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Abstract

Myasthenia gravis (MG) is an autoimmune disease characterized by the presence of autoantibodies, mainly against the
acetylcholine receptor (AChR). The mechanisms triggering and maintaining this chronic disease are unknown. MiRNAs are
regulatory molecules that play a key role in the immune system and are altered in many autoimmune diseases. The aim of
this study was to evaluate miRNA profiles in serum of 61 AChR MG patients. We studied serum from patients with early
onset MG (n = 22), late onset MG (n = 27) and thymoma (n = 12), to identify alterations in the specific subgroups. In a
discovery cohort, we analysed 381 miRNA arrays from 5 patients from each subgroup, and 5 healthy controls. The 15
patients had not received any treatment. We found 32 miRNAs in different levels in MG and analysed 8 of these in a
validation cohort that included 46 of the MG patients. MiR15b, miR122, miR-140-3p, miR185, miR192, miR20b and miR-885-
5p were in lower levels in MG patients than in controls. Our study suggests that different clinical phenotypes in MG share
common altered mechanisms in circulating miRNAs, with no additional contribution of the thymoma. MG treatment
intervention does not modify the profile of these miRNAs. Novel insights into the pathogenesis of MG can be reached by
the analysis of circulating miRNAs since some of these miRNAs have also been found low in MG peripheral mononuclear
cells, and have targets with important roles in B cell survival and antibody production.
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Introduction

Myasthenia gravis (MG) is an autoimmune disease leading to

fluctuating muscle weakness and fatigability. Patients with MG

have been reported to have autoantibodies to the acetylcholine

receptor (AChR), to MuSK or to LRP4 proteins [1,2,3]. Most MG

patients, however, have circulating antibodies to AChR [4]. These

antibodies are of the IgG subtype and their synthesis requires

interaction between activated T and B cells [5]. Suggested

mechanisms leading to autoantibody production include errors

in antigen presentation or recognition [6,7,8], tolerance against

self-antigens [9], and proliferation/apoptosis regulation of these

immune cells [10,11].

MG patients with AChR antibodies are clinically heterogeneous

[12]. Age at onset varies, and patients can be divided into early

onset MG (EOMG), when symptoms appear before 50 years of

age, or in late onset MG (LOMG), when they appear after 50

years [13]. Thymic involvement is also variable, more than 80% of

EOMG patients have thymic hyperplasia [14] and 10–15% of

MG patients have thymoma [15]. Thymectomy is used as a

therapeutical intervention in EOMG [16] and in patients with

thymoma. Response to treatment is also diverse. Most patients

respond to steroids or other immunesuppressors, but some patients

are refractory to standard therapy [15]. The heterogeneity is not

only clinical and therapeutic. It may also involve the AChR

antibody titers, which may be high or low independently of the

patient’s clinical status [17]. These findings suggest that the

pathogenic mechanisms involved in each patient subgroup are

different. No biomarkers are available, however, to predict such

heterogeneity.

MiRNAs are small, non-coding regulatory molecules that

modify gene expression by binding to the 39 untranslated region

of their target messenger RNAs [18]. These molecules are key in

several cellular functions, and changes in their expression patterns

have been associated with several diseases [19,20,21,22]. miRNAs

play a diverse role in the immune system, participating in immune

cell development, germinal center response, generation of Ig class-

switched plasma cells, and response to toll-like receptor stimulus

[23]. All of these mechanisms are potentially involved in the

development of AChR antibodies. MiRNA expression profiles

have been previously studied in peripheral blood mononuclear

cells of MG patients [24,25] and let-7c and miR320 have been

found downregulated. Functional studies have shown that these

two miRNAs can contribute to MG induction or progression by

regulating the expression of some cytokines. A recent study has

shown that miR146a is upregulated in patients, and it can be

regulating genes as CD40, CD80, TLR4 and NFkB [26].

Circulating miRNAs have been extensively studied from their

discovery [27,28], as they have been found altered in different

PLOS ONE | www.plosone.org 1 March 2014 | Volume 9 | Issue 3 | e91927

http://creativecommons.org/licenses/by/4.0/


pathological conditions [28,29,30,31]. In circulation, they are in

microvesicles released by cells [32,33,34] or in association with

proteins complexes [35,36]. and their presence in the blood has

been attributed to release by tissue injury [37] or shedding of cell

plasma membrane to the circulation [38]. Their origin is diverse

and they can be released by blood cells [39,40], organs of the body

[37,41,42,43,44] and tumors [45,46,47]. Their function seems to

be related with intercellular or iterorgan communication [38],

because microvesicles containing them can reach their target host

and accomplish their function [39,48,49]. Due to miRNA stability

in fresh or criopreserved samples [27,50] and their easy obtention

from blood, they can be easily studied, monitored and used as

biomarkers for diagnosis [51,52], prognosis [52,53], or treatment

[54,55]. However, serum miRNAs have not been studied in MG.

We studied miRNAs in serum from patients with AchR MG,

analyzing three subgroups: patients with EOMG, LOMG, and

thymoma. We identified 7 miRNAs with low levels in MG patients

when compared with healthy controls. These miRNAs low levels

were not modified by MG subgroup, steroid treatment or

thymectomy.

Materials and Methods

Ethics Statement
The study was approved by the Institutional Ethics Committee

at Hospital de la Santa Creu i Sant Pau and performed in

accordance with the Declaration of Helsinki for Human Research.

All participants gave written informed consent for inclusion.

Patient information
All patients with MG and AChR antibodies included in this

study were followed in our neurology unit. Healthy subjects were

used as controls.

Fifteen MG patients were selected for a discovery cohort: 5 early

onset myasthenia gravis (EOMG), 5 late onset myasthenia gravis

(LOMG) and 5 thymoma patients. We excluded patients with

other severe concomitant diseases. Serum from all patients was

collected before any immunotherapy was started and before

thymectomy in the case of patients with thymoma. Five healthy

subjects were used as controls. Epidemiological data are provided

in Table 1.

A validation cohort with 46 additional MG patients was used to

analyze miRNAs that showed different levels between MG

patients and controls. MG patients included 17 EOMG, 22

LOMG and 7 thymoma patients (Table 2). For this second

miRNA analysis, we included patients without treatment (n = 23),

patients with steroid treatment (n = 10), patients with steroid plus

other immunosuppressor treatment (n = 7), and patients with other

immunosuppressor treatment only (n = 6). We recorded whether

or not patients were thymectomyzed at the moment of sera

collection. Seventeen healthy controls were also analysed.

Sample collection
Serum samples were collected in BD Vacutainer SST tubes

(BD, New Jersey, NJ, EEUU). Tubes were inverted 5 times to mix

silicone and micronized silica particles that accelerate clotting

formation. Tubes were kept in vertical position for 30 minutes to

allow clot formation and centrifuged at 1300 g for 10 minutes. A

clear separation between serum specimens and clot was formed

and serum fractions were aliquoted and stored at 280uC until

used.

miRNA profiling
Total RNA was extracted using the mirVana PARIS kit

according to the manufacturer’s protocol (Applied Biosystems,

Foster City, CA, USA). Reverse transcription was performed using

the TaqMan MicroRNA Reverse Transcription kit (Applied

Biosystems, Foster City, CA, USA) in combination with the

Megaplex RT human Primers Pool A (Invitrogen, Carslab, CA,

USA). For each sample, the Megaplex reverse transcription

product A was preamplified using the Megaplex PreAmp Primers

pool (Applied Biosystems, Foster City, CA, USA). The preampli-

fication product was loaded onto the Taqman array microfluidic

cards Human MicroRNA Array A panel v2.0, for the study of 381

mature miRNAs. Global miRNA profiling was performed by real-

time quantitative PCR on the 7900HT Fast Real Time PCR

System (Applied Biosystems). Individual assays were also studied:

miR15b, miR20b, miR122, miR-140-3p, miR-185, miR-192,

miR-375, miR-483-5p and miR885-5P. The assays were per-

formed in duplicate on the ABI 7900HT (Applied Biosystems, CA,

USA) and the relative levels were calculated using the 22DDCt

method.

Table 1. Subjects analyzed in the discovery cohort.

Early onset (EOMG) Age at onset Sex

33 M

41 M

34 F

36 F

31 F

Average 35

Late onset (LOMG) Age at onset Sex

78 M

81 M

83 M

83 F

79 F

Average 81

Thymoma Age at onset Sex

50 M

71 F

67 F

59 F

49 M

Average 59

Healthy subjects Age Sex

60 F

35 F

70 F

80 M

40 M

Average 57

M = male; F = female.
doi:10.1371/journal.pone.0091927.t001

Serum miRNA Profiles in Myasthenia Gravis Patients

PLOS ONE | www.plosone.org 2 March 2014 | Volume 9 | Issue 3 | e91927



Data analysis
Data analysis was obtained using SDS 2.4 software (Applied

Biosystems). The baselines and thresholds were individually set up

for each miRNA using the RQ Manager 1.2.1 (Applied

Biosystems). To avoid inaccurate results, low-detected miRNAs

(Ct.34) were excluded from downstream analyses. Different types

of quality checks were done for Taqman array following the

methods developed by Heidi Dvinge (http://bioconductor.org/

packages/2.12/bioc/html/HTqPCR.html). For the normalization

we explored the possibility of using delta Ct method that is the

most widely used [56], and geometric mean method because it is

beneficial for miRNA studies [57]. After performing a Q-Q plot, a

boxplots figure, a density plot and a PCA plot for each method, we

observed that no significant differences were appreciated. Thus,

we decided to use the delta Ct approach because it is the most used

normalizing method. In order to normalize raw Ct values, we

computed the delta Ct values based on the mean of U6 snRNA,

miR-30b and miR-483-5p [58]. These three small RNAs showed

stability across the samples and a good detection levels (Ct,27),

two of the principal conditions for an appropriate endogenous

control. MiRNAs were removed from the analysis when they

showed more than 3 samples with ‘‘undetermined’’ or Ct values

.34, or when the standard deviation was below the 20 percentile

of all standard deviations. For the Taqman arrays, the analysis of

differentially miRNAs levels was based on a technique similar to

ANOVA specifically developed for microarray data analysis by

Smith et al. [59] that can also be applied to qPCR data. P-values

were adjusted for multiple comparisons following the false

discovery rate correction [60]. The selection criteria followed for

considering that microRNA levels were different between disease

and control sera was p adjusted value ,0.05. Namely, all the

miRNAs whose p values were ,0.05 after multiple comparison

correction by False Discovery Rate. In the case of individual assays

for miRNA analysis, the data was normalized only by miR483-5p.

Raw data of the Taqman arrays and the qPCR studies is provided

(Table S1). Mann-Whitney or Kruskall Wallis tests were used to

determine significant differences in miRNA individual analysis

(GraphPad Prism v5.0). In this case, the selection criteria followed

for considering that miRNA levels were different was p value

,0.05.

Results

Differential levels of miRNAs in the discovery cohort
After quality checks and filtering, 93 miRNAs were included in

the analysis. Statistical analysis showed that 32 miRNAs showed

different levels (p,0.05) between MG patients and healthy

controls. Figure 1 shows heatmap with unsupervised clustering

of delta Ct values of these 32 miRNAs.

When we compared the different subgroups of MG (EOMG,

LOMG or thymoma) with healthy controls, some miRNAs were in

different levels only in specific MG subgroups (Table S2). All these

miRNAs presented a fold change .2. In the EOMG subgroup,

miR518d was in high levels and let7g, miR-192, miR24, miR15b,

let7e, miR221, miR652, miR-345, miR20b, miR-140 and miR331

were in low levels. We observed low levels of miRNAs specific for

the LOMG subgroup: miR375, miR122, miR185, miR140-3p,

Table 2. MG patients studied in the validation cohort.

Early onset MG Age at onset Sex Treatment Thymectomy

22 F No Yes

42 F No No

28 F No No

20 F No No

11 F OI Yes

16 F No Yes

13 F No No

48 F Cort Yes

28 F Cort No

23 F Cort Yes

16 F OI Yes

40 M Cort No

12 F Cort + OI No

21 F No Yes

25 F Cort Yes

29 F Cort Yes

34 F No Yes

Average 25

Late onset MG Age at onset Sex Treatment Thymectomy

77 F No No

77 M No No

80 F No No

80 M No No

78 M No No

69 M No No

65 M No No

65 M OI Yes

59 M Cort + OI No

64 M OI No

78 F No No

73 M OI No

63 M No No

60 M No No

81 F No No

75 M No No

59 M Cort No

69 M OI No

53 M Cort + OI No

55 M Cort + OI No

74 F Cort No

53 M No No

Average 69

Thymoma MG Age at onset Sex Treatment Thymectomy

33 F Cort + OI Yes

46 M Cort Yes

33 M Cort + OI Yes

44 M No Yes

54 M Cort Yes

14 F Cort + OI Yes

62 F No No

Average 41

M = male; F = female; No = No treatment/No thymectomy; Cort =
corticosteroids; Other immunosuppressors = OI; Yes = Thymectomy.
doi:10.1371/journal.pone.0091927.t002
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miR-885-5p, miR486, miR324-3p and miR16. The subgroup of

thymoma showed no differences in miRNAs when compared with

healthy controls.

Analysis of the selected miRNAs in the validation cohort
Several miRNAs were selected for further analysis based on

their statistical significance in the analysis, and because they had

not been previously related to MG. For confirmation purposes we

chose 3 miRNAs from the EOMG subgroup: miR15b, miR20b,

miR-192; and 5 miRNAs from the LOMG subgroup: miR122,

miR-140-3p, miR-185, miR-375, and miR885-5P. These miRNAs

were analyzed in the validation cohort. Seven miRNAs show lower

levels in MG patients than in controls (Figure 2).

When considering MG subgroups (Figures 2), only miR15b was

found low in the three groups: EOMG, LOMG and thymoma.

For most miRNAs studied (miR122, miR140-3p, miR-185, miR-

192 and miR20b), only EOMG and LOMG showed differences

compared to controls. Levels in the thymoma group did not reach

statistical significance, but the overall trend of the data recapit-

Figure 1. Unsupervised HeatMap showing deltaCt values of the miRNA in differential levels between MG patients and controls in
the discovery cohort. Delta Ct value is the difference between Ct value of the target miRNA minus Ct value of the reference small RNAs. The scale
at top indicates high delta Ct values (in red shades) and low delta Ct values (in green shades). All miRNAs with a p adjusted value ,0.05 are shown.
Early onset MG (green), late onset MG (red), thymoma MG (blue) and healthy controls (purple).
doi:10.1371/journal.pone.0091927.g001

Serum miRNA Profiles in Myasthenia Gravis Patients

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e91927



Serum miRNA Profiles in Myasthenia Gravis Patients

PLOS ONE | www.plosone.org 5 March 2014 | Volume 9 | Issue 3 | e91927



ulated the results of the other MG subgroups. Low levels of

miR885-5p were only found in the LOMG.

Thymectomy and treatment effect in the differential
levels of miRNAs

Thymectomy is standard treatment for patients with thymoma

but it is also used as treatment in EOMG patients without

thymoma [12]. Seventeen patients in our validation cohort had

previously been thymectomised. We evaluated the effect of

thymectomy in miRNA levels and observed no differences

between patients with or without thymectomy (Figure 3). Twen-

ty-three patients in our validation cohort were also receiving

chronic immunosuppressive treatment. We classified patients as

untreated, treated with steroids, treated with other immunosup-

pressive agents, or treated with steroids and other immunosup-

pressive agents. We observe no differences in miRNA levels

between treated and untreated patients regardless of the treatment

(Figure 4).

Discussion

Our study describes the presence of a miRNA profile that is

common to all MG subgroups. We based our clinical phenotype

classification in three main groups: EOMG, LOMG and

thymoma. Fifteen patients were evaluated in a first attempt to

identify specific miRNAs between the different subgroups and

miR15b, miR122, miR-140-3p, miR185, miR192, miR20b, miR-

885-5p and miR-385 were selected for a second analysis in a

validation cohort of 46 patients. Although differences appeared in

our initial analysis, when studying the additional cohort, we did

not find significant differences. One of the studied miRNAs,

miR15b, was in low levels in all three subtypes of MG. EOMG

and LOMG subtypes shared deregulation of other 6 miRNAs.

The miRNA in thymoma patients was similar to that in the other

two subtypes, but it probably did not reach statistical significance

due to the small number of patients in this group. Our study shows

an alteration of the circulating levels of at least 7 miRNAs -

miR15b, miR122, miR-140-3p, miR185, miR192, miR20b and

miR-885-5p - found at low levels in MG patients.

In our attempt to identify specific miRNA profiles for each MG

subtype we did not find differences among subtypes. EOMG and

LOMG classificate two groups of MG patients based on the age of

onset, however, they differ in many other characteristics [61]. In

the case of EOMG patients there is intrathymic lymphoid follicles

and germinal centers [62], there are more women affected than

men [63], and some patients also develop other autoimmune

diseases [64]. In the case of LOMG, thymic abnormalities are

rarely found [65], patients are predominantly male, antibodies

against other proteins in the neuromuscular junction can also be

found [63], and there is an increase of incidence in the last years of

these patients [66]. These differences on clinical presentation are

also in line with some findings that support differences in their

underlying immune-mechanism [67,68]. Despite the MG diver-

sity, some authors suggest that MG is a single condition

constituting a continuous clinical spectrum with overlapping

features [65,69]. In line with these last findings, our study shows

that these two groups share alterations in their circulating miRNA

profile.

Circulating miRNAs can be used as biomarker for diagnosis of

different types of cancer [28,47]. In the case of the thymoma

subtype, we expected to find some effect in miRNA levels due to

the neoplastic process, but no differences were found when

compared with healthy controls. Serum might not be a good

sample to characterize thymus-derived miRNAs, either because its

contribution to blood miRNAs was minor or because thymus-

derived miRNAs were not included in our analysis.

The seven miRNAs with lower levels were not modified by

thymectomy or MG treatment. Some studies have reported that

steroids can modify the miRNA profile [70,71]. To avoid

treatment bias, the initial miRNA analysis was done in untreated

patients. In the validation cohort, we analyzed the effect of several

treatments. MiRNA levels in MG patients remained low,

regardless of the treatment. Interestingly, most of the patients

belonged to the untreated or steroid treated group, and steroids

did not modify the levels of the studied miRNAs. These results

may indicate that common clinical interventions do not target the

release of these circulating miRNAs in MG patients.

MiRNAs presence in circulation has been explained as a way of

intercellular communication [47,72]. The finding of a subset of

miRNAs with low abundance in circulation in serum MG can

indicate different things: lower release of these miRNA to

circulation or a higher uptake of these miRNAs by their targets.

Little is known about how this miRNAs reach and act in their

targets, but more studies address miRNAs cell release [38,39].

Blood cells are one of the contributors to the circulating miRNAs

[31,73]. Previous analysis in MG patients in peripheral blood

mononuclear cells (PBMCs) have defined profiles of differentially

expressed miRNAs compared to healthy population [24,25].

Although their studies focused on other miRNAs, three of the

miRNAs found in low levels in circulation in our MG patients -

miR15b, miR20b and miR185 - were also found in low levels in

PMBCs of MG patients in both analysis. Although a better

approach would be to analyze PBMCs and serum from the same

patients, these findings suggest that some of the miRNAs that we

have found in low levels in circulation proceed from PBMCs.

However, other cells should be contributing to the altered

circulating profile of MG, because miR122, miR140-3p,

miR192 and miR885-5p were not differentially expressed in

PBMCs.

MiRNA-15b and miR20b are two of the miRNAs found at

lower levels in MG patients. The genomic region that codes

miR15b is commonly affected in more than 50% of the patients

with chronic lymphocytic leukemia [74]. This miRNA functions as

a tumor suppressor by inhibiting the expression of B-cell

lymphoma-2 (BCL2) [75], and plays an important role in

controlling B cell homeostasis. BCL2 also has regulatory domains

for the inhibition of miR-20b [76]. BCL2 has been found to play

some role in MG pathology, being up-regulated in germinal

centers where autoreactive B cells normally undergo apoptosis

[77]. Other of the lower circulating miRNAs found in our MG

patients is miR-185. This miR is highly expressed in blood cells

and targets Bruton Tyrosine Kynase (BTK), an effector of the B

cell receptor signaling [78]. When B cells have low levels of

miR185, cells produce high titers of autoreactive antibodies and

lead to autoimmune features in mice. Although our findings are in

extracellular miRNAs, this three miRNAs have also been found in

lower levels in MG PBMCs [24,25], where they can have a role in

Figure 2. miR15b, miR122, miR140-3p, miR185, miR192, miR20b and miR885-5p show low levels in sera of MG patients. No
differences were found for miR375. Graphs show relative quantification of the miRNAs in the 3 MG subtypes; EOMG = early onset MG; late onset MG;
thymoma = thymoma MG; CTRL = healthy controls; *P,0.05; **P,0.01.
doi:10.1371/journal.pone.0091927.g002
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Figure 3. Effect of thymectomy on miRNAs levels in the validation cohort. YES = thymectomyzed MG patient; NO = not thymectomyzed
MG patient.
doi:10.1371/journal.pone.0091927.g003
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MG pathogenesis by regulating key pathways in B cell survival and

autoantibody production.

MiR-122 is highly expressed in liver [76] and has an important

positive role in the regulation of hepatitis C virus replication [79].

Many studies propose miR-122 as a valuable circulating

biomarker for diagnosis and prognosis of different liver diseases

[80,81,82,83]. Although liver must be the main contributor to

serum miR-122, other tissues expressing this miRNA (brain, heart,

kidney, lung, ovary, testis and thymus) can also be participating

[37]. In addition, in in vitro reporter assays [84], miR-122 regulates

the nuclear factor of activated T cells calcium dependent

(NFATC1) and neuronal cell adhesion molecule 1 (NCAM1).

Both are molecules related with the immune system playing roles

in proliferation of T and B cells after antigen stimulation [85], and

regulation of natural killer cells and subpopulations of T cells

[86,87]. Further studies are needed to understand the role of

circulating miR-122 in MG.

Conclusions

In summary, we identified a set of 7 miRNAs that had lower

levels in serum of MG patients. Our findings support that (1)

EOMG and LOMG share a miRNA profile and therefore share

common altered mechanisms; (2) the neoplastic process of a

thymoma does not contribute to changes in the sera levels of the

studied miRNAs; (3) MG treatment intervention does not modify

this set of miRNAs; and (4) the analysis or circulating miRNAs

might provide insights into the pathogenesis of MG since some of

these miRNAs have also been found lower in peripheral

mononuclear cells, and have targets with important roles in B

cell survival and antibody production. Further studies in larger

cohorts of patients will be needed to determine whether these

miRNAs could be useful biomarkers in clinical prognosis or

response to therapy

Supporting Information

Table S1 Raw data for qPCR studies. This table is

composed of three worksheets: Taqman array microfluidic cards

Human MicroRNA Array A panel v2.0; individual analysis study

1; and iIndividual analysis study 2. A = early onset MG; B = late

onset MG; C = thymoma MG; E = healthy control; Ref sample =

same sample to perform relative quantification for all the plates.

(XLSX)

Table S2 Differential miRNA levels in the discovery
cohort. miRNAs showing differences in a specific subgroup of

MG are indicated in bold; Padj = P adjusted.

(XLSX)
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