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Abstract
Objectives To compare spinal bone measures derived from automatic and manual assessment in routine CT with dual energy X-
ray absorptiometry (DXA) in their association with prevalent osteoporotic vertebral fractures using our fully automated frame-
work (https://anduin.bonescreen.de) to assess various bone measures in clinical CT.
Methods We included 192 patients (141women, 51men; age 70.2 ± 9.7 years) who had lumbar DXA and CT available (within 1
year). Automatic assessment of spinal bone measures in CT included segmentation of vertebrae using a convolutional neural
network (CNN), reduction to the vertebral body, and extraction of bone mineral content (BMC), trabecular and integral volu-
metric bone mineral density (vBMD), and CT-based areal BMD (aBMD) using asynchronous calibration. Moreover, trabecular
bone was manually sampled (manual vBMD).
Results A total of 148 patients (77%) had vertebral fractures and significantly lower values in all bone measures compared to
patients without fractures (p ≤ 0.001). Except for BMC, all CT-based measures performed significantly better as predictors for
vertebral fractures compared to DXA (e.g., AUC = 0.885 for trabecular vBMD and AUC = 0.86 for integral vBMD vs. AUC =
0.668 for DXA aBMD, respectively; both p < 0.001). Age- and sex-adjusted associations with fracture status were strongest for
manual vBMD (OR = 7.3, [95%] CI 3.8–14.3) followed by automatically assessed trabecular vBMD (OR = 6.9, CI 3.5–13.4) and
integral vBMD (OR = 4.3, CI 2.5–7.6). Diagnostic cutoffs of integral vBMD for osteoporosis (< 160 mg/cm3) or low bone mass
(160 ≤ BMD < 190 mg/cm3) had sensitivity (84%/41%) and specificity (78%/95%) similar to trabecular vBMD.
Conclusions Fully automatic osteoporosis screening in routine CT of the spine is feasible. CT-based measures can better identify
individuals with reduced bone mass who suffered from vertebral fractures than DXA.
Key Points
• Opportunistic osteoporosis screening of spinal bone measures derived from clinical routine CT is feasible in a fully automatic
fashion using a deep learning-driven framework (https://anduin.bonescreen.de).

•Manually sampled volumetric BMD (vBMD) and automatically assessed trabecular and integral vBMD were the best predic-
tors for prevalent vertebral fractures.

• Except for bone mineral content, all CT-based bone measures performed significantly better than DXA-based measures.
•We introduce diagnostic thresholds of integral vBMD for osteoporosis (< 160 mg/cm3) and low bone mass (160 ≤ BMD< 190
mg/cm3) with almost equal sensitivity and specificity compared to conventional thresholds of quantitative CT as proposed by
the American College of Radiology (osteoporosis < 80 mg/cm3).
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Abbreviations
aBMD Areal BMD
ACR American College of Radiology
AUC Area under the ROC curve
BMC Bone mineral content
BMD Bone mineral density
CI Confidence interval
CNN Convolutional neural network
CPR Curved planar reconstruction
DXA Dual X-ray absorptiometry
HU Hounsfield units
MDCT Multidetector computed tomography
MRI Magnetic resonance imaging
MrOS Osteoporotic Fractures in Men Study
OR Odds ratio
QCT Quantitative computed tomography
ROC Receiver operating characteristics
vBMD Volumetric BMD

Introduction

Osteoporosis is a metabolic bone disease characterized by
impaired bone strength, predisposing the individual to an in-
creased risk of fracture [1]. Osteoporosis affects the popula-
tion worldwide, particularly the elderly in developed countries
[2]. In the European Union, the economic burden of osteopo-
rotic fractures has been estimated at 37 billion euros per year
and is expected to increase by 25% in 2025 [3].

Besides hip fractures, vertebral fractures are the most com-
mon and most consequential osteoporotic fractures [4]. Their
prevalence among Europeans older than 50 years ranges be-
tween 18 and 26% [5]. Vertebral fractures have dramatic con-
sequences that include a reduced quality of life [6], a 2-fold
increase in age-adjusted mortality risk [7], and a 3-fold in-
crease in the risk of additional fractures compared to the nor-
mal population, respectively [8]. All types of osteoporotic
fractures in the elderly foreshadow a high risk of poor out-
comes, so that early medical intervention is strongly advised
[9]. Medical treatment can specifically target patients with a
very high risk profile and long-term management is generally
required [10].

The main problem of osteoporosis is that osteoporotic pa-
tients remain asymptomatic until a fracture occurs. Moreover,
osteoporotic vertebral fractures remain clinically silent with
only 15–30% coming to clinical attention [11]. Thus, the pri-
mary aim in osteoporosis care is to identify people at high risk
of fractures in order to initiate medical treatment before the
first fracture occurs. To date, the standard screening method
includes assessing clinical risk factors and measuring areal

bone mineral density (aBMD) using dual-energy X-ray ab-
sorptiometry (DXA) [1]. However, there are two major con-
cerns with this approach. First, less than half of women (44%)
and even fewer men (21%) with osteoporotic fractures exhib-
ited low aBMD in a large observational study [12], emphasiz-
ing the inherent inaccuracies of DXA [13]. Second, there is
significant variability in the access to DXA services and many
fall short of international quality standards [14]. Yet, other
methods of bone densitometry exhibit even more disadvan-
tages: quantitative computed tomography (QCT) has limited
availability, is more expensive, and is associated with a sub-
stantially higher radiation dose (> 100-fold) [15]. Thus, an
alternative method for osteoporosis screening that would be
readily available and exhibits a higher accuracy than DXA in
predicting major osteoporotic fractures is highly warranted.

With the advent of sufficient computational power “deep
learning”, an approach to machine learning using layers of
convolutional neural networks (CNNs), has lately become
popular. Specifically, CNNs can increase efficiency and accu-
racy in segmentation tasks. We recently introduced a frame-
work for fully automatic segmentation of vertebrae in any CT
dataset within several seconds [16, 17]. This was a corner-
stone for the implementation of an opportunistic screening
tool that can extract spinal bone measures from any CT data
in a fully automatic fashion. Opportunistic quantitative evalu-
ation of preexisting clinical routing CT entails neither addi-
tional costs nor radiation exposure [15]. Building on this
groundwork, we now aim to proof the concept of opportunis-
tic osteoporosis screening using our fully automated frame-
work (https://anduin.bonescreen.de) to assess various bone
measures in clinical CT and to investigate their predictive
value for vertebral fracture assessment.

The purpose of this study was to systematically compare
the association between prevalent osteoporotic vertebral frac-
tures and various measures of spinal bone mass, extracted
from clinical routine CT both automatically and manually,
with the reference standard of DXA.

Methods

Study population

The local institutional review board approved this
monocentric retrospective study (ethics committee’s reference
number 27/19S/SR) and waived written informed consent. In
a query on all patients registered until May 2017 in the insti-
tutional database, we identified 360 patients who had DXA
and CT available including parts of the thoracolumbar spine.
The maximum interval between DXA and CT exams was
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defined as 12 months. We excluded patients with a history of
vertebral metastasis or hematologic disorders (n = 18), with-
out assessable lumbar DXA (n = 34), without assessable CT
(due to visualization of fractured vertebrae only, tube voltage
other than 120 kV, or severely limited image quality; n = 15),
and patients younger than 50 years at the time of DXA exam-
ination (n = 35). CT scans of the remaining 258 patients were
screened for prevalent osteoporotic vertebral fractures using
the semi-quantitative technique by Genant [18]. Based on vi-
sual image review, patients were categorized either as frac-
tured (if grade ≥ 1) or non-fractured. To enable a correct frac-
ture classification and not miss a fracture that was not visual-
ized due to partial coverage of the spine in the CT scan, non-
fractured patients were excluded from the study if not at least
vertebral levels T7 to L4 were visualized (n = 66). This
yielded a final study group of 192 patients, with 148 patients
(77%) showing at least one prevalent osteoporotic vertebral
fracture.

CT image acquisition

CT scans were performed on six different multidetector CT
scanners (Philips Brilliance 64, iCT 256, and IQon, Philips
Medical Systems; Siemens Somatom Definition AS,
Somatom Definition AS+, and Somatom Sensation Cardiac
64, Siemens Healthineers); some scans were performed after
administration of either both oral (Barilux Scan, Sanochemia
Diagnostics) and intravenous (Iomeron 400, Bracco) contrast
medium or only intravenous contrast material (n = 61). Image
data were acquired with all scanners in helical mode with a
peak tube voltage of 120 kVp, a slice thickness of 0.9–1 mm,
and adaptive tube load. Post-contrast scans were acquired in
either the arterial or portal venous phase, triggered by a thresh-
old of CT attenuation surpassed in a region of interest placed
in the aorta or after a delay of 70 s, respectively, depending on
the clinical indication for CT imaging. Sagittal reformations of
the spine with 1-, 2-, or 3-mm slice thickness were recon-
structed with a bone kernel and used for further analysis in
this study. Imaging was performed for various indications not
related to bone densitometry: acute back pain or suspected
spinal fracture (n = 86); cancer staging, restaging, or follow-
up (n = 55); exclusion of acute abdominal pathology (n = 21);
chronic back pain (n = 14); and postoperative examination
(n = 16).

Dual-energy X-ray absorptiometry

Areal BMD of lumbar vertebrae L1 to L4 was assessed in
anterior-posterior projection on a DXA scanner (GE Lunar
Prodigy, GE Healthcare). Scans were performed by trained
technologists and quality was assured through evaluation by
experienced physicians following current recommendations
[19]. Those skeletal sites affected by severe local structural

changes or artifacts were excluded. T-Scores were calculated
in relation to a reference population of healthy young women
who are at their peak bone mass. The overall lowest T-score at
the lumbar spine was reported and accounted for the diagnosis
of osteoporosis [20]. Osteoporosis was defined as T ≤ − 2.5
SD and low bone mass as − 2.5 < T ≤ − 1 SD [21].

Opportunistic CT-based measurements of bone mass

Volumetric and areal measures of bone mass were extracted
from clinical CT scans in at least one of vertebrae T12 to L4.
Measurements were averaged in case multiple levels could be
evaluated.

Asynchronous calibration and correction for contrast medium

CT attenuation in Hounsfield units (HU) was converted to
volumetric BMD using asynchronous calibration. In asyn-
chronous calibration, phantoms with elements of bone-
equivalent density are scanned to calculate HU-to-BMD rela-
tions that are specific for a certain CT scanner and acquisition
protocol. Previously published HU-to-BMD conversion equa-
tions were used for all CT scanners in this study [22]. Most of
these conversion equations were established in scans of a
phantom with hydroxyl-apatite inserts of known density in
milligrams per cubic centimeter (Anthropomorphic
Abdomen Phantom, QRM Quality Assurance in Radiology
and Medicine). Bias of BMD values due to intravenous injec-
tion of contrast medium was corrected for using linear correc-
tion equations for arterial and portal/venous contrast phases
[23]. HU values were converted to BMD and corrected for the
presence of contrast medium prior to any subsequent evalua-
tion of CT data.

Automatic extraction of volumetric bone measures

Volumetric measures were extracted in an automatic multi-
step procedure, which required minimal user interaction and
was implemented in Python. First, vertebrae were automati-
cally segmented in CT scans using a framework of CNNs that
identifies the spine, labels each vertebral body, and creates
segmentation masks [16]. Second, vertebral bodies were sep-
arated from posterior elements in these masks using affine and
deformable transformations to fit templates of vertebral sub-
regions to each vertebral level. Third, segmentation masks of
vertebral bodies were used to extract integral vBMD and bone
mineral content (BMC) or additionally eroded by 5 mm to
exclude cortical bone for sampling trabecular vBMD.

CT-Based areal BMD

Areal BMDwas extracted from virtual DXA-equivalent scans
created from CT data (CT-based aBMD) for vertebrae L1 to
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L4. Only bony tissue inside the vertebral segmentation masks
was included in the virtual images created in posterior-anterior
projection. We chose this approach to take advantage of the 3-
dimensional character of CT scans compared to DXA, thus
postulating its superior accuracy notwithstanding the fact that
it is a monoenergetic technique. Areal BMD was sampled
from the posterior-anterior projections in overlay masks cor-
responding to the contour of vertebral bodies, thus excluding
lateral processes (Fig. 1). Good correlation between CT-based
and DXA-based aBMD of L2 and L3 (R2 = 0.814 and R2 =
0.739, respectively) could be shown for a sample group of 29
patients (22 women, mean age 61.5 ± 13.6 years; Suppl. Fig.
1). Bland-Altman plots showed a bias of − 0.054 and − 0.015
g/cm2 at L2 and L3, respectively, for CT-based aBMD

(Supplementary Fig. 1). Thus, CT-based assessment seemed
to slightly underestimate aBMD compared to DXA.

Quality assurance in evaluation survey

Curved planar reconstructions (CPRs) in sagittal and coronal
view passing through the centroids of vertebral bodies were
generated from CT data and overlaid with segmentation
masks at 40% opacity. Additionally, virtual radiographs in
lateral projection were calculated from CT data. These image
reconstructions served as a survey to identify vertebral levels
that had to be excluded from bone mass assessment due to (1)
vertebral fractures, (2) degenerative changes, or (3) other ab-
normalities (e.g., foreign material) that led to alterations in
bone mass not specific to osteoporosis (Figs. 2 and 3).

Clinical thresholds for volumetric BMD measures

For trabecular vBMD, we used the diagnostic thresholds for
osteoporosis (BMD < 80 mg/cm3) and for low bone mass (80
≤ BMD ≤ 120 mg/cm3) proposed by the American College of
Radiology (ACR) [24]. For integral vBMD, we developed
new diagnostic thresholds in relation to the cut points for
trabecular vBMD. Therefore, we compared the coordinate
points in receiver operating characteristics (ROC) analysis
between trabecular and integral vBMD and determined those
points for integral vBMD with the smallest geometrical dis-
tance to the respective cut points of trabecular vBMD, thus
yielding sensitivity and specificity that matched most closely
for both measures. Cutoff values in milligrams per cubic cen-
timeter were rounded to the nearest step of 5 mg/cm3.

Statistical analysis

Study group characteristics were compared between patients
with and without prevalent vertebral fractures using a two-
sample t test for continuous variables and a chi-squared test
of independence for sex. We investigated the association be-
tween different bone measures and prevalent fracture status in
logistic regression, calculating odds ratios (ORs) and 95%
confidence intervals (CIs) for one SD change. Models were
additionally adjusted for age and sex. Area under the curve
(AUC) was calculated in ROC analysis to test the classifica-
tion performance of all bone measures to predict prevalent
osteoporotic vertebral fractures. ROC curves were compared
with DeLong’s test for two correlated ROC curves using the
pROC package [25]. Statistical analyses were conducted
using SPSS (version 26; IBM) and RStudio (version
1.3.1073; RStudio). Statistical significance was set at a level
p < 0.05 for all statistical tests.

Fig. 1 Contour of vertebra L2 in axial cut (top) used for generation of
CT-based DXA of L1 to L4 in virtual posterior-anterior projection
(bottom)
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Fig. 2 CT scan of an 80-year-old woman with acute back pain visualized
as virtual radiograph in lateral projection (a) and curved planar recon-
structions in lateral and coronal views (b, c, d). A severe crush fractures is
visualized at T7 besides multiple mild to moderate vertebral deformities.
Mild scoliotic deformity at the thoracolumbar junction and spondylosis
with sclerosis (equivalent to Modic III in MRI) is present at L4/5.
Therefore, L4 was excluded from assessment. T12 to L3 yielded a mean
trabecular vBMD of 26.6 mg/cm3, integral vBMD of 135.4 mg/cm3, CT-

based aBMD of 0.768 g/cm2, and BMC of 4.45 g. Trabecular and integral
vBMD are clearly in the osteoporotic range. DXA reported T-score of
− 2.5 SD still in the range of low bone mass (not shown). Masks for
extraction of trabecular (b, c) as well as integral vBMD (d) are shown
as colored overlays. Colored points in the virtual radiograph are automat-
ically estimated by the labelling CNN and represent the vertebral body
centroids. Lateral and coronal curved planes are reconstructed by inter-
polation through these points

Fig. 3 CT scan of a 50-year-old woman performed for breast cancer
staging visualized as virtual radiograph in lateral projection (a) and
curved planar reconstructions in lateral and coronal views (b, c, d). No
osteoporotic vertebral fracture is visualized. There are signs of
spondylosis at L5/S1. Assessment of T12 to L4 yielded a mean trabecular
vBMD of 134.7 mg/cm3, integral vBMD of 204.5 mg/cm3, CT-based
aBMD of 1.008 g/cm2, and BMC of 6.18 g. DXA reported T-score of

− 2.2 SD (not shown). Trabecular and integral vBMD concur with normal
bone mass. DXA T-score corresponds to low bone mass with tendency
towards the threshold for osteoporosis (< − 2.5 SD). Masks for extraction
of trabecular (b, c) as well as integral vBMD (d), are shown as colored
overlays. For more details on image creation please refer to Fig. 2 and
“Methods”
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Results

Overall, 192 patients (141 women, 51 men) with a mean age
of 70.2 ± 9.7 years were included in this study. Fractured
patients (107 women, 41 men; Fig. 2) were significantly older
(72.0 ± 9.3 years vs. 64.3 ± 8.6 years, p < 0.001) and showed
significantly lower values in all bone measures (DXA-based
aBMD, CT-based aBMD, manual vBMD, trabecular vBMD,
integral vBMD, and BMC, p < 0.001 each; DXA-based T-
score, p = 0.001) compared to patients without fractures
(Table 1; Fig. 3).

Prevalent vertebral fractures were significantly associated
with all DXA- and CT-based bone measures irrespective of
adjustment for age and sex (Table 2). However, there were
considerable differences with stronger associations for all CT-
based measures (ranging from OR = 2.5, 95% CI 1.7–3.9 for
adjusted CT-based aBMD to OR = 7.3, 95% CI 3.8–14.3 for
adjusted manual vBMD) compared to DXA-based measures
(OR = 1.9, 95% CI 1.3–2.8 each for adjusted DXA-based T-
score and aBMD) and for both adjusted and unadjusted ORs
(Table 2).

AUC analysis showed that all bone measures were statisti-
cally significant predictors of prevalent vertebral fractures
(Table 3, Fig. 4). However, most CT-based measures per-
formed significantly better than DXA, e.g., when comparing
DXA-based aBMD with intergral, trabecual, or manual
vBMD (AUC = 0.668 vs. 0.735, 0.860, or 0.885,
respectively, p < 0.001 each; Table 3). Only CT-based BMC
showed no significant difference in discriminatory power to
DXA-based aBMD or T-score (AUC = 0.735 vs. 0.668 or
0.67, respectively).

Diagnostic thresholds were determined for integral vBMD
that define osteoporosis with BMD < 160 mg/cm3 and low
bone mass with 160 ≤ BMD < 190 mg/cm3. Those cut points
had almost equal sensitivity and specificity to predict patients
with prevalent vertebral fractures compared to trabecular

vBMD (84% vs. 86% sensitivity and 78% vs. 78% specificity
for the osteoporosis threshold as well as 41% vs. 41% sensi-
tivity and 95% vs. 98% specificity for the low bone mass
threshold, respectively).

Discussion

All automatically assessed CT-based bone measures had a
highly significant association with the prevalence of osteopo-
rotic vertebral fractures with no significant differences be-
tween automatic and manual measurements. Except for
BMC, all CT-based bone measures showed significantly bet-
ter discriminatory power for the prevalence of vertebral frac-
tures compared to DXA-based measures.

We reported on elderly patients that all received DXA
scans, thereby implicating that osteoporosis was already
suspected; thus, the high prevalence of at least mild (Genant
grade 1) osteoporotic vertebral fractures (77%) is not surpris-
ing. These differences in the study population—paired with

Table 1 Study group characteristics stratified by fracture prevalence

Variable No fracture (n = 44) Fracture (n = 148) No fracture vs. fracture Total
(n = 192)

Women, n (%) 34 (77%) 107 (72%) n.s. 141 (73%)

Age, years, mean (SD) 64.3 (8.6) 72.0 (9.3) p < 0.001 70.2 (9.7)

DXA-based T-score, mean (SD) − 1.4 (1.6) − 2.4 (1.6) p = 0.001 − 2.1 (1.6)

DXA-based aBMD, g/cm2, mean (SD) 1.076 (0.219) 0.948 (0.204) p < 0.001 0.978 (0.214)

CT-based aBMD, g/cm2, mean (SD) 0.951 (0.204) 0.752 (0.199) p < 0.001 0.797 (0.217)

Manual vBMD, mg/cm3, mean (SD) 119.7 (38.1) 58.4 (32.7) p < 0.001 72.4 (42.6)

Trabecular vBMD, mg/cm3, mean (SD) 113.5 (34.3) 62.8 (27.5) p < 0.001 74.4 (36.1)

Integral vBMD, mg/cm3, mean (SD) 188.0 (35.5) 140.2 (32.1) p < 0.001 151.2 (38.5)

CT-based BMC, g, mean (SD) 6.42 (1.87) 5.00 (1.68) p < 0.001 5.33 (1.82)

Statistically significant values are in italics; n.s., non-significant at p < 0.05

Table 2 Association of prevalent vertebral fractures with normalized
DXA- and CT-based bone measures calculated as odds ratio (OR) with
95% confidence interval (CI)

Factor Odds ratio (95% CI)

Unadjusted Adjusted for age and sex

DXA-Based T-score 1.8 (1.3–2.6) 1.9 (1.3–2.8)

DXA-Based aBMD 1.8 (1.3–2.6) 1.9 (1.3–2.8)

CT-Based aBMD 2.7 (1.8–4.0) 2.5 (1.7–3.9)

CT-Based BMC 2.1 (1.5–3.1) 3.0 (1.9–4.8)

Integral vBMD 4.8 (2.8–8.1) 4.3 (2.5–7.6)

Trabecular vBMD 6.8 (3.7–12.4) 6.9 (3.5–13.4)

Manual vBMD 7.7 (4.1–14.5) 7.3 (3.8–14.3)
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the focus on prevalent instead of incident fractures and better
sensitivity to detect fractures by using ≤ 1-mm instead of 2.5-
mm axial slices [26]—could lead to the relatively higher ORs
compared to Allaire et al (OR = 2.7 vs. 1.6 for CT-based
aBMD, OR = 4.8 vs. 2.8 for integral vBMD, and OR = 6.8
vs. 2.1 for trabecular vBMD) [27]; though, CT-based BMC
posed an exception (OR = 2.1 vs. 3.3). Similarly, the AUCs
were comparatively higher than in the cited study (AUC =
0.769 vs. 0.715 for CT-based aBMD and AUC = 0.86 vs.
0.815 for integral vBMD); again, this is with the exception
of CT-based BMC (AUC = 0.735 vs. 0.794). Of note, BMC is
the only non-density measure of bone mass considered in this
study. Therefore, the error introduced by bone mass without
structural support for the vertebra’s compressive strength
(e.g., spondylophytes) is not alleviated in any way.

Compared to a study of incident vertebral fractures in the
Osteoporotic Fractures in Men (MrOS) Study cohort of elder-
ly men, the AUCs we report seem considerably higher for

trabecular vBMD (AUC = 0.885 vs. 0.79), but lower for
DXA-based aBMD (AUC = 0.668 vs. 0.72) [28]. In another
study on clinically identified vertebral fractures in the MrOS
cohort, these results were paralleled with relatively higher
values for integral vBMD (AUC = 0.86 vs. 0.82) and lower
values for DXA-based aBMD (AUC = 0.668 vs. 0.76) [29]. In
contrast to a community-dwelling population like the MrOS
cohort, our study group has a selection bias of elderly hospital
inpatients, mainly neurosurgical and oncological and
exhibiting severe spinal degeneration that render areal density
measures inaccurate [30]. In this context, BMC may become
even more inaccurate, as outlined before.

Looking 25 years back in time, the insight that trabecular
vBMD (QCT; AUC = 0.81) offers better discriminatory pow-
er for the prevalence of vertebral fractures than aBMD (DXA;
AUC = 0.65) appears familiar [31]. Here, we were able to
reproduce these results on modern scanner hardware. In this
regard, a recently presented approach to directly estimate
aBMD from CT scans using CNNs trained on DXA and CT
data is questionable because it propagates the inaccuracies of
DXA to CT measures [32]. Previously, efforts to automatical-
ly assess BMD in CT data have been undertaken [33]. Some
automatic tools use HU as a proxy for BMD [34], which is a
method that is expected to produce inaccuracies due to its lack
of scanner-specific calibration to bone [35] as well as high
variations due to presence of contrast material [15, 36, 37].
Of note, automatic assessment of other CT-derived bio-
markers such as muscle attenuation has shown potential to
predict fragility fractures [38]. In contrast to these previous
studies, we report on calibrated bone measures (aBMD,
vBMD, or BMC) that were fully automatically extracted using
fast and reliable CNNs. Using an earlier version of
this automatic framework we were able to predict screw loos-
ening after lumbar spinal instrumentation in patients with os-
teoporotic trabecular vBMD [40]. Given that integral vBMD
performed almost as good as trabecular vBMD, it would be
convenient to have diagnostic thresholds available for integral
vBMD that define osteoporosis and low bone mass similar to
those defined by the ACR for trabecular vBMD [24]—an idea

Table 3 Area under the ROC
curve (AUC) for DXA- and CT-
based bone measures classifying
fracture status of patients

Classifier AUC (95% CI) Vs. DXA aBMD* Vs. CT-based aBMD*

DXA-Based T-score 0.67 (0.581–0.759) n.s. p = 0.003

DXA-Based aBMD 0.668 (0.579–0.756) - p = 0.002

CT-Based aBMD 0.769 (0.693–0.845) p = 0.002 -

CT-Based BMC 0.735 (0.653–0.818) n.s. n.s.

Integral vBMD 0.86 (0.801–0.92) p < 0.001 p < 0.001

Trabecular vBMD 0.885 (0.833–0.938) p < 0.001 p < 0.001

Manual vBMD 0.894 (0.841–0.947) p < 0.001 p = 0.003

*p values for comparison of the respective AUC against the AUC of DXA-/CT-based aBMD; n.s. non-significant
at p < 0.05
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Fig. 4 ROC plots for DXA- and CT-based bonemeasures used to classify
fracture status of patients
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that has been previously proposed [27]. Here, we developed
thresholds of integral vBMD for osteoporosis and for low
bone mass. These diagnostic thresholds should be validated
in follow-up studies investigating fracture risk because we did
not report on incident vertebral fractures.

There are limitations to this retrospective study. As men-
tioned before, there was a selection bias of elderly and mainly
neurosurgical and oncological patients because it was required
that they had received both multidetector CT and DXAwithin
1 year. Thus, osteoporosis was already suspected. However,
this is exactly the population that could benefit from opportu-
nistic osteoporosis screening because CT scans already exist
and DXA scans become prone to inaccuracies due to spinal
degeneration. Moreover, oncological patients would particu-
larly benefit from opportunistic screening because osteoporo-
sis may occur as a side effect of cancer treatment [39].

In conclusion, this study showed that opportunistic and
fully automatic assessment of areal and volumetric bone mea-
sures in clinical routine CT scans is feasible. Volumetric and
integral vBMD showed the best performance of these auto-
matic measures to predict vertebral fractures. DXA-based and
non-volumetric measures performed relatively worse. Finally,
we propose newly developed diagnostic thresholds of integral
vBMD for osteoporosis (< 160 mg/cm3) and low bone mass
(160 ≤ BMD < 190 mg/cm3) that should be validated in up-
coming studies.
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