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Abstract
Automatic recognition of an online series of unsegmented actions requires a method for segmentation that determines when 
an action starts and when it ends. In this paper, a novel approach for recognizing unsegmented actions in online test experi-
ments is proposed. The method uses self-organizing neural networks to build a three-layer cognitive architecture. The unique 
features of an action sequence are represented as a series of elicited key activations by the first-layer self-organizing map. 
An average length of a key activation vector is calculated for all action sequences in a training set and adjusted in learning 
trials to generate input patterns to the second-layer self-organizing map. The pattern vectors are clustered in the second 
layer, and the clusters are then labeled by an action identity in the third layer neural network. The experiment results show 
that although the performance drops slightly in online experiments compared to the offline tests, the ability of the proposed 
architecture to deal with the unsegmented action sequences as well as the online performance makes the system more plau-
sible and practical in real-case scenarios.

Keywords  Action recognition and segmentation · Self-organizing neural networks · Cognitive architecture · Online 
performance · Hierarchical models

Introduction

Action recognition plays an important role in interaction 
between any two agents. Human–robot interactions require 
that the robot can recognize what kind of action the human 
is performing. There are several other applications for action 
recognition systems including human–computer interac-
tion, video retrieval, sign language recognition, medical 
health care, video analysis (sports video analysis), game 
industry and video surveillance. In earlier works (Gharaee 
et al. 2016, 2017b, a, c; Gharaee 2018a), Gharaee et al. 
developed a system for human action recognition using 

hierarchical architecture based on self-organizing neu-
ral networks. Recently this architecture is developed by 
using growing grid networks to improve its perfomance in 
recognizing human actions (Gharaee 2018b, 2020). 

As a background to the method proposed in this article, 
there is a presentation of some psychological approaches to 
action categorization and to event segmentation. There is also 
a description of a few earlier computational attempts to solve 
the action segmentation problem. The rest of the paper is 
organized as follows: The proposed architecture is described 
in “Methods” section, the experiments on action recogni-
tion are presented in detail in “Results” section, a discussion 
about the method proposed of this paper in comparison with 
some other techniques is presented in “Discussion” section, 
and finally “Conclusion” section concludes the paper.

Psychological approaches of event perception 
and segmentation

Michotte (1963) conducted a series of early studies concern-
ing interactions between two objects, and he argued that a 
causal interaction between two objects is perceived when 
we see the motion of the objects as a single event. Another 
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early contributor was Gibson (1966) and Gibson (1979). 
He identified three kinds of events in visual perception: (1) 
changes in the layout of the surfaces, (2) changes in the color 
or texture of the surfaces and (3) the coming into or out 
of existence of surfaces. He argued that the presence of an 
invariant structure persisting throughout the change is the 
main factor in creating an event.

A third approach to event perception, based on biological 
motion, originates from the studies by Johansson (1973). 
He developed a method called the patch-light technique in 
which reflective patches are placed on the body of a subject 
that performs different actions. The subject is filmed in high-
contrast light condition, and the film is shown to observers. 
The observers could only see the movements of the patch-
light points, but they could nevertheless recognize, within 
tenths of a second that the moving light points come from 
a human performing an action such as walking or crawling. 
Gärdenfors (2007), Gärdenfors and Warglien (2012) general-
ize Johansson’s approach, proposing that human cognition 
represents an action by the pattern of forces generating it.

A common feature of these three approaches to event 
perception is that the dynamic features of the activity are 
critical for perceiving and categorizing events. At the same 
time, they indicate that there is a higher-order stability in 
events that persist through these changes.

The problem of human event segmentation concerns how 
our perceptual system can partition the stream of experi-
ence into meaningful parts. The event segmentation theory 
proposed by Radvansky and Zacks (2014) is a new approach 
to how human cognition segments events. The event mod-
els presumed by the theory represent features of the current 
activity relevant to current goals and the models integrate 
information across the sensory modalities with information 
that may be more conceptual in nature.

The event segmentation theory entails that the representa-
tion of events involves biasing the pathway from sensory input 
to prediction. The theory says that the working models are 
disconnected from the sensory input and they store a static 
snapshot of the current event (preservation). This helps the 
event models overcome ambiguities and missing information. 
This process continues by comparing the predictions about the 
near future of an ongoing event with what actually happens, 
that is, monitoring the prediction error. If the prediction error 
suddenly increases, the event model will be updated by open-
ing the inputs of the event models so that a new event is started. 
By opening the gates to a new operating model, perceptual 
information interacts with stored knowledge representations 
building a new event representation and when it is constructed, 
the prediction error is decreased and the gate closes.

Zacks et al. (2009) present three empirical experiments 
that have tested their event segmentation theory. The experi-
ments are performed to investigate the ways in which the 
body movements of an actor predict when an observer will 

perceive event boundaries. In these experiments, participants 
segmented the movies of daily activities performed by a sin-
gle actor using a set of objects on a tabletop. The results 
show that movement variables were significant predictors 
of the segmentation. The observers were more sensitive to 
the movements of the individual body parts and the distance 
between them than to the relative speed and acceleration of 
the body parts with respect to each other.

The psychological approach in event segmentation pro-
cess introduces by Zacks et al. (2009) is based on the possi-
bility to predict the forthcoming movements. In other words, 
the system needs to predict the possible future movement of 
the actor based on what has been observed so far. As long 
as the prediction fits with the incoming stream of move-
ments, it is maintained. Otherwise, the system predicts that 
a new action has begun. As an example, take the action of 
scratching the head. The observer tracks the movements of 
the actor from when the arm is lifted. If the hand approaches 
the head and touches it, then the observer categorizes it as 
head scratching and when the hand moves back and leaves 
the head it is considered the end of the action.

Computational models of action recognition

Human action recognition methods are largely dependent 
on the input modalities. There are three different types of 
input modalities that represent the actions performed: the 
RGB (color images), depth maps and skeleton information. 
The space-time volumes, spatiotemporal features and tra-
jectories have been utilized for action recognition through 
the color images in the earlier methods proposed by Schuldt 
et al. (2004), Dollar et al. (2005), Sun et al. (2009).

The color-based methods are sensitive to color and illumi-
nation variations, and thus, they have limitations in recogni-
tion robustness. With advent of RGB-D sensors, the action 
recognition methods were developed based on depth maps, 
which are insensitive to illumination changes and color vari-
ations, and provide us with rich 3D structural information of 
the scene. In the holistic approaches, the global features such 
as silhouettes and space-time information are extracted from 
depth maps like the methods proposed in Oreifej and Liu 
(2013), Li et al. (2010), Liu et al. (2017). Other approaches 
extract the local features as a set of interest points from depth 
sequence (spatiotemporal features) and compute a feature 
descriptor for each interest point like the methods proposed 
in Laptev (2005), Wang et al. (2012b), Wang et al. (2012a).

The cost-effective depth sensors are then coupled with 
the real-time 3D skeleton estimation algorithm introduced 
by Shotton et al. (2011). By extraction of the spatiotemporal 
features from the 3D skeleton information such as the rela-
tive geometric velocity between body parts, relative joint 
positions and joint angles in Yao et al. (2017), the position 
differences of the skeleton joints in Yang and Tian (2012) 
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or the pose information together with differential quantities 
(speed and acceleration) in Zanfir et al. (2013) the body 
skeleton information in space and time is first described. 
Then, the descriptors are coupled with principle component 
analysis (PCA) or another classifier to categorize the actions.

Such methods for action recognition utilize the pre-seg-
mented and labeled datasets of actions, while online rec-
ognition of actions is crucial in real-time experiments with 
unsegmented sequences of actions. Next there is a descrip-
tion of other attempts in the literature to design computa-
tional models for online action recognition.

A main approach for online action recognition is based 
on the sliding window. Jalal et al. (2017) present a method, 
which segments human depth silhouettes using tempo-
ral human motion information and obtains skeleton joints 
through spatiotemporal human body information. Then, it 
trains the hidden Markov model with the code vectors of 
the multi-fused features to recognize the segmented actions. 
Vieira et al. (2012) proposed a visual representation of 3D 
action recognition by space-time occupancy patterns. The 
method focuses on classifying the extracted feature vec-
tors (interest points) from depth sensors by support vector 
machine.

In Ellis et al. (2013), the skeleton data of specific events 
are converted to a feature vector of clustered pairwise joint 
distances between the current frame, ten previous frames 
and thirty previous frames. The feature vectors are sent to 
classifiers that categorize actions based on canonical body 
poses. The method proposed in Lv and Nevatia (2006) uses 
a dynamic programming algorithm to segment and recog-
nize actions simultaneously. Their method decomposes the 
high-dimensional 3D joint representation into a set of feature 
spaces where each feature corresponds to the motion of a 
joint or related multiple joints. A weak classifier based on 
the hidden Markov model is formed for each feature, and 
these classifiers are combined by the multi-class AdaBoost 
algorithm.

Among the neural network-based methods for online 
action recognition, there are convolutional neural network-
based systems and recurrent neural network-based systems 
for action recognition. A multi-region two-stream R-CNN 
model for detecting actions in the videos is proposed by 
Peng and Schmid (2016), by which the motion region net-
work generates proposals complementary to those of an 
appearance region proposal network. They claim that stack-
ing optical flow over several frames significantly improves 
frame-level action detection. A model of segment-based 3D 
convolutional network is used for action localization in long 
videos (see Shou et al. 2016), which identifies candidate 
segments in a long video that may contain actions. A clas-
sification network learns action classification model to ini-
tialize the localization model, which fine-tunes the learned 
classification network to localize an action instance. The 

UntrimmedNet model proposed by Wang et al. (2017) is 
composed of two main components implemented with feed-
forward networks: the classification module and the selec-
tion module. They learn the action model from the video 
input and reason about the temporal duration of the action 
instances.

Among the recurrent neural network-based system for 
action recognition is the method proposed by Singh et al. 
(2016), a tracking algorithm is used to locate a bounding 
box around the performer in the video frames, which makes 
a frame of reference for appearance and motion and two 
additional streams are trained on motion and appearance. 
The pixel trajectories of a frame are utilized for the motion 
streams and a multi-stream CNN is followed by a bidirec-
tional long short-term memory (LSTM) layer to model long-
term temporal dynamics within and between the actions. The 
proposed model by Dave et al. (2017) proposes an action 
detection model for video processing, which utilizes a series 
of recurrent neural networks that sequentially make top-
down prediction of the future and later correct the predic-
tions with bottom-up observations. The proposed approach 
by Ma et al. (2016) argues that when training the recurrent 
neural network and specifically a long short--term memory 
(LSTM) model, the detection score of the correct activity 
category or the detection score between the correct and 
incorrect categories should be monotonically non-decreasing 
as the model observers more of the activity. Therefore, their 
model suggests the design of ranking losses to penalize the 
model on violation of such monotonicities, which are used 
together with classification loss in training of LSTM mod-
els. Finally, the model of Li et al. (2016) proposes a joint 
classification regression recurrent neural network for online 
human action recognition from 3D skeleton data. The model 
applies the deep long short-term memory (LSTM) subnet-
work to capture the complex long-range temporal dynamics 
and avoid the sliding window.

Among other neural networks for action recognition are 
ones proposed by Parisi et al. (2015), Parisi et al. (2017). 
The method in Parisi et al. (2015) proposes a neurobiologi-
cally motivated approach for noise-tolerant action recogni-
tion in real time. Their system first extracts pose, and motion 
features of the action obtained from depth maps video 
sequences and later classifies the actions based on the pose 
motion trajectories. A two-pathway hierarchy of growing 
when required (GWR) networks process pose motion fea-
tures in parallel and integrate action cues to provide move-
ment dynamics in the joint feature space. Then, the GWR 
implementation is extended with two labeling functions 
to classify the action samples into the action categories. 
In another study, Parisi et al. (2017) proposed deep neural 
network self-organization for life-long action recognition. 
The system utilizes a set of hierarchical recurrent networks 
for unsupervised learning of action representations with 
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increasingly spatiotemporal receptive fields instead of hand-
crafted 3D features. The growth and the adaptation of the 
recurrent networks are driven by their ability to reconstruct 
temporally ordered input sequences, and this makes the life-
long learning possible for the system. The visual representa-
tion obtained from unsupervised learning is associated with 
the action labels to satisfy the classification purposes.

This article presents instead a biologically inspired cog-
nitive architecture that categorizes an ongoing action in an 
online mode. This means that the system receives informa-
tion about an ongoing event such as body postures or object 
trajectories and continuously analyzes the incoming data in 
order to categorize the action performed. To this end, the 
system needs to be capable of making an automatic segmen-
tation together with categorization while different actions 
are sequentially performed. This is in contrast to the meth-
ods proposed by Wang et al. (2015), Parisi et al. (2015), 
Parisi et al. (2017), Liu et al. (2017), Hou et al. (2016), Ijjina 
and Mohan (2016), which rely on pre-segmented datasets 
of actions.

On the contrary to the methods presented by Ellis et al. 
(2013), Vieira et al. (2012), Lv and Nevatia (2006), the 
approach proposed in this article does not utilize a memory 
to preserve any previous frames since a trained SOM can 
connect consecutive features and as a result determines 
whether the coming frames belong to a particular action or 
not.

In contrast to the deep neural network-based approaches 
for online action recognition (Weinzaepfel et  al. 2015; 
Peng and Schmid 2016; Shou et al. 2016; Singh et al. 2016; 
Ma et al. 2016; Dave et al. 2017), which utilize 2D RGB 
images sensitive to illumination variations, color and texture 
changes, the method presented in this article uses skeleton 
data robust to scale and illumination changes and provides 
us with rich 3D structural information.

Next, it comes with a description of how the biologically 
inspired cognitive architecture proposed in this article per-
forms online recognition of actions. A more thorough com-
parison of the approach proposed in this article with other 
related methods in the literature is available in “Discussion” 
section.

Proposed approach for online action recognition

One can view a particular event as being composed of a 
number of key components so that when the components 
are presented to the system in the right order, it can cor-
rectly categorize the event. As an example, consider the 
event of drinking a cup of coffee. In this case, the key 
components could be ordered as follows: the hand reaches 
the cup, lifts it up, brings it to the mouth and then puts it 
down. Based on situational factors including where the cup 
is located (on the table, on the floor, etc), the properties 

of the cup (size, weight, shape, etc) and who the actor is 
(gender, age, physical condition, etc), the details of the 
ordered key components of the event will vary. The differ-
ence between the instances lies in how these components 
are combined to complete the event. The categorization of 
the action can be a function of kinematic factors such as 
position, speed, acceleration and the rate of performing a 
particular event.

It seems that to solve the problem, the system needs 
to learn the occurrence of forthcoming key components. 
For instance, take the earlier example of head scratching. 
The system tracks the movements of the actor that starts 
with lifting the arm. At this stage, more than one possible 
forthcoming action can be predicted, e.g., head scratch, 
high arm wave, look at watch, forward punch, etc. Since 
there is more than one possible categorization, the system 
requires more information (key components) of the action 
performed to make a final decision. When the forthcoming 
movements fit more with the key components of initially 
possible actions, for example, touching the head then the 
observer can more confidently categorize the action.

Using the key frames is also proposed for semantic seg-
mentation in Li et al. (2017) in order to reduce the com-
putational burden for video streams and improve the real-
time performance. In their approach, the convolutional 
neural network is utilized with spatial stream represented 
by images and temporal stream represented by image dif-
ferences as their inputs.

In this article, a cognitive architecture based on hierar-
chical self-organizing maps (SOM) consisting of two-layer 
SOMs together with a one-layer supervised neural network 
is used. The system contains a preprocessing unit con-
sisting of ego-centered coordinate transformation, scaling 
and attention mechanism. The first-layer SOM is used to 
extract the features of each sequence of an action through 
observation of the preprocessed input data from a Kinect 
camera. The features are presented as the activation of 
neurons in the first-layer SOM. The key activations repre-
senting the actions are segmented by using a sliding win-
dow of fixed size and transferred to the second-layer SOM 
in order to cluster the second map into action categories. 
Finally, the third layer labels the categories that are formed 
in the second SOM and outputs the action names.

Here, the SOM is used for both feature extraction and 
pattern classification. Using the three layers of neural 
network in the hierarchical action recognition architec-
ture introduces an online semi-supervised learning model 
(Ding et al. 2017), which resembles the human learning 
process in which the training samples are often obtained 
successively. In this way, the observations arrive in 
sequence and the corresponding labels are presented very 
sporadically.
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The main contributions of this article are listed as 
following: 

(1)	 This article proposes a novel approach for online rec-
ognition of unsegmented action sequences inspired by 
humans’s event perception and segmentation.

(2)	 The proposed approach is developed in a hierarchical 
cognitive architecture for action recognition. Different 
layers of the architecture are inspired by the biological 
organisms such as the preprocessing layer and the SOM 
layers.

(3)	 Although the performance of the system drops slightly 
in online experiments, the system remains highly accu-
rate in performing the task online, which is more plau-
sible and practical in real-case scenarios.

Methods

The multilayer architecture shown in Fig. 1 is composed of 
several processing layers. The following section describes 
the implementations of the main layers such as preprocess-
ing layer, SOM layers and one layer supervised neural net-
work. More explanations regarding each layer are available 
in the earlier works (Gharaee et al. 2017a, c).

Basic hierarchical SOM architecture

Preprocessing:The input data of an action performer are 
transformed into an ego-centered coordinate system located 

in the joint stomach. The 3D information of the joints right 
hip, left hip and stomach is used to build the ego-centered 
coordinate system, and all skeleton joints 3D information 
are transformed into this new coordinate system in order 
to compensate for having different viewing angles in rela-
tion to the Kinect camera. A detailed description of the ego-
centered coordinate transformation is presented in Gharaee 
et al. (2017a) and Gharaee (2020).

To compensate for the different distances to the Kinect 
camera, a scaling function is also applied to the input data. 
By transforming the skeleton postures into a standard size, 
the representations of the actions performed by the actor 
remain invariant of its different distances to the Kinect cam-
era and as a result are set to a standard size.

Finally, an attention mechanism is applied to the input 
data in order to extract the parts of the body that are most 
active. The attention mechanism used in this architecture is 
inspired by human behavior, paying attention to the most 
salient parts of a scene, which in this case is the part of 
the body that moves the most during a particular action. 
To extract the active joints while performing an action, 
the joints velocity is utilized and the attention mechanism 
selects the four most moving joints. As a result, by reducing 
the dimensionality of the input data in this way, processing 
power and time is saved. Detailed descriptions of the pre-
processing modules used in this architecture are available 
in Gharaee (2020).

SOM-Layers:A SOM consists of an I × J grid of neurons 
with a fixed number of neurons and a fixed topology. Each 
neuron nij is associated with a weight vector wij ∈ Rn having 

Fig. 1   Three-layer action recognition architecture. The first and sec-
ond layers consist of a SOM, and the third layer is one-layer super-
vised neural network. The darker activation in the first SOM rep-
resents the activity trace during an action, which is also shown as 
patterns made of arrows. The darker activation in the second SOM 
shows an example of a clustered region belonging to an action with 

stronger activation effect, and in the center of the region is the most 
activated neuron of the whole map, shown in black. The third layer 
(1-Layer-NN) is composed of the same number of neurons as the 
number of actions, and the darker activation shows the action that the 
system recognized
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the same dimension K as the input vector x(t). Each element 
of the weight vector is represented by three dimensions, i, 
j and k, where 0 ≤ i < I , 0 ≤ j < J , i, j ∈ N  represent the 
corresponding row and column of a neuron in the grid and 
0 ≤ k < K is equal to the input dimension. For a squared 
SOM with equal number of rows and columns, the total 
number of neurons is N × N  . All elements of the weight 
vectors are initialized by real numbers randomly selected 
from a uniform distribution between 0 and 1.

At time t, each neuron nij receives the input vector 
x(t) ∈ Rn . The net input sij(t) at time t is calculated using the 
Euclidean metric:

The activity yij(t) at time t is calculated by using the expo-
nential function for each neuron of the grid:

The parameter � is the exponential factor set to 106 . The role 
of the exponential function is to normalize and increase the 
contrast between highly activated and less activated areas.

The neuron c with the strongest activation or the winner is 
selected because it represents the most similarity to the input 
vector. The weight vectors of all neurons wij are adapted by 
using a Gaussian function centered at a winner neuron, c:

The term 0 ≤ �(t) ≤ 1 shows the adaptation strength in 
which �(t) → 0 when t → ∞ . The neighborhood function 
Gijc(t) = e

−
||rc−rij ||

2�2(t)  is a Gaussian function decreasing with 
time, and rc ∈ R2 and rij ∈ R2 are location vectors of neu-
rons c and nij , respectively. All weight vectors wij(t) are 
normalized after each adaptation. Thus, the winner neuron 
receives the strongest adaptation and the adaptation strength 
decreases by increasing distance from the winner. As a 
result, the further neurons are from the winner the more 
weakly their weights are updated.

Output-Layer The output layer of the architecture is one-
layer supervised neural network, which receives the activ-
ity traces of the second-layer SOM as the input vector with 
length L. The length L is determined by the total number of 
neurons of the second-layer SOM. The output layer consists 
of a vector of N number of neurons and a fixed topology. The 
number N is determined by the number of action categories. 
As an example in the first experiment of this article, the 
number of neurons of the output layer is set to 10, which is 
the number of actions categories.

Each neuron ni is associated with a weight vector wi ∈ Rn , 
and each element of the weight vector is represented by two 

(1)sij(t) = ||x(t) − wij(t)||

(2)yij(t) = e
−sij (t)

�

(3)c = argmaxijyij(t).

(4)wij(t + 1) = wij(t) + �(t)Gijc(t)[x(t) − wij(t)].

dimensions 0 ≤ i < N , 0 ≤ l < L , where all the elements of 
the weight vector are initialized by real numbers randomly 
selected from a uniform distribution between 0 and 1, after 
which the weight vector is normalized, i.e., turned into unit 
vectors.

At time t, each neuron ni receives an input vector 
a(t) ∈ Rn . The activity yi in the neuron ni is calculated using 
the standard cosine metric:

During the learning phase, the weights wi are adapted by

The parameter � is the adaptation strength, and di is the 
desired activity for the neuron ni.

Action pattern segmentation

This section describes the technique utilized in hierarchi-
cal SOM architecture to implement the system for online 
real-time experiments with unsegmented input data of action 
samples. The module implemented to apply this technique 
receives the output vector patterns of the first-layer SOM 
and creates the input signal to the second-layer SOM. To 
this end, it extracts the activations of the first SOM, which 
are elicited as a result of receiving the key postures of an 
ongoing action sample as the input of the system. In this 
way, the output pattern vectors of the first-layer SOM cor-
responding to the input action samples are segmented. Thus, 
the segmentation occurs automatically one step further into 
the system where the action feature vectors are created and 
segmented instead of input posture frames.

Each action sequence is represented by the the consecu-
tive posture frames, while each posture frame is composed 
of the 3D skeleton joints positions. The consecutive posture 
frames are applied to the system as the input.

The kinematics of actions are determined by the spatial 
trajectory of human skeleton components (like the joints) 
during the time interval the action performs. Temporal fea-
tures are specified by the length and the order. The length 
is represented by the time interval during which the action 
performance is completed, and the temporal order is rep-
resented by the sequential orders of the movements. As an 
example, the action high arm wave is performed by the left 
arm of the actor as represented in Fig. 2 part a. The left arm 
is composed of the joints left shoulder, left elbow, left wrist 
and left hand. The 3D temporal characteristics of these joints 
are presented in Fig. 2 parts b, c and d. As shown there, the 
hand and the wrist have almost similar spatial trajectories 
throughout time but on different scales. (The smaller one is 
for the wrist and the larger one is for the hand). The elbow 

(5)yi =
a(t) ⋅ wi(t)

||a(t)||||wi||

(6)wi(t + 1) = wi(t) + �a(t)[yi − di]
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has a much smaller movement during acting compared to 
the hand and the wrist. The shoulder movement is even more 
limited and is thus not presented in Fig. 2.

Both the kinematic and dynamic characteristics of the 
action are crucial for perceiving it, and they introduce the 
spatiotemporal features of the action. There are actions dis-
tinguished from one another only by one of these charac-
teristics. For example, the actions lift up and put down have 
similar posture frames of the arm movements representing 
their kinematics but with completely reversed temporal 
order. Therefore, the temporal order of the posture frames 
is the discriminating factor for these two actions.

On the other hand, if an action is seen as a number of key 
components, for example, in the action horizontal arm wave 
these key components can be lift the arm up, move the arm 
to the left/right direction, move the arm back to the reverse 
direction (right/left) and put the arm down. Based on the 
speed of performing the action, each component can contain 
a number of posture frames that are similar.

The spatiotemporal trajectory of an action extracted from 
consecutive 3D body postures of that action is received by 
the first-layer SOM, and they activate specific areas of the 

map representing the input space. Pattern vectors are formed 
by connecting these ordered activations of the performing 
action. Let us assume that there is a distinct elicited activa-
tion for each posture of an action sequence. Then, as a result 
there will be a series of elicited activations for the whole 
action sequence. So the key components of the action can 
relate to the key postures as well as the key elicited activa-
tions in the SOM.

Thus, action sequences are segmented by extracting and 
segmenting the key activations in the first-layer SOM. In 
the left top part of Fig. 3, all consecutive postures of the 
action hand catch are shown and in the right top part, those 
postures with key activations in the first-layer SOM (key 
postures) are depicted. The right bottom part of Fig. 3 shows 
the key activations of the SOM (action pattern) correspond-
ing to the same action sample.

The same action can have a completely different visual 
appearance. Variations can occur because of performing 
speed, clothing, etc. Based on how an action is performed 
and the nature of the actions, the length of elicited key acti-
vations in the first-layer SOM will be different. If an action 
is performed too slowly, the number of similar consecutive 
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tial trajectory of the hand joint with directions of the movements is 
shown in part b. The spatial trajectories of the wrist and elbow joints 
are shown in parts c and d respectively
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postures will increase, but each posture of an action sample 
is considered as a key posture if and only if it elicits a unique 
activity in the SOM.

Next there is a detailed description of how the proposed 
approach to recognizing unsegmented action sequences is 
developed in hierarchical SOM architecture. Let us start 
with input space of the actions, which is composed of action 
sequences:

where 0 < i < Ns and Ns are the total number of action 
sequences of the dataset, which is 276 for the first 

(7)input =
{
s1, s2, s3,… , si,… , sNs

}
,

experiment. Each action sequence si is composed of the 
consecutive posture frames:

where 0 < j < Np and Np are the total number of posture 
frames representing an action sequence and it varies for dif-
ferent action sequences. A posture frame pj contains spa-
tiotemporal features represented by 3D information of the 
skeleton joints:

(8)si =
{
p1, p2, p3,… , pj,… , pNp

}
,

(9)pj =
{
d1, d2, d3,… , dk,… , dNd

}
,
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where 0 < k < Nd and Nd are the full dimension of spati-
otemporal features. For 3D features of the skeleton joints 
positions, Nd can represent the total number of identified 
joints in 3D. As an example if 20 joints are extracted from 
each posture frame, then Nd = 20 × 3 = 60.

After some preprocessing, the consecutive spatiotem-
poral feature vectors represented by posture frames pi are 
received by the first-layer SOM. The activity traces of the 
first-layer SOM are extracted as 2D positions of the acti-
vated neurons. The consecutive elicited activities of each 
action sequence are:

where 0 < i < Ns and [xq, yq] show the location of a neuron 
on the 2D neural map. The term 0 < q < Li and Li shows the 
full length of a pattern vector varying for different action 
sequences. The consecutive activity pattern vector of all 
action sequences is:

At time t, 2D locations of the elicited activation of first-layer 
SOM, ain(t) = [xt, yt] , are received as the input of pattern 
vector segmentation layer. Based on how the actions are 
performed, there are similar consecutive elicited activation 
representing similar posture frames of the action sequence. 
Such similar consecutive activity traces are first mapped into 
a unique activation. Then, a constant length of segmenta-
tion T is applied to segment the action sequences, which 
determines when the elicited activations representing the 
action starts/ends. The segmented vector, which is the result 
of receiving real-time action sequences, is:

where T is a constant value used for segmentation and Nt is 
the total number of segmented vectors. The segmentation 
size is calculated from the average length of the key activ-
ity traces for all action sequences of the training dataset. 
The same size is applied to the activity traces of all action 
sequences in both training and test dataset. The action pat-
tern vectors should be segmented in a way to encompass key 
activations of all action sequences, so ideally it should not 
be too large to not contain the key activations of more than 
one action sequence and at the same time, it should not be 
too small so that it does not ignore the key activations of a 
single action sequence.

The size of segmentation is usually determined empiri-
cally in the experiments. By training the system for sev-
eral trials, the segmentation size might be updated. As an 

(10)ai =
{
[x1, y1]i, [x2, y2]i,… , , [xq, yq]i,…[xLi , yLi]i

}
,

(11)A =
{
a1, a2, a3,… , ai,… , aNs

}
.

(12)

aout = {[x0, y0], [x1, y1],…[xT , yT ],

[xT+1, yT+1], [xT+2, yT+2],… , [x2T , y2T ],

[x2T+1, y2T+1], [x2T+2, y2T+2],… , [x3T , y3T ],… , [xNtT
, yNtT

]},

example in the first experiment of this article, the longest 
and the shortest activity traces for a subset of dataset con-
tain 59 and 12 key activations, respectively, and after some 
tuning the segmentation size T is set to 30.

Results

The performance of the architecture shown in Fig. 1 is 
evaluated in two experiments. In these experiments, two 
kinds of input data are used. First, the architecture is tested 
on a publicly available dataset called MSR-Action3D 
dataset (Wan 2015). The MSR-Action3D is the first pub-
lic benchmark RGB-D set collected by a Kinect sensor, 
and it provides us with the skeleton data of the actions 
performed. For the second experiment, a new dataset is 
collected, which is composed of 3D postures of a human 
actor performing actions using a Kinect sensor to validate 
the system in online experiments.

The neural modeling framework Ikaros (Balkenius et al. 
2010) has been used to implement the architecture and 
also to perform the experiments. The results were filmed, 
and demo movies were created for both experiments. The 
movies are accessible on the Web page [21].

Experiment 1

In the first experiment, the ability of the hierarchical SOM 
architecture to categorize actions is tested in an online 
mode by using a dataset of actions composed of sequences 
of 3D joints postures. This dataset contains 276 samples 
with ten different actions performed by ten different sub-
jects in two to three different events. Each action sample 
is composed of a sequence of frames where each frame 
contains 20 joint positions expressed in 3D Cartesian coor-
dinates. The actions of the first experiment are: high arm 
wave, horizontal arm wave, using hammer, hand catch, 
forward punch, high throw, draw x, draw tick, draw circle, 
tennis swing.

All action samples of the MSR-Action3D dataset are 
segmented and labeled with the names of the correspond-
ing action, subject and event. Thus, to run the first experi-
ment in online real-time mode the system is provided with 
random selection of unsegmented data of consecutive 
actions as the input and is using the labeling information 
to validate the system performance by comparing whether 
the recognized action by the architecture correctly matches 
the real action performed.

For this experiment, the dataset was split into a train-
ing set containing 80% of the action instances randomly 
selected from the original dataset and a generalization test 
set containing the remaining 20% of the instances. Then, 
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the neural network system was trained with randomly 
selected instances from the training set in two phases, the 
first to train the first-layer 30 × 30 neurons SOM and the 
second to train the second-layer 35 × 35 neurons SOM and 
the output-layer containing ten neurons.

In order to make the result invariant of the order of 
action sequences, different random selections of test sam-
ples are applied to the trained system and the average 
categorization results of all test samples of each action 
are shown in Fig. 4. This process is repeated for different 
random selections of training and test samples from all 
action sequences.

As shown in Fig. 4, the actions are correctly categorized 
already after a few iterations from when their input pat-
terns are applied to the second SOM. One iteration counts 
when a unique posture frame is received by the first-layer 
SOM. Naturally, it takes some iterations for the input pat-
tern to cover all the corresponding key activations as a 
result of first-layer SOM receiving key postures of the cor-
responding action. The correct categorization continues 
for several iterations, and then, it shifts to zero because of 
the updating process, which occurs in the activation of the 
neuron representing the correct action performs. During 

updating process, system starts building an input sequence 
pattern for a new action. In this experiment, the average 
performance of 75% correct categorization is obtained for 
the generalization test data when the segmentation tech-
nique is used.

A certainty measure is also used in which the online cat-
egorization of the action performed is given as output if it 
continues for a number of consecutive iterations, which is 
between five and seven iterations (having around 80% of 
the action input). This is done to achieve a more stable and 
robust recognition result. For this, it is necessary that the 
sliding window contains the key activations of an action 
sequence continuously for a number of consecutive itera-
tions, which is a restriction for the categorization task. The 
75% correct categorizations should be compared to 83% cor-
rect that was obtained (Gharaee et al. 2017b) when the data-
set was segmented in advance in an offline experiment. The 
results show that the performance drops when the segmented 
action pattern vector of fixed length is used, but at the same 
time the system is capable of running online experiments.

What makes the categorization task difficult is when the 
actions have similar components. As an example, take the 
actions high arm wave, using hammer, hand catch, high 
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Fig. 4   Online action recognition experimental results obtained 
through application of segmentation on MSRAction3D dataset. The 
upper row shows the recognition results of the actions: high arm wave 
(1), horizontal arm wave (2), using hammer (3), hand catch (4) and 
forward punch (5), while the lower row depicts the recognition results 

of the actions: high throw (6), draw x (7), draw tick (8), draw circle 
(9) and tennis swing (10). One iteration counts when a unique pos-
ture frame is received by the first-layer SOM. The average recogni-
tion accuracy corresponding to the action performed is calculated and 
multiplied by the action number and plotted
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throw, draw X and draw circle. In all of these actions, the 
first postures begin with lifting the arm up. It can be seen 
as the same movement although the actions are different. 
Figure 5 shows a number of beginning postures of these 
actions, and the plotted postures are similar even though 
they belong to distinct actions. Therefore, the system should 
categorize them as different categories to distinguish them. 
The similarities also increase the delay of the system before 
it makes the right guess as to the action performed.

Experiment 2

In the second experiment, the online experiment presented 
in Gharaee et al. (2016) is developed by implementing the 
segmentation technique proposed in this study. Then, a data-
set of actions composed of 3D joints postures is collected by 
using a Kinect sensor. The actions of the second experiment 
are: high arm wave, forward punch, draw x, draw circle and 
tennis swing.

In this experiment, the same architecture is used with 
similar preprocessing layer to the input data. The system is 
trained on a dataset containing 60 sequences of five differ-
ent actions in which there are 12 different sequences of each 
action. The actions are performed by a single actor in two to 
three different events.

After the system has been trained on the dataset with the 
result of 100% correct categorization accuracy, an online 
real-time generalization test experiment is performed on the 
trained weights of the system in which the actor performed 
similar actions in front of a Kinect camera. The actions 
are selected randomly and performed in several trials. As 
a result of this experiment, an average accuracy of 88.74% 
correct categorization for the generalization test experiments 
is obtained.

The proposed segmentation technique makes it possi-
ble to run online experiments. It means that the system is 
capable of categorizing actions continuously as the actions 
are performed. This is different and more difficult com-
pared to the condition when the system is tested in offline 
mode on pre-recorded datasets. For human–robot interac-
tion and many other applications of action recognition, it 
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Fig. 5   First postures of the six actions performed in order to represent the similarities of these postures that belong to distinct actions

Table 1   Performance of online action categorization task in the real-
time experiments by segmenting action patterns

Offline test experiment 
with segmented actions 
(%)

Online test experiment 
with unsegmented actions 
(%)

Experiment.1 83 75
Experiment.2 94.29 88.74
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is mandatory to be able to perform the categorization in an 
online mode.

In this study, the aim has been to show the capacity of the 
SOM architecture in online implementations. By running 
the experiments online, the system accuracy drops slightly, 
as shown in Table 1, compared to when pre-segmented data 
are given, but the practicality of the online mode outweighs 
the drop.

Discussion

In this article, an action recognition task is performed in 
online real-time experiments. Therefore, the segmentation 
problem in dealing with the datasets of unsegmented action 
sequences needs to be solved. The segmentation problem 
addressed in this article is related to detection of the start 
and/or end of the action performed in a time series of con-
secutive action sequences.

The simple way is to manually segment the untrimmed 
videos of action sequences, which is highly expensive. Most 
of the methods such as (Wang et al. 2015; Parisi et al. 2015, 
2017; Liu et al. 2017; Hou et al. 2016; Ijjina and Mohan 
2016) rely on pre-segmented datasets of actions, and thus, 
they are evaluated with respect to the benchmarks containing 
labeled action sequences.

Among the methods for online action recognition tasks 
such as STOP feature vectors in Vieira et al. (2012), canoni-
cal poses in Ellis et al. (2013) and feature spaces of a joint 
or related multiple joints in Lv and Nevatia (2006), there 
are certain features extracted first. Then, these features are 
applied to a particular classifier to be categorized. An impor-
tant question concerns to what degree the extracted features 
represent the action sequences in other words, how much 
information is lost in the data compression of the features.

The feature extraction in some of these methods is per-
formed for fixed time intervals, for example every five 
frames in Vieira et al. (2012) or between 10 and 30 previous 
frames in Ellis et al. (2013). A limitation of this approach is 
that it requires having access to a certain number of frames 
for each iteration, which necessitates a capacity to pre-
serve previous information and may also result in a delay 
in achieving results.

In contrast to the methods proposed in Ellis et al. (2013), 
Vieira et al. (2012), by learning the sequential relation of the 
consecutive posture frames, the approach proposed here is 
independent of allocation of memory to preserve any previ-
ous frames since a trained SOM can connect consecutive 
features through connecting consecutive activated neurons 
of the lattice, and as a result determine whether coming 
frames belong to a particular action or not.

The system produces the action label when it perceives 
a number of consecutive key frames, which is less than T 

for the majority of the action sequences. There is no preset 
delay considered in the structure of the system, and the delay 
occurs mainly due to the fact that the certainty of the system 
increases when more key features are observed. Because 
of this, there is less delay in obtaining a categorization 
response from the system. This aspect accords with human 
action categorization. As an example, when a person lifts 
up his arm he might want to look at his watch, scratch the 
head or wave to greet a friend. Thus, one cannot recognize 
what he is doing until more key components of the action 
are received.

In the approach proposed in this article, instead a neutral 
pause between actions is not employed as done in Vieira 
et al. (2012), so the whole stream of actions is applied as 
the input of the system. Moreover, the allocation of both the 
start and the end of each action sequence could be critical 
and not only the start of the action, as has been proposed in 
Ellis et al. (2013). The hierarchical SOM system addresses 
the problem of allocating the beginning and ending of the 
actions by learning the sequential relations between the con-
secutive frames so that when it receives two consecutive 
frames, it can detect whether they belong to the same action 
or not.

Although the system proposed in Lv and Nevatia (2006) 
is claimed to be capable of automatic recognition and seg-
mentation of 3D human actions, it is not clear how this sys-
tem works in online experiments because it is tested on a 
collected MoCap dataset of actions. In contrast, this study 
presents an online experiment by using a Kinect sensor in 
real time and the ability of the system is tested on new data 
of online actions.

The neural network-based approaches for online recogni-
tion of actions proposed in Weinzaepfel et al. (2015), Peng 
and Schmid (2016), Shou et al. (2016), Singh et al. (2016), 
Ma et al. (2016), Dave et al. (2017) use the RGB images as 
the input modality. Although the RGB images provide input 
data with rich characteristics of shape, color and texture, 
they are 2D images sensitive to illumination variations, color 
and texture changes, so the performance of the task is largely 
dependent on the quality of the input images. In fact, it is 
quite expensive to produce and use high-quality images of 
actions, since this requires expensive cameras for data col-
lection and the dataset produced by these cameras contains 
high-resolution images of large dimensionality, which neces-
sitates more time and processing power for data analysis. 
Another limitation of these approaches is that most of deep 
learning methods rely on largely labeled training data, which 
add even more cost in running the experiments.

On the other hand, the skeleton data are robust to scale 
and illumination changes and provide us with rich 3D struc-
tural information of the scene by calculating the positions 
of the human joints in 3D space as a high-level feature 
representing the kinematics and dynamics of the actions. 
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Furthermore, skeleton data can be invariant to human body 
rotation and speed of the motions. Similar to the method 
proposed by this article, the skeleton information is utilized 
in an online action detection approach based on joint clas-
sification regression recurrent neural network (see Li et al. 
2016). This method utilizes the 3D joints input similar to the 
method proposed by this article. The proposed approach of 
Li et al. (2016) is tested on an input set of actions containing 
ten different actions and obtains average recognition accu-
racy of 65%. Although different types of action input are 
used to test the model proposed by Li et al. (2016) and the 
model proposed in this article, the proposed model of this 
article obtains better results. As shown in the result section, 
my architecture obtains overall recognition accuracy of 75% 
and 88.74% in online test experiments on two action sets 
containing ten and five different actions.

The proposed architecture here is capable of recognizing 
actions in online experiments. The system extracts key fea-
tures of each action sequence, represented as a pattern vec-
tor, and uses the learned vector as the representative of that 
action sequence. First-layer SOM of the architecture learns 
the consecutive postures of actions and extracts the action 
patterns while the second SOM classifies the segmented pat-
terns into action categories. To increase the categorization 
certainty, it is checked whether the system sends the same 
action as its output during a few iterations and, if so, that 
action is considered as the output of the system. By using 
this method, the performance accuracy drops slightly com-
pared to pre-segmented data, but the certainty of the system 
is improved.

Using cognitive mechanisms such as attention makes 
the system more biologically plausible. Since the attention 
mechanism is inspired by human behavior, paying attention 
to the most salient parts of a scene, in this case, is the part 
of the body that moves the most during a particular action. 
As a result, by reducing the dimensionality of the input data 
in this way, processing power and time is saved and at the 
same time, the performance of the action recognition system 
significantly increased (see also Gharaee et al. 2014).

It should be mentioned that in the approach presented 
in this article, the system is trained on limited dataset of 
labeled action sequences and it is able to generalize, i.e., 
the network can recognize or characterize input it has never 
encountered before.

The results of the experiments performed in this study 
show that the recognition of unsegmented actions in online 
test experiments is quite high. When the performance results 
of this paper are compared to our earlier empirical studies, 
whether they are online experiments (Gharaee et al. 2016, 
2017c) or offline experiments (Gharaee et al. 2017b, a), 
there is a decrease in the acquired recognition accuracy of 
the system. An explanation for this may be that different 
sequences of actions span different time intervals, while a 

constant cutoff length is allocated to all of them through the 
sliding window.

One limitation of using 3D skeleton data is with the 
reduction in accuracy due to the environmental noise and 
the transformation of different modalities. Another limita-
tion with the method proposed in this article is with setting 
the size of segmented action pattern vectors. It requires com-
putational effort to find out the best size for action pattern 
segmentation for the training data. On the other hand, if the 
test actions performed too different from the training sam-
ples, the recognition accuracy might drops.

Conclusion

In summary, this article proposes a new method for human 
action recognition and segmentation using a SOM-based 
system. The hierarchical architecture consists of two-layer 
SOMs together with one-layer supervised neural network. 
The system is validated on different experiments. First, the 
system is tested on the MSR-Action3D dataset, and then, 
it is validated on a dataset collected by a Kinect sensor in 
online experiments.

In order to improve action recognition and segmentation 
performance, it is planned plan to design and implement 
a sliding window of the pattern vectors with variable size 
that is adapted to the actual size of the key activations of 
the corresponding action sequence. Another plan would be 
to develop a method for solving the segmentation problem 
that calculates the prediction error between the actual forth-
coming movement of the actor and the predicted one by the 
system while an action is performed and use this error value 
to determine when the action ends and a new action begins. 
To this end, the associative SOM (see Hesslow 2002 and 
Johnsson et al. 2009) for action recognition and segmenta-
tion could be used.
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