b and CD5 for the B-1a subset and

CD11b for the B-1b subset. Given the embryonic origin
Stem C
of the cKIT+ donor cells, we further assessed the immuno-

phenotype of the B lymphoid population generated upon

engraftment. None of the IgM+ cells expressed CD11b or

CD5, suggesting that these cells are B-2 type B lymphocytes

(Figure S4C). Altogether, these data demonstrate that cKIT+

cells isolated from ESCs that have differentiated in serum-

free culture with restricted temporal exposure to specific

growth factors are able to confer long-term and multiline-

age engraftment in vivo.

Temporal Emergence of Hematopoietic

Repopulating Activity

The repopulating activity observed upon engraftment of

cKIT+ cells isolated from day 2 culture was reproducible

but remained low in terms of both the chimerism level

and frequency of mouse repopulation (Table 1). Therefore,
ell Reports j Vol. 4 j 431–444 j March 10, 2015 j ª2015 The Authors 437



Table 1. Summary of the In Vivo Engraftment Experiments

Population Tested Cytokines in FLK1 Culture n Engrafted Mice Chimerism Frequency at 4 Weeks (Percentage CD45.2+)

FLK1+ no further culture 2 0/8 0

cKIT+ day 1 BAFV 6 14/26 4, 5.9, 6.5, 0.37, 4.5, 2.32, 0.77, 21, 3.36, 2.17,

10.04, 15.66, 5.04, 16.36

BAV 2 3/8 0.4, 19.9, 15.65

AV 1 1/4 0.43

BNVF 1 0/4 0

BNV 1 1/4 0.09

BFV 1 0/4 0

cKIT+ day 2 BAV(day 1)-BV(day 2) 7 9/28 2.96, 15.09, 0.76, 0.91, 1.44, 0.18, 0.58, 0.44, 0.26

BAV(day 1)-A(day 2) 1 2/4 0.12, 2.9

BAV(day 1)-SB(day 2) 1 2/4 0.19, 2.5

BAV(day 1)-B(day 2) 1 1/4 1.5

BAV(day 1)-none(day 2) 1 1/3 0.24

BAFV 2 5/12 0.78, 1.04, 1.3, 2.9, 6.1

BAV 1 1/8 1.42

BNVF 1 0/4 0

BNV 1 0/4 0

cKIT+ day 3 BAV(day 1)-BV(day 2) 2 0/12 0

B, BMP4; A, Activin A; V, VEGF; F, FGF2; N, Nodal; SB, SB-431542. See also Figure S5.
we explored whether we could achieve a higher repopula-

tion activity by changing the timing of cKIT+ cell isolation

during the course of FLK1 differentiation to hematopoiesis.

The cKIT+ population isolated from day 3 culture was un-

able to engraft in vivo, whereas day 1 cKIT+ cells gave rise

to reproducible engraftment capability (Figure 6A). The

overall level of chimerism observedwith cKIT+ cells derived

from day 1 culture was higher than that observed with cells

derived from day 2 culture. Given this very rapid onset of

repopulating activity upon culture of FLK1+ mesodermal

precursors, we also evaluated the potential of FLK1+ cells

to engraft directly without further culture. However,

FLK1+ cells isolated from EBs and directly injected in vivo

did not give rise to any repopulation activity (Figure 6A).

Altogether, these findings suggest that the repopulating

ability of ESC-derived hematopoietic precursors emerges

rapidly uponmesoderm specification and is very transient.

Growth Factor Requirement for the Emergence

of Hematopoietic Repopulating Activity

We next evaluated how altering the cytokine combination

during the differentiation of FLK1+ mesoderm might

impact the generation of in vivo repopulating cells. In a
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first set of experiments, we assessed the growth factor

requirement for the generation of this repopulating activ-

ity. We tested combinations of cytokines in which FLK1+

cells were cultured for the first day with BAV cytokines

and then eithermaintainedwith BAVor changed to Activin

A, BMP4, TGFb inhibitor (SB-431542), or no cytokines for

the second day of culture. In addition, cKIT+ cells isolated

after 2 days of culturewith BAFVwere also tested in engraft-

ment experiments. In all conditions tested, no improve-

ment was observed in either the chimerism level or fre-

quency of engrafted mice when compared with the BAV-

BV cytokine combination (Table 1). Altogether, these data

suggest that a variation in cytokine exposure during the

second day of FLK1 culture does not affect the repopulating

activity of the cKIT+ population isolated at day 2. Addition-

ally, cKIT+ cells isolated from day 1 culture gave higher

engraftment levels, suggesting that the first day of FLK1

culture is critical for determining in vivo repopulating com-

petency.We therefore focused on the cytokine requirement

for the first day of culture. Data presented in Figure 1A

show that the cytokine combinations BAV, BAFV, and AV

were the best conditions for generating a TIE2+cKIT+ HE

population at day 2. When analyzed at day 1 of culture,
ors
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Figure 6. Successful Engraftment Is Highly Dependent on Cytokine Exposure
(A) Frequency of CD45.2+ cells (blue circles) in the blood of recipient mice 4 weeks after engraftment with the indicated population. The
data presented in this graph for cKIT+ cells at days 1 and 2 were obtained under BAFV, BAV, and BAV-BV culture conditions. Each point
represents one mouse; the number of experiments conducted for each population is shown in Table 1 (B, BMP4; A, ActivinA; V, VEGF; F,
FGF2).
(B) Representative flow cytometric analysis of cKIT and TIE2 expression for cells obtained from day 1 FLK1 culture grown in the indicated
cytokines.
(C) Frequency of CD45.2+ cells in the blood of recipient mice 4 weeks after engraftment with cKIT+ cells isolated from day 1 FLK1 culture
grown in the indicated cytokine mix (BAFV, purple circles; BFV, pink circles; BAV, dark green circles; AV, light green circles). Each point
represents one mouse; the numbers of mice and experiments are detailed in Table 1.
(D) Representative flow cytometric analysis of cKIT and CD41 expression for cells obtained from day 1 FLK1 culture grown in the presence of
BAFV cytokines.
(E) Frequency of CD45.2+ cells (blue circles) in the blood of recipient mice 4 weeks after engraftment with the indicated cells isolated from
day 1 FLK1 culture grown in the presence of the BAFV cytokine mix. Each point represents one mouse (n = 2, with 4 mice per experiment,
except for group CD41�cKIT� with 2 mice per experiment).
(F) Frequency of CD45.2+ cells (blue circles) in the blood of recipient mice at the indicated number of weeks after engraftment. Data in this
graph represent a summary of all recipients that successfully engrafted. Each point represents one mouse, n = 18 with 4 mice per
experiment as detailed in Table 1.
(G) Flow cytometric analysis of CD45.1 and CD45.2 expression relative to side scatter (SSC) for bone marrow and spleen cells at the
indicated weeks after engraftment.
See also Figure S6.
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the TIE2+cKIT+ population was detected at equivalent fre-

quencies in those three cytokine mixes (Figure 6B). How-

ever, when tested in an in vivo repopulation assay, the

absence of BMP4 was detrimental to engraftment, as

shown by a comparison of engraftment for cKIT+ cells

derived from AV and BAV (Figure 6C). Interestingly, cKIT+

cells derived from BFV culture did not give rise to any repo-

pulating activity, even though this cytokine combination

gave rise to a high frequency of blood progenitors (Fig-

ure S5A). Furthermore, although the chimerism levels

observed in mice repopulated with cKIT+ cells derived

from BAV and BAFV were similar, the number of mice en-

grafted was substantially higher in the presence of FGF

(14/26; 53.8%) than in its absence (3/8; 37.5%; Figure 6C).

It was recently shown that in vitro differentiated, Nodal-

derived endoderm contributed in vivo to embryonic endo-

derm much more efficiently than Activin A-derived endo-

derm (Chen et al., 2013). Therefore, we assessed the in vivo

repopulating ability of cKIT+ cells obtained from cultures in

which Activin A was replaced by Nodal. Although Nodal

was able to induce the formation of a TIE2+cKIT+ popula-

tion at days 1 and 2 of FLK1+ cell culture (Figure S5B), we

only observed a very low level of engraftment (0.09%) in

one mouse out of 12 for all conditions tested (Figure S5C).

Finally, to ensure the reproducibility and specificity of the

differentiation process that is promoted by the BAFV cyto-

kines, we performed the differentiation and engraftment

protocol using BAFV cytokines from another commercial

supplier. We observed similar levels of engraftment and

contributions to erythroid, myeloid, and lymphoid line-

ages with these cytokines (Figures S5D–S5F). Altogether,

these data demonstrate that very specific growth factor

exposure during FLK1+ differentiation to cKIT+ is critically

important to generate in vivo repopulating cells. Changes

in a single cytokine can dramatically alter the potential of

these in vitro-generated cells to engraft in vivo.

Immunophenotype of InVitro-DerivedCells Endowed

with Repopulation Activity

In order to refine our analysis of the cell population that

harbored in vivo engraftment potential, we aimed to

further define the immunophenotypic characteristics of

this population. All endothelial cell-surface markers tested

were coexpressed by cKIT+ cells and therefore could not be

used to subfractionate the cKIT+ population. In contrast,

CD41, which is known to be expressed on early embryonic

HSCs (McKinney-Freeman et al., 2009; Robin et al., 2011),

showed a distinct expression in a small subset of cKIT+ cells

(Figure 6D). Surprisingly, however, when tested in in vivo

engraftment, the cKIT+CD41� fraction was more enriched

in repopulating activity than the cKIT+CD41+ fraction,

whereas, as expected, the cKIT�CD41� subset was devoid

of this activity (Figure 6E). These results establish that as
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soon as TIE2+cKIT+ HE cells acquire CD41 expression, their

in vivo engrafting ability is dramatically decreased, further

reinforcing the hypothesis that the potential for in vitro-

derived hematopoietic cells to repopulate recipient mice

is extremely transient.
Long-Term and Multilineage Engraftment

The twomost fundamental characteristics of HSCs are their

abilities to self-renew and to give rise to all lineages of the

blood system. As shown above in Figure 5F, blood progen-

itor contribution to the myeloid, erythroid, and lymphoid

lineages was observed at 22 weeks after engraftment, but

also at all stages analyzed (Figure S6). To address the self-re-

newing property of these in vitro-derived repopulating

cells, we followed the frequency of CD45.2+ cells in the pe-

ripheral blood of recipients for up to 20 weeks (Figure 6F),

considering that engraftment past 16 weeks is a readout

of long-term repopulation. From 4 to 12 weeks after

engraftment, we observed a progressive decline in the

contribution of donor cells, with the frequency of these

cells plateauing from 12 weeks onward. Analysis of donor

cell contributions in the bone marrow and spleen revealed

that initially the frequency of CD45.2+ cells was high in the

bonemarrow and low in the spleen (Figure 6G), a ratio that

was reversed over time. By 22 weeks, the contribution

to the bone marrow was low but still clearly detectable.

Altogether, these data suggest that in vitro-derived repopu-

lating cells are able to provide long-term multilineage

engraftment, but their self-renewing ability is not as robust

as that of in vivo-derived repopulating cells. In the future, it

will be important to determine whether this is an intrinsic

property of in vitro-derived repopulating cells or whether

self-renewal can be modulated by the culture conditions.
DISCUSSION

The present study defines the temporal emergence of repo-

pulating activity in vitro, identifying the precise step at

which this population is generated. Altogether, our data

establish that the presence of this repopulating activity is

remarkably transient and the emergence/maintenance of

this cell population is critically dependent on a precise

set of growth factors.

To investigate the presence of long-term in vivo repopu-

lating hematopoietic progenitor cells during ESC differen-

tiation, we made the assumption that this activity might

emerge rapidly upon specification of the hematopoietic

program in mesoderm precursors, and we implemented

several experimental strategies to test this hypothesis.

First, the differentiating conditions were designed to avoid

exposure to serum and cytokines such as SCF, IL6, and IL3

to prevent further differentiation of newly emerging
ors



hematopoietic progenitors as much as possible. Second, we

only considered cKITexpression as a potential marker of re-

populating activity, since to date it is the only cell-surface

marker that has been shown to be expressed on all HSCs

throughout embryonic development and adulthood

(all other markers are either expressed transiently during

embryonic development or are only expressed on adult

HSCs). Finally, to test for engraftment potential, we used

sublethally conditioned recipients, reasoning that, in

contrast to lethal irradiation, the remaining endogenous

hematopoietic system would allow recipient mice to sur-

vive even with very low levels of contribution from the

donor cells. A possible drawback to this approach is that

the full engraftment potential might be underestimated

due to competition between recipient and donor cells.

However, the combination of these various experimental

settings allowed us to reproducibly monitor the serum-

and stroma-free generation of ESC-derived repopulating

hematopoietic cells.

Our data demonstrate that both the emergence and

maintenance of in vivo repopulating cells are extremely

sensitive to the cytokine milieu: a change in a single factor

will completely abolish the detection of engrafting cells.

When we compared the outcome of FLK1 cells cultured

in the presence of BAFV versus BFV, the absence of Activin

A dramatically affected the detection of in vivo engrafting

cells, as they were most likely rapidly pushed toward differ-

entiation when exposed only to BFV. Taken together,

our results strongly suggest that the signaling pathway

activated by Activin A, but not Nodal, is critical, but not

sufficient, for maintaining the repopulating ability of the

TIE2+cKIT+ population. The addition of FGF seems to rein-

force the role of Activin A; however, on its own, FGF is not

able to maintain the population of engrafting hematopoi-

etic progenitors. Finally, BMP4 signaling appears to be crit-

ical for conferring hematopoietic competency to theHE, an

observation that is consistent with the known role of BMP4

in the regulation of Runx1 (Burns et al., 2005; Pimanda

et al., 2007). Although our study identifies differentiating

conditions that allow the detection of engrafting hemato-

poietic cells, further work will be required to improve and

optimize the culture conditions for the maintenance and

expansion of these repopulating cells.

An important conceptual aspect of our findings relates to

the relationship between ESC-derived repopulating cells

and their in vivo counterparts. Based on their immunophe-

notypic characteristics, the ESC-derived cells more closely

resemble the VE-cad+CD45�CD41low pre-HSC type I popu-

lation identified in the AGM region at E11.5 (Rybtsov et al.,

2011). However, these type I pre-HSCs express a low level of

CD41 and do not engraft recipients unless they are cocul-

tured for 4 days with OP9, in contrast to ESC-derived repo-

pulating cells, which do not express CD41 and are able to
Stem C
engraft directly, albeit when injected intrafemorally. Based

on their limited self-renewal characteristics, the ESC-

derived engrafting cells might correspond to lineage-

committed progenitors with a repopulating ability in

which the multilineage potential is dissociated from the

self-renewal capacity, as recently described for adult mouse

bone marrow progenitors (Yamamoto et al., 2013). An

interesting finding in our study is the concomitant emer-

gence of primitive erythroid, myeloid, definitive erythroid,

and lymphoid potential very early uponmesoderm specifi-

cation. This is in contrast to previous studies that reported

the sequential generation of these progenitors during

in vitro differentiation of ESCs (Keller et al., 1993; Kennedy

et al., 2012; Rafii et al., 2013). In those studies, serum-sup-

plemented factors may have conditioned or altered the

timing of differentiation and delayed the emergence of spe-

cific progenitor subsets. During embryonic development,

the emergence of hematopoietic progenitors occurs in

successive waves, with primitive erythroid progenitors

emerging first around E7.25, followed by erythro-myeloid

progenitors from E8.25 and lymphoid progenitors from

E9, whereas definitive HSCs are only detected from E10.5

onward (Costa et al., 2012; Lin et al., 2014). One possible

explanation to account for our findings is that during

serum-free ESC differentiation, all hematopoietic programs

unravel simultaneously because there are no extrinsic fac-

tors restricting or altering the developmental timing for

the emergence of each lineage. During embryonic develop-

ment, these cues are provided by themicroenvironment in

which these precursors reside.

The present study establishes a first critical step toward

the generation of in vitro-derived, repopulating hemato-

poietic cells that might be suitable for therapeutic applica-

tions. Further work will need to be carried out to translate

this protocol to the differentiation of human ESCs and

iPSCs.
EXPERIMENTAL PROCEDURES

ESC Growth and Differentiation
Unless specified otherwise, the ESC line used in this study is

an E14.1 (129/ola) carrying a GFP reporter cassette knocked in

the Brachyury locus (Fehling et al., 2003). The F1 (129/B6) and

RI (129/sv) ESC lines were also tested for engraftment potential.

ESCs were maintained on irradiated mouse embryonic fibroblasts

in Dulbecco’s modified Eagle’s medium (DMEM) supplemented

with 50 mg/ml penicillin-streptomycin (GIBCO), 15% fetal calf

serum (FCS; PAA Laboratories), 1% leukemia inhibitory factor

(conditioned medium from Chinese hamster ovary cells), and 1.5

3 10�4 Mmonothioglycerol (Sigma). Prior to differentiation, ESCs

were passaged twice on gelatinized tissue-culture-grade plates to re-

move the mouse embryonic fibroblasts. For the first passage, ESCs

were grown in DMEM supplemented as above, and the second

passage was performed in Iscove’s modified Dulbecco’s medium
ell Reports j Vol. 4 j 431–444 j March 10, 2015 j ª2015 The Authors 441



supplemented as above. For gelatin treatment, dishes were coated

for 20 min with 0.1% w/v gelatin in ddH20. For EB generation,

ESCs were trypsinized and plated at 50,000 cells/ml in petri-grade

dishes in StemPro-34 SFM (GIBCO) supplemented with 2 mM

L-glutamine (GIBCO), transferrin (Roche), 0.5 mM ascorbic acid

(Sigma), and 4.5 3 10�4 M monothioglycerol (Sigma). BMP4,

bFGF, Activin A, Nodal, and VEGFa (R&D Systems or PeproTech)

were used at 5 ng/ml unless otherwise stated. For hemangioblast

culture, FLK1+ sorted cells were seeded on gelatinized plates in

StemPro-34 SFM supplemented as above with the addition of cyto-

kines as stated for each experiment.

Mice Engraftments
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice were purchased from The

Jackson Laboratory and bred in-house or at Harlan. Male mice

were irradiated with a 125 cGy sublethal dose and injected intrafe-

morally with sorted cells. Depending on the experiment, between

105 and 5 3 105 sorted cells were injected per mouse. All animal

work was performed in accordance with regulations established

by Home Office Legislation under the 1986 Animal Scientific Pro-

cedures Act.
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