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Abstract
The adiposity invokes innate immune activity, coronary microvascular dysfunction 
and consequently heart failure preserved ejection fraction (HFpEF). Our aim was to 
study the neutrophils profile on obesity and cardiovascular disease and its regulation 
by adipose tissue-secretome and dapagliflozin. We have isolated neutrophils from pa-
tients undergoing open heart surgery (19 women and 51 men). Its migration activity 
was performed with culture-transwell, transcriptional studies of proteolytic enzymes, 
adhesion molecules or receptors were analysed by real-time PCR and proteomics 
(from 20 patients) analysis by TripleTOF mass spectrometer. Differentiated HL-60 
(dHL-60) was used as a preclinical model on microfluidic for endothelial cells attaching 
assays and genes regulation with epicardial and subcutaneous fat secretomes from 
patients (3 women and 9 men) or dapagliflozin 1–10 μM treatments. The transcrip-
tional and proteomics studies have determined higher levels of adhesion molecules 
in neutrophils from patients with obesity. The adhesion molecule CD11b levels were 
higher in those patients with the combined obesity and HFpEF factors (1.70 ± 0.06 a.u. 
without obesity, 1.72 ± 0.04 a.u. obesity or HFpEF without obesity and 1.79 ± 0.08 a.u. 
obesity and HFpEF; p < .01). While fat-secretome induces its upregulation, dapagliflo-
zin can modulated it. Because CD11b upregulation is associated with higher neutro-
phils migration and adhesion into endothelial cells, dapagliflozin might modulate this 
mechanism on patients with obesity and HFpEF.
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1  |  INTRODUC TION

Obesity contributes to cardiovascular disease and development of 
worse outcomes.1 The excessive fat accumulation has hemodynamic, 
inflammatory, mechanical and neurohormonal effects. All of these 
mechanisms participate in heart failure preserved ejection fraction 
(HFpEF).2 Obesity is a chronic low-grade inflammatory state caused, 
in part, by the released pro-inflammatory cytokines of adipose tis-
sue, which can regulate the neutrophils phenotype and activity.3 
These immune cells are the most abundant granulocytes that partic-
ipates in the inflammation-resolution and host-defence mechanism.4 
They have a functional and phenotypic plasticity. The chemokine 
receptors of the neutrophils, such as CXCR-4 or CXCR-2, are the key 
master of their homeostasis. But the downregulation of CXCR-4 and 
upregulation of CXCR-2 increases their mobilization from the bone 
marrow to the blood5 or to adipose tissue recruitment on obesity 
and diabetes.6 This last process is also produced by the upregulation 
of the adhesion molecules, such as integrin alpha M (ITGAM), named 
also cluster of differentiation molecule 11B (CD11B). But the incre-
ment of this molecule also participates on neutrophils migration and 
infiltration into atrium7 and on circulating monocytes indicates an 
adipose tissue-metabolic dysfunction.8 The neutrophils infiltration 
into adipose tissue promotes the release of pro-inflammatory cyto-
kines and enhances the inflammation on this tissue.9 Some of the 
neutrophils-proteolytic enzymes, myeloperoxidase (MPO) or elas-
tase, might start this process.10 Thus, plasma MPO levels, which are 
indicators of circulating neutrophils activity, are raised in patients 
with severe obesity,11 cardiovascular risk and poor prognosis.10 
Although the excessive neutrophils migration into tissues contrib-
utes to inflammatory diseases, the absence of neutrophils-adhesion 
molecules might also reduce their migration activity into inflamed 
tissues and enhance the infections complications after surgery. In 
this line, a study suggested a higher probability of post-surgery in-
fection in morbidly obese patients who had a downregulation of 
the adhesion molecule L-selectin, named also CD62 antigen-like 
family member L (CD62L) without changes on CD11B or the clus-
ter of differentiation 16 (CD16).12 Other molecule, which is upreg-
ulated in these patients, is the metalloproteinase 9 (MMP9).13 This 
protein and lipocalin-2 (LNC-2), also named neutrophil gelatinase-
associated lipocalin (NGAL), are involved in the weaken endothelium 
junctions14 and associated with severity of coronary artery disease 
(CAD).15 There is a clear network evidence between neutrophils 
stage and obesity-related cardiovascular disease progression.16 
However, the knowledge of the main upregulated neutrophils’s 
molecules on each obesity-related cardiovascular disease process 
might be useful as future preventive therapeutic target since some 
of them are not modulated by diet or exercise.17 The inflammatory 
phenotype, that is associated with obesity and HFpEF18 might sug-
gest a differential neutrophils phenotype on these patients. Recent 
drugs that inhibit the sodium-glucose cotransporter 2 (SGLT2i), 

with effects on attenuation of visceral adiposity19 and cardiac in-
flammation via blunting inflammasome20,21 have demonstrated their 
benefits on HFpEF.22 Even, some authors have described the role 
of SGLT2i on neutrophils recruitment and neutrophils extracellular 
traps (NETs) formation,23 which is dependent on glycolysis metab-
olism. Our main objective was to study the neutrophils phenotype 
on patients with obesity and cardiovascular disease, specifically in 
HFpEF, its regulation by adipose tissue-released molecules and the 
SGLT2i, dapagliflozin.

2  |  METHODS

2.1  |  Patients' samples and regulatory approval

We have included preoperative and peripheral blood samples from 
70 patients and epicardial and subcutaneous white adipose tissue 
from 12 patients undergoing open heart surgery after signing the in-
formed consent. All the patients with previous inflammatory disease 
were excluded from the study, following the approved protocol by 
Galician Clinical Committee (protocol code 2019_439, 22/10/2019) 
and the Declaration of Helsinki rules.

2.1.1  |  Neutrophil's isolation

Fasting (for 14 h) blood samples were collected by venepuncture 
into lithium heparin-coated vacutainers before surgery procedure, 
transferred and processed into the laboratory within the first hour. 
Neutrophils were isolated by single-step centrifugation of whole 
blood onto Polymorphprep (Proteogenix, Schiltigheim, France) 
as the manufacturer's recommendation. Briefly, whole blood was 
tipped on Polymorphprep at a ratio (1: 3) and centrifuged at 500g 
for 35 min. The granulocytes layer was carefully removed and re-
suspended in RPMI 1640 media supplemented with 25 mM HEPES 
(Lonza Biologics, Porriño, Spain). Then, cells were washed to re-
move any remaining Polymorphprep and resuspended in media. 
Neutrophil's size and number were determined by Sceptre™ 2.0 Cell 
Counter (Millipore®, Merck Life Science S.L.U., Madrid, Spain). Four 
hundred thousand cells with a specific size between 9 and 12 μm 
were used for proteomics and migration assays. The rest of neutro-
phils was used for RNA analysis.

2.1.2  |  Neutrophil's RNA expression levels

Neutrophils were lysed and RNA was isolated, following the 
manufacturer's protocol, with AllPrep DNA/RNA/Protein Mini 
Kit (Qiagen, Hilden, Germany). After retro-transcription, using 
the Maxima First Strand cDNA Synthesis Kit (Thermo Fisher 
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Scientific, Waltham, MA, USA), 1  μl of cDNA was used for am-
plifying MPO (F: 5′-TTTGACAACCTGCACGATGAC-3′; R:5′-
CGGTTGTGCTCCCGAAGTAA-3′), CD16 (F:5′-CCTCCTG​
TCTAGTCGGTTTGG-3′;R:5′TCGA​GCACCCT​GTACCATTGA-3′), 
olfatomedin-4 (OLFM4) (F:5′-AGCTCTTTCCCAGGTGTTGA-3′; 
R: 5′-AAGC​GTTCCACTCTGTCCAC-3′), CXCR2 (F:5′--3′; R: 5′-
AGT​GTGCCCTGAAGAAGAGC-3′), NGAL (F:5′-CAGG​ACT​
CCACCTCAGACCT-3′; R: 5′-CCAGGCCTA​CCAC​ATACCAC-3′), in-
tercellular adhesion molecule 1 (ICAM) (F:5′-GAGAT​CACCATGG​
AGCGGAAT-3′; R: 5′-ACTG​TGGGGTTCAACCTCTG-3′), MMP9 (F:5′-
ATCCAGTTT​GGTGTC​GCGGAGC-3′; R: 5′-GAAGGGG​AAGACGC​
ACAGCT-3′) S100 calcium binding protein A9 (S100A9) (F:5′-CTC
AAGAAGGAGAATAAGAATGAAAAGG-3′; R: 5 ′-TCAGCTGCTTG
TCTGCATTTG-3′),CD62L (F:5′-AAACCCATGAACTGGCAAAG-3′; 
R: 5′-CGCAGT​CCT​CCTTGTTCTTC-3′), CXCR4 (F:5′-CACTTCA​
GATAACTACACCG-3′; R:5′-ATCCAGACGCCAACATAGAC-3′), 
Lactotransferrin (LTF) (F:5′-CTCCAGACCGCAGACATGAA-3′; R:5′-
CTG​GGAG​GAGAAGGCACATT-3′), neutrophil defensin 3 (DEFA3) 
(F:5′-TCCCAGAAGTGGTTGTTTCC-3′; R:5′-CAGAAT​GCCCA​GAG​
TCTTCC-3′), CD11B (F:5′-CAGCCTTT​GACCTTATG​TCATGG-3′; 
R:5′-CCT​GTGCTGTAGTCGCACT-3′), and b-actin (ACTB) using 
the FastStart SYBR Green Master (Hoffman-La Roche, Basilea, 
Switzerland) at 40 cycles (95°C for 30 s, 58°C for 60 s and 72°C for 
60 s) in a QuantStudio 3 (Thermo Fisher Scientific, Walthman, MA, 
USA). The cycle threshold (Ct) values of the genes were normalized 
by the Ct values of ACTB. The expression levels were represented as 
2(ACTB/gene) algorithm and arbitrary units (a.u.).

2.1.3  |  Western blot

CD11b protein detection in neutrophils from patients with car-
diovascular disease was performed with the extracted protein ac-
cording to kit manufacturer's instructions (Qiagen, All prep. DNA/
RNA/protein). Lysed proteins were resolved on 10% sodium do-
decyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 
and electro blotted onto a nitrocellulose membrane (Trans-Blot 
Transfer Medium 0.45 μm, Merck Millipore, Darmstadt, Germany). 
Membranes were subsequently blocked with 5% bovine serum al-
bumin diluted in Tris-buffered saline with 0.1% Tween 20 (TBS-T) 
and incubated overnight at 4°C or 4 h at room temperature with ap-
propriate antibodies against CD11b (dilution 1:1000; clone 238439, 
cat. no. MA16992, R&D Systems) and anti-β-actin (dilution 1:5000; 
cat. no. sc-69879, Santa Cruz Biotechnology, Heidelberg, Germany), 
Used as secondary antibody alexa fluor 488-rabitt anti-mouse. 
Immunofluorescence bands were detected with Chemidoc MP 
Imager (BioRad Laboratories, Madrid, Spain).

2.1.4  |  Neutrophils' proteomics approach

Neutrophils from consecutively selected 20 patients (10 with and 
10 without obesity) were used for proteomics analysis. Proteins 

were isolated with AllPrep DNA/RNA/Protein Mini Kit (Qiagen, 
Hilden, Germany), then, were separated by SDS-polyacrylamide 
gel (PAGE) and Coomassie stanning. Identification of proteins 
were performed as it was described.24 After trypsin digestion fol-
lowing standard procedure with minor modifications,25 proteins 
were identified by mass spectrometry. Digested peptides were 
separated using Reverse Phase Chromatography. Gradient was 
developed using a micro liquid chromatography system (Eksigent 
Technologies nanoLC 400, SCIEX Foster City, CA) coupled to high-
speed Triple TOF 6600 mass spectrometers (SCIEX) with a micro 
flow source. The analytical column used was a silica-based re-
versed phase column YMC-TRIART C18 150 × 0.30 mm, 3 mm par-
ticle size and 120 Å pore size (YMC Technologies, Teknokroma). 
The trap column was a YMC-TRIART C18 (YMC Technologies, 
Teknokroma) with a 3 mm particle size and 120 Å pore size, 
switched on-line with the analytical column. The loading pump 
delivered a solution of 0.1% formic acid in water at 10 μl/min. The 
micro-pump provided a flow-rate of 5  μl/min and was operated 
under gradient elution conditions, using 0.1% formic acid in water 
as mobile phase A, and 0.1% formic acid in acetonitrile as mobile 
phase B. Peptides were separated using a 90 min gradient ranging 
from 2% to 90% mobile phase B (mobile phase A: 2% acetonitrile, 
0.1% formic acid; mobile phase B: 100% acetonitrile, 0.1% formic 
acid). Injection volume was 4 μl. Data acquisition was carried out 
in a Triple TOF 6600 System (SCIEX, Foster City, CA, USA) using a 
data-dependent workflow. Source and interface conditions were 
as follows: ion spray voltage floating (ISVF) 5500 V, curtain gas 
(CUR) 25, collision energy (CE) 10 and ion source gas 1 (GS1) 25. 
Instrument was operated with Analyst TF 1.7.1 software (SCIEX, 
Foster City, CA). Switching criteria was set to ions greater than 
mass to charge ratio (m/z) 350 and smaller than m/z 1400 with 
charge state of 2–5, mass tolerance 250 ppm and an abundance 
threshold of more than 200 counts (cps). Former target ions were 
excluded for 15 s. Instrument was automatically calibrated every 
4  h using tryptic peptides from Beta Galactosidase as external 
calibrant.

After MS/MS analysis, data files were processed using 
Protein Pilot TM 5.0.1 software from Sciex which uses the algo-
rithm Paragon TM for database search and Progroup TM for data 
grouping. Data were searched using a Human specific Uniprot 
database. False discovery rate was performed using a non-lineal 
fitting method displaying only those results that reported a 1% 
global false discovery rate or better.26,27 The mass spectrometry 
proteomics data have been deposited to the ProteomeXchange 
Consortium via the PRIDE partner repository with the dataset 
identifier PXD032826.

2.1.5  |  Neutrophil's migration

Neutrophils (400,000 cells) from patients with left ventricle ejec-
tion fraction (LVEF) ≥ 50% (n  =  47) were seeded into transwell 
with a pore size of 6 μm (Merck Life Science S.L.U., Madrid, Spain). 
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Migrated cells through transwell were determined after being 
treated with or without complement component 5a (C5a), at a 
final concentration of 11 nM for 90 min. This complement contrib-
utes to the migratory phenotype of neutrophils,28 inflammation 
and insulin resistance on obesity.29 Migrated cells were detached 
with EDTA (0.05 M) for 15 min at 4°C and afterwards migrated 
and non-migrated neutrophils were collected and centrifuged at 
500g for 5 min. Finally, the neutrophils pellet was lysed and fro-
zen at −80°C. The frozen lysed neutrophils were thawed at room 
temperature and DNA was quantified using CyQUANT® GR dye 
(Thermo Fisher Scientific, Waltham, MA, USA), following the 
manufacturer's instructions. After that, fluorescence that repre-
sents also migrated and no migrated neutrophils, was recorded at 
an excitation/emission wavelength (485/525 nm) with (FLUOstar 
OPTIMA). The results were expressed as a percentage of migrated 
regarding total cells in relative fluorescence units (RFU).

2.2  |  HL-60 cell line

HL-60 cell line was differentiated into neutrophils (dHL-60) with 
dimethylsulphoxide (DMSO) at (1.26%) for 6 days. Afterwards, 
400,000 dHL-60 cells/well were cultured in 24 wells-plates treated 
with N-formylmethionyl-leucyl-phenylalanine (fMLP) (Merck Life 
Science S.L.U., Madrid, Spain) at 1uM, a known up-regulator of 
CD11B,30 for 90 min.

2.3  |  Human umbilical vein endothelial cells 
(HUVEC) primary culture

HUVEC were isolated from freshly obtained human umbilical 
cords donated after local ethics committee approval and informed 
consent from mothers, following the Declaration of Helsinki and 
method previously described.31 Cells were cultured on 0.2% (w/v) 
gelatine (Merck Life Science S.L.U., Madrid, Spain) pre-coated 
flasks or dishes (Corning, New York, NY, USA) and grown in com-
plete Endothelial Growth Medium-2 (EGM-2) (Lonza Biologics, 
Porriño, Spain), containing 2% foetal bovine serum (FBS) between 
other components, in a humidity-saturated atmosphere with 5% 
CO2 at 37°C. Cells for the experiments were used between the 
second and seventh passages.

2.4  |  Microfluidic model

The fluidic device was a concave Y-shaped channel made from poly-
dimethylsiloxane (PDMS, Sylgard 184 from Dow Corning) following 
the method previously described.32 For the experiments, HUVEC at 
confluence were detached with trypsin (0.25% in Hank's balanced 
salt solution with 1 mM EDTA (Thermo Fisher Scientific, Waltham, 
MA, USA) and seeded in fibronectin (5  μg/ml in 0.02% gelatine; 
Gibco®) the pre-coated PDMS channels at a concentration of 1.5 

× 106 cells/ml and maintained overnight until the start of the flu-
idic experiment. Perfusion started at 0.5  ml/min with EGM-2 me-
dium to avoid damage to the monolayer, velocity was doubled every 
hour until reach a flow-rate of 6  ml/min, that was maintained for 
4 h. Differentiated HL-60 with or without CD11b upregulation were 
labelled with calcein-AM (Invitrogen®, Thermo Fisher Scientific, 
Waltham, MA, USA) at a 1 μM concentration for 20 min. Then, cells 
were rinsed twice to remove unlabelled calcein-AM and 5 × 105 
were incorporated to the flow under sterile conditions when the 
flow-rate reached the 6 ml/min. At the end of the experiment, the 
flow was stopped, and the channels were washed with saline so-
lution. Fluorescent and contrast phase images (Zeiss Axio Vert.A1, 
Zeiss, Oberkochen, Germany) were obtained to calculate the num-
ber of adhered neutrophils to the endothelial monolayer (ImageJ 
software).33

2.5  |  Supernatants of epicardial and subcutaneous 
fat and dapagliflozin on CD11b of differentiated HL-
60 (dHL-60)

After testing the positive and adhesion activity of treated dHL-60, 
400,000 cells/well were cultured in 24 wells-plates and treated with 
fMLP or conditioned medium of epicardial fat or subcutaneous fat 
(0.2 ml). This conditioned medium was collected from 12 consecu-
tive patients with and without obesity undergoing open heart sur-
gery. Fat biopsies were split into 100 mg pieces and embedded with 
M199 medium (Lonza Biologics, Porriño, Spain) (100 mg/0.5 ml) for 
24 h. Afterwards, the cells were removed by centrifuging and super-
natant was stored at −80°C until be used. At the end, RNA expres-
sion levels of CD11B were determined as it was described above.

Pre-treatment of dHL-60 with dapagliflozin at 1 μM or 10 μM for 
2  h was performed for studying its effects on CD11B expression 
levels after fMLP stimulation.

2.6  |  Statistical analysis

Continues data were tested for normality using the Shapiro–Wilk 
test, and for homoscedasticity with the Levene's test and ex-
pressed by mean ± standard deviation (SD). Categorical variables 
were represented as percentage and differences between them 
were analysed by Pearson's chi-squared test. If the groups differed 
regarding more than two variables, logistic regression was applied 
for discriminate the best variable associated with mRNA expression 
levels. The regulation of neutrophils genes was analysed by compari-
son among groups (non-obesity, obesity without HFpEF or HFpEF 
without obesity and obesity with HFpEF) with anova and post hoc 
Bonferroni test. Comparison between control with or without fMLP 
and fat-conditioned medium or dapagliflozin was carried out using 
the paired Student's t test in the normal distribution data and the 
Wilcoxon signed rank test in the skewed data. Statistical Package for 
Social Science (SPSS) for Windows, version 15.0 (software SPSS Inc) 
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package, was used for all statistical analyses. Statistical significance 
was defined as p < .05.

3  |  RESULTS

3.1  |  Transcriptional and proteomics approaches on 
neutrophils regarding obesity

Patients were classified according to obesity. The main differential 
risk factors and genes expression levels on neutrophils are repre-
sented on Table  1. Although, proteases enzymes, adhesion mol-
ecules and receptors were analysed, only CD11B was upregulated 
on patients with cardiovascular disease and obesity (1.74 ± 0.06 a.u. 
vs. 1.71 ± 0.05 a.u.; p < .05) (Figure  1A). We have selected twenty 
consecutive patients with and without obesity for neutrophils's 
proteomic analysis without other clinical variable different between 
them (Table S1). Two hundred ninety-four proteins were identified in 
total, of whom 130 were common in neutrophils from patients with 
and without obesity, 66 only in patients without obesity and 98 in 
those with obesity. Higher number of the identified proteins with a 
usual localization on azurophilic granules and involved on cellular ad-
hesion and tyrosine kinase signalling were detected in patients with 
obesity (Figure 1B). However, most of the differential proteins were 
detected in one or two patients without reach the statistical signifi-
cance. Only five proteins, ceruloplasmin (CERU), fetuin A (FETUA), 
succinate--CoA ligase [ADP/GDP-forming] subunit alpha (SUCA), 
non-secretory ribonuclease (RNAS2) and eosinophil cationic protein 
(ECP), named also RNAS3, were differential more identified in obe-
sity than non-obesity (Table S2) with statistical significance (p < .05). 
These two last proteins were not identified in patients without 
obesity. The STRING analysis determined that these proteins were 
mainly localized on vesicles and interact with metabolism-involved 
molecules (Figure S1).

3.2  |  Differential genes expression levels on 
neutrophils regarding obesity and HFpEF

We have selected patients with left ventricle ejection fraction 
(LVEF) >50%. Afterwards, we classified patients according obesity 
presence or/and HFpEF. The clinical characteristics are represented 
on Table  2. The main differences regarding CD11B were empha-
sized in patients with obesity and HFpEF (1.70 ± 0.06 a.u. without 
obesity, 1.72 ± 0.04 a.u. obesity or HFpEF without obesity and 
1.79 ± 0.08 a.u. obesity and HFpEF; p < .01). These differences were 
not found on monocytes from the same patients (Figure 2).

3.3  |  Migratory activity of neutrophils

The migration activity of neutrophils was assayed with C5a treat-
ment. Thus, although it did not reach the statistical analysis, the 

neutrophils from patients with obesity and HFpEF had a basal mi-
gratory activity major than neutrophils from the patient's group with 
obesity or HFpEF and those without obesity (1.15 ± 0.80 a.u. with-
out obesity, 1.10 ± 0.88 a.u. obesity or HFpEF without obesity and 
1.61 ± 0.45 a.u. basal/C5a in obesity and HFpEF) (Figure 3A).

3.4  |  CD11B upregulation in differentiated HL-
60 and adhesion

Adhesion activity of neutrophils into endothelial cells after 
CD11B upregulation by fMLP was tested on a microfluidic assay 
(2.9 ± 0.6-fold change; p < .05) (Figure 3B). Supernatants from epi-
cardial and subcutaneous adipose tissue (EAT and SAT) of twelve 

TA B L E  1  Clinical characteristics regarding obesity

Non-obesity 
(n = 45)

Obesity 
(n = 25) p

Age 67 (7) 70 (7) .742

BMI (kg/m2) 26 (2) 33 (5) .000

Gender (female/male) 14/31 5/20 .317

CAD (no/yes) 26/19 7/18 .017

T2DM (no/yes) 32/13 16/9 .539

AHT (no/yes) 17/28 4/21 .057

DLP (no/yes) 9/36 4/21 .680

KF (no/yes) 22/3 44/1 .267

HF (no/yes) 21/23 11/14 .765

LVEF > 50% (no/yes) 15/30 7/18 .645

AF (no/yes) 41/4 20/5 .183

Neutrophils (103/μl) 4.02 (1.48) 4.43 (1.67) .535

Monocytes (103/μl) 0.46 (0.17) 0.44 (0.15) .550

N-MPO 1.62 (0.07) 1.64 (0.09) .340

N-CD16 1.83 (0.12) 1.79 (0.09) .198

N-OLFM4 1.64 (0.10) 1.61 (0.11) .257

N-CXCR2 1.88 (0.05) 1.88 (0.07) .928

N-NGAL 1.68 (0.11) 1.65 (0.12) .318

N-ICAM 1.71 (0.08) 1.69 (0.07) .278

N-MMP9 1.78(0.09) 1.79 (0.13) .624

N-S100A9 2.13 (0.21) 2.11 (0.23) .806

N-L-SEL 1.92 (0.07) 1.91 (0.13) .400

N-CXCR4 1.90 (0.10) 1.90 (0.05) .969

N-LF 1.66 (0.08) 1.68 (0.11) .287

N-DEFA3 1.86 (0.14) 1.88 (0.11) .616

N-CD11B 1.71 (0.05) 1.74 (0.06) .013

N-CD88 1.79 (0.09) 1.73 (0.09) .077

Notes: All genes are expressed in arbitrary units (a.u.); Statistical 
significance: p < .05.
Abbreviations: AHT, arterial hypertension; AF, atrial fibrillation; BMI, 
body mass index; CAD, coronary artery disease; DLP, dyslipidaemia; HF, 
heart failure; KF, kidney failure; N-, neutrophils; T2DM, type 2 diabetes 
mellitus.
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patients were selected in a consecutive manner and matched re-
garding presence/absence of obesity. Clinical characteristics are 
described in Table S1. Differentiated HL-60 were untreated (basal 
medium as control), treated or not with fMLP (positive control), 

conditioned medium from EAT and SAT from patients with or 
without obesity. Our results showed a significant increment of 
CD11B expression levels after fMLP stimulation (1.57 ± 0.33 a.u. 
over control) and conditioned medium of SAT from patients 

F I G U R E  1  Transcriptional profiles of neutrophilic markers from patients without (NOB) and with obesity (OB) (A). Heatmaps represents 
the mRNA expression levels of the neutrophil's markers. Differential genes expression with statistical significance between groups were 
described in CD11b regarding obesity (*p < .05). Proteomics approach: identified proteins on neutrophils from patients without or with 
obesity. Functional classification of neutrophil's proteins from patients without or with obesity (B). The ring charts show a greater number of 
proteins contained in azurophil granules and involved in cell adhesion in obese patients compared with non-obese patients
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Non-obesity non 
HFpEF (n = 20)

Obesity or HFpEF 
without obesity 
(n = 20)

Obesity and 
HFpEF (n = 7) p

Age 69 (8) 69 (7) 67 (9) .826

BMI (kg/m2) 26.60 (2.7) 30.78 (6.6) 33.00 (2.19) .004

Gender (female/male) 6/14 7/13 3/4 .82

CAD (no/yes) 15/5 11/9 1/6 .019

T2DM (no/yes) 17/3 16/4 5/2 .729

AHT (no/yes) 7/13 7/13 2/5 .947

DLP (no/yes) 6/14 2/18 1/6 .258

KF (no/yes) 20/0 19/1 6/1 .267

HF (no/yes) 20/0 11/9 0/7 .000

AF (no/yes) 18/2 17/3 6/1 .886

%C5a 31.20 (13.60) 36.86 (20.07) 15.98 (12.69) .024

%Basal 30.54 (17.39) 33.31 (17.63) 26.18 (19.91) .655

Basal_C5a 1.15 (0.80) 1.10 (0.88) 1.61 (0.45) .126

N-MPO 1.61 (0.07) 1.61 (0.06) 1.68 (0.14) .109

N-CD16 1.81 (0.10) 1.80 (0.09) 1.85 (0.08) .354

N-OLFM4 1.62 (0.07) 1.61 (0.09) 1.67 (0.14) .350

N-CXCR2 1.88 (0.05) 1.88 (0.07) 1.90 (0.04) .693

N-NGAL 1.66 (0.11) 1.66 (0.11) 1.75 (0.15) .200

N-ICAM 1.72 (0.08) 1.68 (0.05) 1.73 (0.10) .196

N-MMP9 1.76 (0.11) 1.77 (0.12) 1.88 (0.12) .071

N-S100A9 2.12 (0.19) 2.15 (0.28) 2.12 (0.18) .911

N-L-SEL 1.93 (0.08) 1.88 (0.15) 1.95 (0.05) .223

N-CXCR4 1.89 (0.12) 1.89 (0.07) 1.89 (0.06) .983

N-LF 1.65 (0.08) 1.64 (0.09) 1.77 (0.14) .011

N-DEFA3 1.84 (0.15) 1.90 (0.13) 1.86 (0.08) .457

N-CD11B 1.70 (0.06) 1.72 (0.04) 1.79 (0.08) .004

N-CD88 1.79 (0.09) 1.75 (0.06) 1.79 (0.07) .485

M-MPO 1.62 (0.09) 1.61 (0.06) 1.59 (0.05) .699

M-CD16 1.84 (0.14) 1.76 (0.10) 1.78 (0.07) .071

M-OLFM4 1.65 (0.12) 1.62 (0.08) 1.60 (0.06) .382

M-CXCR2 1.83 (0.15) 1.75 (0.09) 1.80 (0.09) .126

M-NGAL 1.67 (0.13) 1.64 (0.10) 1.62 (0.06) .544

M-ICAM 1.68 (0.09) 1.64 (0.05) 1.68 (0.05) .175

M-MMP9 1.77 (0.11) 1.70 (0.12) 1.76 (0.03) .156

M-S100A9 2.15 (0.20) 2.00 (0.24) 2.08 (0.19) .118

M-L-SEL 1.95 (0.15) 1.86 (0.06) 1.90 (0.07) .043

M-CXCR4 1.88 (0.16) 1.78 (0.15) 1.84 (0.03) .094

M-LF 1.69 (0.07) 1.67 (0.08) 1.66 (0.05) .404

M-DEFA3 1.89 (0.14) 1.86 (0.06) 1.90 (0.11) .518

M-CD11B 1.71 (0.08) 1.70 (0.05) 1.70 (0.04) .703

M-CD88 1.79 (0.13) 1.72 (0.09) 1.75 (0.07) .182

Notes: All genes are expressed in arbitrary units (a.u.). Statistical significance: p < .05.
Abbreviations: AF, atrial fibrillation; AHT, arterial hypertension; BMI, body mass index; CAD, 
coronary artery disease; DLP, dyslipidaemia; HF, heart failure; KF, kidney failure; M-, monocytes; 
N-, neutrophils; T2DM, type 2 diabetes mellitus.

TA B L E  2  Clinical characteristics 
regarding obesity and HFpEF
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with obesity (1.71 ± 0.62 a.u. over control), p < .05). Although 
there is a slight upregulation of CD11B in differentiated HL-60 
after treatment with EAT-supernatants from obesity (Figure 4A), 
we tested the SGLT2i, dapagliflozin, effects on CD11B modula-
tion. Differentiated HL-60 after fMLP stimulation with or with-
out dapagliflozin pre-treatment has shown a reduction of CD11B 
with dapagliflozin at 1  μM (1.70 ± 0.22 a.u. vs. 1.04 ± 0.24 a.u., 
##p < .01) and 10 μM (1.70 ± 0.22 a.u. vs. 0.69 ± 0.32 a.u., ##p < .01) 
(Figure 4B).

4  |  DISCUSSION

Our results showed a differential neutrophils expression levels of 
CD11B, which can be regulated by adipose tissue-released pro-
teins, regarding obesity and emphasized in patients with HFpEF. 
The higher tyrosine kinase signalling identified by proteomics in 
neutrophils might confirm it because this signal transduction is asso-
ciated with CD11B.34 Because this molecule is involved on transmi-
gration through endothelial cells might suggest its role on inflamed 

endothelium, vasculature dysfunction and explain one of the mecha-
nisms underlying HFpEF. Although further studies are needed, the 
neutrophils migration into heart can also contribute to myocardium 
hypertrophy, fibrosis and dysfunction.35 Moreover, since dapagliflo-
zin reduces the anaerobic glycolysis,36 main metabolism on activated 
neutrophils, and CD11B expression levels, might suggest a protec-
tive role against inflammation response on patients with obesity and 
HFpEF progression.37 Moreover, the higher presence of RNase2 and 
3 in neutrophils from obese patients, which are involved on extra-
cellular matrix remodelling,38 might drive to an impaired myocardial 
regeneration.38,39 Although further studies are needed, the results 
of this study contribute to understand the protective dapagliflozin 
mechanisms underlying HF.40

Obesity is a well-known cardiovascular risk factor, character-
ized by higher white adipose tissue accumulation.41 High fat diet 
contributes to the neutrophils migration into adipose tissue42 and 
increase the pro-inflammatory cytokines (tumour necrosis factor 
or monocyte chemoattractant protein 1) to promote monocytes 
recruitment.43,44 The neutrophils elastase might participate in this 
process.42 Other described released mediators by neutrophils on 

F I G U R E  2  A mRNA expression levels 
of CD11b and LF, in neutrophils (A) and 
monocytes (B) after classifying patients 
according (without obesity, non-obese; 
with obesity or HFpEF without obesity 
and obesity with HFpEF). Dot plots 
represent mean ± standard deviation (SD) 
and individual values. Western blot for 
CD11b and b-Actin protein detection is 
represented below dot plot for CD11B 
mRNA levels. The statistical significance 
among patients was analysed by ANOVAs 
and post hoc test results are depicted as 
*p < .05

(A)

(B)

~127 kDa                                                                                                                     CD11b 

OB    Non-OB Non-OB
&HFpEF

OB&HFpEF    

42 kDa                                                                                                                     β-actin
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obesity were IL-8, MMP-9 or MPO.45 The proteomic analysis has 
identified a differential proportion of involved proteins on tyrosine 
kinase signalling, adhesion or hormones between obese and non-
obese patients with cardiovascular disease. Thus, CD11B, which 
is upregulated in obesity and cardiovascular disease, is an integrin 
that participates in the leukocyte's adhesion activity. The higher ty-
rosine kinase signalling and lower hormone peptide in neutrophils 
from patients with obesity might suggest a higher participation of 
cytokines on CD11B upregulation and adhesion.34,46 In fact, the re-
actome analysis has determined IL-4 and IL-13 signalling as the main 
upregulators of CD11B expression levels (Figure S2). Although some 
authors have described its upregulation in monocytes from patients 
with obesity and hypertension,6 we did not show it. The overlapping 
of both factors (obesity and HF) improved the increment of CD11B. 
This adhesion molecule can participate in the neutrophil's infiltra-
tion into myocardium and HF develop.47 Thus, we observed a higher 
basal migratory activity of neutrophils in those patients with obesity 

and HFpEF. Although C5a is a positive control of neutrophils migra-
tion activity, the presence of circulating chemokines or cytokines 
in these patients through tyrosine kinase signalling might explain 
their basal enhanced transmigration activity. Some authors have 
already described that determinant diastolic dysfunction in HFpEF 
is associated with higher MMP9 plasma levels48 that exacerbates 
the ischaemia-induced chronic HF through the autophagy flux.49 
However, we did not find differences of mRNA expression levels on 
circulating neutrophils. In the same line, our results did not show 
changes on neutrophil's MPO, although high plasma levels were as-
sociated with inflammation and neutrophils involvement in HFpEF.50 
Similarly, plasma ICAM-1 levels were associated with a worse prog-
nosis on HFpEF51 but our neutrophils' transcriptional studies only 
detected changes regarding CD11B in an obesity and HFpEF pheno-
type. The early detection of neutrophils priming by transcriptomic 
changes might predict the cardiovascular disease progression and be 
useful for future therapeutical strategies.

F I G U R E  3  Neutrophil's migration (A). 
The migratory capacity of neutrophils 
(ratio between basal migration/
C5a treatment. Dot plots represent 
individual values and mean ± standard 
deviation (SD). Microfluidic 3D assay 
and differentiated HL60 with an CD11b 
upregulation (B). Differentiated or not 
HL60 at 5 × 105 cells/ml were included 
in a microchannel system under flow 
at 6 ml/min flow-rate during 4 h. After 
this time, adhered neutrophils into the 
endothelial cells-impregnated walls were 
visualized and counted. Differentiated 
HL60 with upregulated CD11b were more 
attached into endothelial cells than those 
with lower CD11b levels (2.9 ± 0.6-fold 
change; *p < .05). C = basal control, (cells 
in basal medium) and fMLP = positive 
control. Representative images of 
attached neutrophils into endothelial 
cells-impregnated microchannels. 
Non-differentiated HL60 (A) showed 
less adhesion to endothelial monolayer 
than the differentiated HL-60 with an 
upregulation of CD11b (B). Differentiated 
HL60 were stained with calcein and 
showed in green (left hand side of the 
figure) in the three main positions at the 
bifurcation [left arm (L), right arm (R) and 
main channel (M)]. At the right-hand side, 
a merged figure with stained neutrophils 
(in green fluorescence) and endothelial 
cells-impregnated microchannel (in 
contrast phase image) is shown

(B)

Differentiated 
HL60 (green)

Endothelial cells
(contrast phase)

200 µm200 µm

(A)
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Although RNase2 or RNase3 (ECP) was identified in 3 of the 9 
obese patients, this molecule was not detected in neutrophils from 
patients without obesity. ECP is released by eosinophils and neutro-
phils.52 Although we did not purify neutrophils with specific antibod-
ies, its mRNA expression levels were previously detected by other 
authors in mature neutrophils.53 This molecule might induce fibrosis 
because stimulates the secretion of tumour growth factor β (TGFβ), 
which is involved on fibroblasts proliferation.38 On the contrary, the 
regulation of this pathway might reduce the neutrophils infiltration 
on myocardium and ameliorates the cardiac remodelling in HFpEF.54 
Other differential proteins expressed in neutrophils from patients with 
obesity and non-obesity were the fetuin A and ceruloplasmin. This is 
mainly produced by liver and modulates the neutrophils oxidative sta-
tus and apoptosis.55 This protein was identified in almost all patients 
except in 5 of them with obesity. In opposite, fetuin A enhances the 
apoptotic cells clearance.56 This protein appears in almost all patients 
except in 6 of them without obesity. In line with these finding, high fe-
tuin A plasma levels were found in patients with obesity and metabolic 
disorders.57 However, proteomics studies cannot distinguish if the 
proteins are coming from cells or from a plasma contamination during 
the neutrophil's isolation protocol. Thus, changes on ceruloplasmin or 
fetuin A might be an artefact of plasma contamination. An important 
result of proteomics approach was the identification of RNase2 and 
RNase3 only in neutrophils from some of the obese patients with 
cardiovascular disease. The deposition of ECP on vascular lesions can 
stimulate platelets activity and accelerate thrombosis.58 This mecha-
nism might explain the obesity-related atherogenesis,59 although ad-
ditional studies are needed to draw this conclusion.

Moreover, the contribution of released factors by SAT on CD11B 
transcription might suggest a systemic effect which could be mod-
ulated by dapagliflozin and protect against the subjacent inflamma-
tion to obesity and cardiovascular disease. Although further studies 
are required for understanding the mechanistic pathways involved 
on CD11B transcriptional regulation, these results suggest a possi-
ble dapagliflozin benefit on inflammation on HFpEF. The results of 
DELIVER trial will clarify these doubts.60

5  |  CONCLUSION

Our results have demonstrated that mRNA expression levels of CD11B 
and ECP are increased in neutrophils from patients with obesity and car-
diovascular disease. The CD11B levels are pronounced in patients with 
obesity and HFpEF. White adipose tissue can contribute to this incre-
ment through its released proteins. The role of this integrin on endothe-
lial adhesion and transmigration suggests new mechanisms involved on 
obesity and HFpEF which could be modulated by dapagliflozin.

6  |  LIMITATIONS

The isolation protocol for neutrophils does not allow delete basophils or 
eosinophils that are about 3%–5% of the total granulocytes. Although, 
the cellular population with a size between 9 and 12 μM was quantified 
by a Sceptre cell counter and used for the analysis, Polymorphprep al-
lows isolate neutrophils with an 80% of purity. Proteomics analysis was 

F I G U R E  4  Released molecules of adipose tissue and mRNA CD11b expression levels in differentiated HL60 cells (A). Differentiated 
HL60 cells were treated with conditioned medium from subcutaneous (SAT) and epicardial (EAT) adipose tissue explants from patients 
without and with obesity. After performing a paired statistical test, CD11b mRNA expression levels were increased in treated cells with 
SAT-conditioned medium from obese patients. Dot plots represents individual values and mean ± SD (n = 6) of CD11b mRNA levels in 
dHL-60. Paired t-test determined statistical differences between control and fMLP **p < .01, control and treatment with SAT-conditioned 
medium from obese patients (SAT OB *p < .05). C = basal control, (cells in basal medium) and fMLP = positive control. Modulation of mRNA 
CD11b expression levels in differentiated HL60 cells by dapagliflozin (DAPA) (B). Differentiated HL60 cells were treated with dapagliflozin 
at different concentrations (1 and 10 μM) for 2 h before or not fMLP treatment. C = control, cells with basal medium, fMLP (cells with fMLP 
1uM treatment), DAPA 1uM or 10 μM (cells with dapagliflozin pretreatment). Dot plots represents individual values and mean ± SD (n = 5) of 
CD11b mRNA levels in differentiated HL-60. Paired t-test determined statistical differences between control and fMLP **p < .01, fMLP and 
fMLP with DAPA 1 or 10 μM pretreatment ##p < .01
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performed with neutrophils lysed but we cannot distinguish if some of 
the proteins are coming from a plasma contamination. The assays lack 
of large animal models with HFpEF with and without obesity did not 
allow us to support the single contribution of obesity to CD11B up-
regulation as well was its modulation by dapagliflozin. Statistical analy-
sis based on regressions was used for solving this experimental need.
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