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c-Jun is a member of the early mammalian transcriptional regulators belonging to the

AP-1 family, which participates in a wide range of cellular processes such as proliferation,

apoptosis, tumorigenesis, and differentiation. Despite its established role in cell survival

upon stress, its participation in the stress response induced by bacterial infections has

been poorly investigated. To study the potential role of c-Jun in this context we choose

the widely studied α-toxin produced by Staphylococcus aureus, a pore-forming toxin

that is a critical virulence factor in the pathogenesis of these bacteria. We analyzed the

effect of α-toxin treatment in the activation, expression, and protein levels of c-Jun in

A549 lung epithelial cells. Furthermore, we explored the role of c-Jun in the cellular

fate after exposure to α-toxin. Our results show that staphylococcal α-toxin per se is

able to activate c-Jun by inducing phosphorylation of its Serine 73 residue. Silencing of

the JNK (c-Jun N-terminal Kinase) signaling pathway abrogated most of this activation.

On the contrary, silencing of the ERK (Extracellular Signal-Regulated Kinase) pathway

exacerbated this response. Intriguingly, while the exposure to α-toxin induced a marked

increase in the levels of c-Jun transcripts, c-Jun protein levels noticeably decreased

in the same time-frame as a consequence of active proteolytic degradation through

the proteasome-dependent pathway. In addition, we established that c-Jun promoted

cell survival when cells were challenged with α-toxin. Similarly, c-Jun phosphorylation

was also induced in cells upon intoxication with the cytolysin produced by Vibrio

cholerae in a JNK-dependent manner, suggesting that c-Jun-JNK axis would be a

conserved responsive cellular pathway to pore-forming toxins. This study contributes

to understanding the role of the multifaceted c-Jun proto-oncoprotein in cell response

to bacterial pore-forming toxins, positioning it as a relevant component of the complex

early machinery mounted to deal with staphylococcal infections.
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INTRODUCTION

Staphylococcus aureus is a primary health concern worldwide,
being the etiological agent of diverse infections that span from
mild to life-threatening (Chambers and Deleo, 2009; DeLeo
et al., 2010). To achieve invasion and colonization of the host,
S. aureus is able to display an assortment of virulence factors
among which the hla-encoded α-toxin (also referred to as α-
hemolysin) outstands as a focus of intense research because of its
key role in the establishment of severe infections such as sepsis or
pneumonia (BubeckWardenburg et al., 2007; Berube and Bubeck
Wardenburg, 2013).

Monomers of Hla assemble to form a homoheptameric ring
which pokes into the plasma membrane to function as a pore-
forming toxin (PFT) (Gouaux, 1998; Menestrina et al., 2001;
Montoya and Gouaux, 2003), an intercommunicating 2 nm
channel that leads to the loss of cellular potassium and calcium
homeostasis (Below et al., 2009; Eichstaedt et al., 2009; Kloft et al.,
2009; Eiffler et al., 2016). In this sense, it has been observed that
staphylococcal α-toxin per se is able to trigger cellular defense
responses such as production of IL-6 and IL-8, autophagy,
and activation of p38 and ERK signaling pathways, among
many others (Ratner et al., 2006; Gonzalez et al., 2008; Below
et al., 2009; Kloft et al., 2009; Mestre et al., 2010). Importantly,
immediate downstream activation targets of MAPKs are the
members of the AP-1 transcription complex—early responsive
genes which have a primary role in central cellular functions
such as proliferation, apoptosis, tumorigenesis, differentiation,
and survival upon stress (Hess et al., 2004; Vesely et al., 2009;
Shaulian, 2010; Yogev et al., 2010; Papoudou-Bai et al., 2016).
One of the main components of AP-1 is c-Jun, the expression
of which can be stimulated by a wide array of extracellular
stimuli (Hess et al., 2004; Anzi et al., 2008; Vesely et al., 2009;
Shaulian, 2010; Yogev et al., 2010; Papoudou-Bai et al., 2016).
Moreover, these same stimuli can turn c-Jun transcriptionally
active by inducing phosphorylation of its residues Ser63 and
Ser73 in its N-terminal domain. This activation is generally
mediated by one or more MAPKs, notably by JNK, ERK, and
p38 signaling pathways (Dérijard et al., 1994; Morton et al.,
2003; Humar et al., 2007; Meng and Xia, 2011). Interestingly,
the three MAPKs are known to become phosphorylated when
cells are exposed to α-toxin or other bacterial PFTs (Ratner
et al., 2006; Aguilar et al., 2009; Below et al., 2009; Kloft et al.,
2009; Porta et al., 2010; Gonzalez et al., 2011; Kao et al., 2011;
Räth et al., 2013). However, apart from a single recent study
(Kao et al., 2011), c-Jun has never been implicated as being
part of the cellular response to PFTs such as the staphylococcal
α-toxin.

By using A549 cells, derived from lung epithelium which
is a target tissue of severe staphylococcal infections such as
necrotizing pneumonia, we show that α-toxin induced early
activation of c-Jun whilst prompting its proteasomal degradation.
Furthermore, we demonstrate that c-Jun contributed to
withstand the damage induced by α-toxin, thereby promoting
cell survival. Thus, we expand the repertory of manifold
functions known for c-Jun by enlisting it as part of the early
cellular response to staphylococcal infections.

MATERIALS AND METHODS

Cell Culture and Treatment With
Staphylococcal α-Toxin
Lung-derived epithelial A549 cells were routinely grown in
Dulbecco’s modified Eagle medium (DMEM; Gibco, Carlsbad,
CA, USA) supplemented with 10% fetal bovine serum (FBS)
(PAA Laboratories, Pasching, Austria) and antibiotics (100U
ml−1 penicillin and 100 µg ml−1 streptomycin; Gibco). Cells
were then left overnight with serum-free medium and further
treated or not with staphylococcal α-toxin (Sigma-Aldrich) 5 µg
ml−1 in fresh medium with 10% FBS for the corresponding time
period.

All laboratory procedures were performed according to the
Laboratory Safety Standards. Staphylococcal α-toxin was handled
following the provider’s recommendations.

siRNA-Mediated Knockdown
c-Jun and MAPKs were silenced in A549 cells using 100 nM
of siRNA for c-Jun and JNK and, 25 nM for p38 and ERK
(SignalSilence R©, Cell Signaling Technology) that were
transfected with LipofectamineTM RNAiMAX (Invitrogen)
following the manufacturer’s recommendations. Controls
were carried out using SignalSilence R© Control siRNA
(SCR). Subsequent to this, cells were exposed or not to the
staphylococcal α-toxin followed by Western blot analyses.

Western Blotting
Western blots were carried out as described previously (Racca
et al., 2011). Briefly, whole protein extracts of A549 cells were
prepared in 5X Laemmli buffer containing 60mM Tris-HCl
pH 6.8, 10% glycerol, 2% sodium dodecyl sulfate (SDS), 1%
2-β-mercaptoethanol and 0.002% bromophenol blue. Total
protein samples were separated on a 10% SDS-PAGE, and
proteins were transferred to a nitrocellulose Hybond-ECL
(Amersham Bioscience). The membranes were blocked in
5% non-fat milk in TBS (20mM Tris-HCl, 150mM NaCl
pH 7.8), supplemented with 0.1% Tween-20 (TBS-T) 1 h
at room temperature. Blots were incubated overnight with
primary antibodies diluted in TBS-T at 4◦C. The following
antibodies were used: rabbit polyclonal anti-c-Jun (H-79;
Santa Cruz Biotech.; 1:1000), rabbit monoclonal anti-phospho-
c-Jun (Ser73) (#9164; Cell Signaling Technology; 1:1000),
mouse monoclonal anti-β-actin (Sigma–Aldrich; 1:3000). After
washing, the blots were incubated with horseradish peroxidase-
conjugated donkey anti-rabbit or sheep anti-mouse IgG
secondary antibodies (Amersham Bioscience; 1:5000) in TBS-T,
at room temperature for 1 h. Protein-antibody complexes
were visualized using an enhanced chemiluminescence
detection system (SuperSignalWest Pico; Pierce) and exposed
to Amersham Hyperfilm ECL. Ponceau staining (0.2% Ponceau,
3% tricloroactic acid, 3% sulfosalicilic acid) was used to verify
protein transference from gel to nitrocellulose membrane.
Band intensities were determined using Gel-Pro Analyzer
software.
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Quantitative Real Time PCR
Total RNA was extracted from cultured cells at the indicated
times using GeneJET RNA Purification Kit (Thermo Fisher
Scientific). One microgram of total RNA was reverse-transcribed
in a total volume of 20 µl using random primers (Invitrogen)
and 50U M-MLV reverse transcriptase (Promega Corp.). c-Jun
specific primers RT-cJun-For (5′-GACGATGCCCTCAACGCC-
3′) and RT-cJun-Rev (5′-AGGATCTTGGGGTTACTGTAGCC-
3′) were manually designed with the assistance of the Netprimer
software (PREMIER Biosoft International, Palo Alto, CA).
Primer sequences were compared against the human genomic
and transcript data base with the BLAST program (Altschul et al.,
1997) at the NCBI Web site. Specific transcripts were quantified
by real time qRT-PCR (ABI 7500 Sequence Detection System,
Applied Biosystems) using the Sequence Detection Software v1.4.
Experiments were performed using 1x SYBR Green PCR Master
Mix (Applied Biosystems). The cycling conditions included a hot
start at 95◦C for 10min, followed by 40 cycles at 95◦C for 15 s and
60◦C for 1min. Specificity was verified by melting curve analysis
and agarose gel electrophoresis. Fold change in gene expression
was calculated according to the 2–11Ct method (Livak and
Schmittgen, 2001). Each sample was analyzed in triplicate. No
amplification was observed in PCR reactions containing water
or RNA samples incubated without reverse transcriptase during
cDNA synthesis as template.

Determination of c-Jun Protein
Degradation
A549 cells were treated with the proteasome pharmacological
inhibitor MG132 (40µM) (Sigma–Aldrich) for 30min prior to
treatment with α-toxin. Additionally, In order to clean off the
effect of newly synthesized c-Jun, cells were also treated with
cycloheximide (CHX) 1µg/ml, which inhibits protein synthesis
by blocking translational elongation. The vehicle DMSOwas used
as control.

Determination of Dehydrogenase Activity
Cell viability was evaluated by measuring dehydrogenase
activity with the CellTiter 96 R© Aqueous Non-Radioactive Cell
Proliferation Assay kit (Promega, Madison WI, USA) following
the manufacturer’s instructions. Briefly, A549 cells were plated in
triplicate wells of a 96-well plate at a density of 3× 103 cells/well.
The cells were incubated for 24 h at 37◦C. Cell viability was
measured after incubation for 2 h with a combined MTS/PMS
solution by reading the plates at 490 nm with a microplate reader
(Bio-Rad, Hercules, CA, USA). Viability was calculated from the
absorbance ratio between values obtained at the end point with
respect to those measured in cells before treatment. All assays
were repeated 4 times.

Assessment of Cell Death by Annexin
V/Propidium Iodide Double Staining Assay
A549 cell were cultured in complete growth medium, silenced
for c-Jun using siRNA and exposed to α-toxin. After different
time points post incubation, cells were harvested, washed and
suspended in cold PBS. The proportion of cells undergoing
cell death was examined by double staining using FITC

labeled Annexin V and propidium iodide, as instructed by the
manufacturer’s protocol. At least 10,000 cells were analyzed
and quadrant analysis was performed using FlowJo software
version 7.6.2 (Tree Star, Inc., Ashland, OR). Viable cells are
refractory to both staining agents. Cells in early stages of
apoptosis stained as Annexin V+/Propidium iodide−, whereas
cells in late apoptosis stained as Annexin V+/Propidium iodide+.
Cells Annexin stained V−/Propidium iodide+ are considered
necrotic.

Statistical Analysis
Statistical analyses were performed using GraphPad Prism
version 5.03 software (GraphPad Sofware, San Diego,
California, USA). The data were analyzed by one-way or
two-way ANOVA when appropriate followed by Dunnet’s
or Bonferroni’s post hoc tests, respectively. Kruskal-Wallis
statistics was used for nonparametric adjustments followed
by Dunn’s multiple comparison test. In all cases, p-values
less than or equal to 0.05 were considered statistically
significant.

RESULTS

α-Toxin Induces c-Jun Activation
Members of the AP-1 transcription factors are naturally
activated via phosphorylation by a wide array of cellular
and extracellular stimuli (Hess et al., 2004; Anzi et al.,
2008; Vesely et al., 2009; Shaulian, 2010; Yogev et al., 2010;
Papoudou-Bai et al., 2016). We wondered whether c-Jun,
an early responsive transcription factor—could be activated
after exposure of lung-derived cells to staphylococcal α-
toxin.

For this purpose, we exposed A549 cells to α-toxin for
different periods of time and followed the activation dynamics
of c-Jun by examining its phosphorylation at its Ser73 residue,
which mediates c-Jun activation. Thus, we analyzed cell
extracts by Western blot using specific antibodies against this
phosphorylated form of c-Jun.

As shown in Figure 1 and Figure S1, staphylococcal
α-toxin significantly induced c-Jun phosphorylation after
only 15min of exposure. Interestingly, this activation
response was accompanied with a concomitant decrease in
the levels of total c-Jun, which is further described later
in this study. These results indicate that α-toxin per se is
sufficient to produce early activation of c-Jun, suggesting
that this transcription factor could play a role in the cellular
response against staphylococcal infections. Furthermore,
staphylococcal α-toxin is able to decrease the protein levels of
c-Jun which might carry subsequent implications in cellular
fate.

The α-Toxin Induced Phosphorylation of
c-Jun Occurs Through the JNK Pathway
Members of the AP-1 transcription factors are naturally
activated via phosphorylation by MAPKs. Since it has already
been observed that bacterial pore forming toxins induce the
phosphorylation of MAPKs (Ratner et al., 2006; Aguilar et al.,
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FIGURE 1 | Activation of c-Jun by staphylococcal α-toxin. Proteins

were extracted from cultures of lung epithelial A549 cells which had been

treated with α-toxin (5 µg ml-1) for 15–120min or left untreated (NT). Western

Blots were performed with specific antibodies against the phosphorylated and

total fractions of c-Jun. Ponceau staining of total transferred proteins were

used as loading controls. The panels illustrate typical blots obtained. Below

the panels, relative protein levels are shown, with NT values normalized to 1.

2009; Below et al., 2009; Kloft et al., 2009; Porta et al., 2010;
Gonzalez et al., 2011; Kao et al., 2011; Räth et al., 2013),
we wondered whether these could, in turn, mediate c-Jun
phosphorylation after exposure to staphylococcal α-toxin. Thus,
we evaluated the role of JNK, p38, and ERK MAPKs in this
response process, being JNK the main activator of c-Jun upon
several different stimuli (Meng and Xia, 2011). In this sense,
we observed the activation response of c-Jun in A549 cells
which had been previously treated with specific pharmacological
inhibitors of JNK, p38, or ERK (Figure 2A, Figure S2A).
Alternatively, we also evaluated their contribution in this process
by silencing the three MAPKs with the use of siRNA (Figure 2B,
Figures S2B, S3).

As shown in Figure 2 and Figure S2, pharmacological
inhibition or knockdown of JNK by siRNA significantly reduced
the phosphorylation of c-Jun in cells treated with α-toxin. On
the contrary, basal and α-toxin-induced phosphorylation of
c-Jun was increased in cells with knockdown or pharmacological
inhibition of ERK. In fact, ERK inhibition/silencing also
increased the levels of total c-Jun protein, counteracting the
decrease observed at 120min (Figure 2, Figure S2). A less clear
effect was observed when the role of p38 was evaluated. While
pharmacological inhibition of p38 produced a statistically non-
significant increase in the activation as well as total protein

levels of c-Jun, siRNA-derived knockdown of p38 produced
no apparent modifications in the Ser73 phosphorylation. This
could be probably attributed to off-target effects of the
pharmacological p38 inhibitor. Alternatively, it is possible that
even siRNA-mediated knock down levels of p38 that still
conserve their intact catalytic capacities could be interfering in
c-Jun phosphorylation.

Taken together, the results suggest that JNK is involved in the
main signaling pathway that leads to α-toxin-induced activation
of c-Jun. On the other hand, ERK seems to be carrying out a
negative regulation on c-Jun in α-toxin-treated cells whereas the
role of p38 is not clear.

Staphylococcal α-Toxin Induces the
Degradation of c-Jun Protein
As shown in Figure 1 and Figure S1, the levels of total c-Jun
decreases drastically after 30–60min of treatment with α-toxin.
There are two main possible pathways to achieve this outcome.
The first is a decrease in the amount of transcripts of c-
Jun followed by the concomitant lesser synthesis of the c-Jun
protein. The second is an alteration in the stability and further
degradation of the c-Jun protein provoked by those α-toxin-
derived stimuli.

In order to test the first possibility, we performed real-time
PCR to measure the amount of c-jun transcripts. We carried
out these analyses by purifying RNA from A549 cells treated
with α-toxin using the same time periods of exposure described
above. Surprisingly, in clear opposition to the decrease observed
in protein levels, the transcript levels of c-Jun increased steadily
until 90min of exposure to the toxin, followed by a slight
decrease at 120min (Figure 3A). This result cannot explain the
observations on protein levels and puts forward the hypothesis of
an increased protein instability and degradation.

To test the second alternative, we analyzed if α-toxin was
able to induce degradation of c-Jun, thereby contributing to
the reduction in the amount of protein observed. It has
been established that elimination of c-Jun naturally occurs
via polyubiquitination and subsequent degradation by the
proteasome (Treier et al., 1994; Salvat et al., 1998). In this sense,
we analyzed the effect of α-toxin on A549 cells which have
been previously treated with cycloheximide (CHX) for protein
synthesis inhibition, or CHX combined with MG132, a selective
proteasome inhibitor. As shown in Figure 3B, the use of MG132
in addition to CHX rescued the levels of c-Jun in cells treated
with α-toxin. Treatment of cells withMG132 alone rendered even
more accumulation of c-Jun protein due to both, the contribution
of de novo c-Jun biosynthesis and impaired degradation upon
proteasome inhibition.

The decrease of c-Jun observed at longer exposures times
(90–120min) in CHX+MG132 treated cells could be due to
partial inhibition of the proteasomal pathway by MG132 or,
alternatively, due to other mechanisms of protein degradation.

These results suggest that a strong induction of protein
degradation but not a reduced expression at mRNA level is the
primary cause of the α-toxin-induced decrease observed in the
protein levels of c-Jun.
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FIGURE 2 | Role of MAPKs in the α-toxin-induced activation of c-Jun. (A) Lung epithelial A549 cells were pretreated with the JNK inhibitor SP600125 (SP) 30µM, the

p38 inhibitor SB203580 (SB) 10µM, or with the MEK1/2-ERK inhibitor U0126 (U0) 10µM for 2 h, with the carrier DMSO being used to obtain uninhibited controls;

(B) MAPKs were silenced using specific siRNAs for JNK (100 nM), p38 (25 nM), and ERK (25 nM). Controls were carried out using SignalSilence® Control siRNA

(SCR). Subsequent to inhibition/silencing, cells were exposed or not to the staphylococcal α-toxin (5 µg ml-1) for 30 and 120min. Finally, the entire cell extracts were

used for Western blotting by using specific antibodies against the phosphorylated and total fractions of c-Jun. Ponceau staining was carried out for loading controls.

Pictures correspond to one representative assay of at least three independent experiments. NT, not treated. Below the panels, relative protein levels are shown, with

NT values normalized to 1.

c-Jun Plays a Protective Role Upon
α-Toxin-Mediated Intoxication
In an initial attempt to investigate the biological contribution
of c-Jun in the context of α-toxin exposure, we silenced c-
Jun expression in A549 cells and we quantified dehydrogenase
activity as a mitochondrial indicator of cell viability (Figure 4A).
We compared the effect of α-toxin on cells with basal or knocked-
down levels of c-Jun (Figure 4C). As shown in Figure 4A, cell
viability upon treatment with α-toxin was significantly higher
in those cells with normal levels of c-Jun compared to those in
which c-Jun was silenced.

In order to reinforce this observation, we also quantified
the induction apoptosis and necrosis by Annexin V/Propidium
iodide double staining assay. In line with the results of
dehydrogenase activity, when comparing cells with normal
or silenced levels of c-Jun exposed to α-toxin we observed
that knockdown of c-Jun increased the proportion of late
apoptosis/necrosis (Figure 4B).

Taken together, the results from dehydrogenase activity
and late apoptosis/necrosis quantification clearly indicate that
c-Jun contributes to cope with the damage produced by the
pore-forming α-toxin, thus promoting cell survival. Our results
suggest that in the context of staphylococcal infections, c-Jun
constitutes a part of the early-responsive repertory favoring cell
survival.

DISCUSSION

In the present study we evaluated the effect of α-toxin, a
main S. aureus virulence factor on c-Jun, a central early
responsive cell cycle modulator that belongs to the AP-1 family

of transcriptional regulators. c-Jun participates in a wide range of
cellular functions such as proliferation, apoptosis, tumorigenesis
and differentiation (Wisdom et al., 1999; Hess et al., 2004;
Papoudou-Bai et al., 2016). In this work we expand this range
by providing insights in a poorly explored field of c-Jun, which
is its role in the context of bacterial infections. Our results
indicate that the staphylococcal α-toxin per se is sufficient to
produce early phosphorylation of c-Jun at its Ser73 residue,
which has been profusely documented as a post-translational
modification leading to an enhanced transcriptional activity
of c-Jun. Noteworthy, this increased phosphorylation level is
accompanied by a decrease in the amount of total c-Jun because
of proteasomal degradation.

A549 cells derive from human lung adenocarcinoma, and
as such they might show intrinsically unbalanced responses
to different stimuli such as toxins. Interestingly, this c-Jun
response seems not to be confined to a response of A549
cells to staphylococcal α-toxin, since own preliminary results
showed that MEF cells underwent an equivalent c-Jun activation
process along with a decrease in total protein levels of c-Jun
after being exposed to Vibrio cholera cytolysin (VCC) (Figure
S4), another PFT able to trigger severe pathogenic processes on
eukaryotic cells (McCardell et al., 1985; Gutierrez et al., 2007;
Saka et al., 2007, 2008; Khilwani and Chattopadhyay, 2015).
Thus, this early phosphorylation-mediated activation of c-Jun
could play an important role in the cell defense response upon
intoxication with bacterial PFTs. In this sense, the results from
dehydrogenase activity and Annexin V/Propidium iodide double
staining clearly indicate that c-Jun contributes to cope with
the damage produced by the pore-forming α-toxin favoring cell
survival. In line with previous reported information, we observed
that α-toxin mediated death, in cells with or knock-down levels
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FIGURE 3 | Effect of α-toxin on the expression and stability of c-Jun. (A) Total

mRNA was extracted from A549 cells which had been treated with α-toxin (5

µg ml-1) for 15 to 120min or left untreated (NT). Subsequently, the amounts of

c-Jun transcripts were determined by Quantitative real time PCR.

Measurements were carried out in triplicate for three independent experiments,

and the results are expressed as means with their SEM. Statistically significant

differences at P < 0.05 are identified by * (Kruskal-Wallis followed by Dunn’s

multiple comparison test). (B) A549 cells were treated with the translational

inhibitor cycloheximide (CHX, 1 µg ml-1), the proteasome pharmacological

inhibitor MG132 (40µM) or, the combination of both for 30min, with the carrier

DMSO being used for control experiments. Subsequently, cells were exposed

to α-toxin (5 µg ml-1) for 15 to 120min or left untreated (NT). Western Blots

were performed with specific antibodies against c-Jun. Ponceau staining of

total transferred proteins were used as loading controls. The panels illustrate

typical blots obtained from 4 independent experiments.

of c-Jun involved mainly necrosis and late apoptosis/necrosis
whereas apoptosis was almost undetected (Essmann et al., 2003).
Coincidently, a previous study described a similar protective role
for c-Jun when cells are exposed to two other bacterial pore
forming toxins, namely CryB5 from Bacillus thuringiensis and
streptolysin O from Streptococcus pyogenes (Kao et al., 2011).
In addition, these authors also showed that both PFTs are able
to increase the transcripts of c-Jun as we did observe here
for α-toxin. Nevertheless, here we showed that the increase
in transcripts induced by α-toxin was clearly opposite to the

response at protein levels. It has been demonstrated that the
c-Jun promoter and gene expression can be activated by its own
c-Jun/AP1 protein product through an autocrine amplification
loopmechanism (Angel et al., 1988b;Meng andXia, 2011). In this
sense, the α-toxin-induced activation of c-Jun protein could help
to explain the increase of c-Jun mRNA levels. Concomitantly,
c-Jun degradation could be part of a cell safeguard mechanism
to avoid deleterious effects of prolonged c-Jun activation on
cell physiology. Another exciting possibility is that the increased
expression of c-Jun mRNA is the consequence of an early cell
response aimed to cope with the damage triggered by α-toxin,
which involves degradation of c-Jun protein as part of the
pathogenic process.

Activation of c-Jun can be mediated by different MAPKs,
depending on the stimulus (Dérijard et al., 1994; Morton et al.,
2003; Humar et al., 2007; Meng and Xia, 2011). We observed
that α-toxin-dependent activation of c-Jun occurs mainly via
JNK. Accordingly, VCC-induced activation of c-Jun in MEF
cells was also abrogated upon pharmacological inhibition of JNK
(Figure S4). In agreement with the decrease in c-Jun observed
after inhibition/silencing of JNK (Figure 2), it has been reported
that phosphorylation of c-Jun on its Ser73 by JNK protects c-
Jun from ubiquitination, thereby prolonging its half-life (Fuchs
et al., 1996). Interestingly, JNK but not p38 was found to be
a key regulator of the transcriptional and functional response
to PFTs in a C. elegans model (Kao et al., 2011). On the other
hand, ERK exerts a negative regulation on c-Jun. In relation to
this, we have recently observed that silencing of ERK exacerbates
the activation of JNK as part of a crosstalk phenomenon that
occurs when cells are intoxicated with α-toxin (unpublished
observation). This could help to explain the increase in the toxin-
induced activation of c-Jun in ERK-depleted cells. However,
another possibility is that ERK could be helping in the instability
of c-Jun caused by α-toxin. In this sense, it has been observed
in vitro that ERK is able to phosphorylate c-Jun at its Ser243
residue (Morton et al., 2003), which was in turn established to
be required for GSK3-dependent phosphorylation of Thr239 and
further polyubiquitination and degradation (Wei et al., 2005).
Thus, it is tempting to speculate that the early activation followed
by proteasomal degradation of c-Jun could serve to trigger the
cell nuclear response while avoiding the positive effects of c-Jun
on cell proliferation (Eferl and Wagner, 2003).

It has been reported that staphylococcal α-toxin is also able
to modify the expression of c-Fos (Below et al., 2009; Kao
et al., 2011), the main partner of c-Jun to compose the AP-
1 transcription factor complex (Angel et al., 1988a; Harshman
et al., 1988; Rauscher et al., 1988a,b). However, in opposition to
the degradation of c-Jun that we observed here, α-toxin induces
an increase in the protein levels of c-Fos (Below et al., 2009),
with this induced expression being positively regulated by the
MEK1/2-ERK pathway.

This study sheds light on a previously underexplored role of
c-Jun as an early regulator of cellular response to bacterial PFTs.
Undoubtedly, future transcriptome/proteome-based studies as
well as deeper analyses of its post-translational modifications will
be required to fully comprehend the role of c-Jun in the context
of microbial infections.
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FIGURE 4 | Role of c-Jun in the viability of cells treated with α-toxin. (A) Dehydrogenase activity assays: A549 cells with normal (SCR) or knockdown (sic-Jun) levels

of c-Jun were exposed to α-toxin (5 µg ml-1) for 4 h or left untreated. Cell viability was measured after incubation for 2 h with a combined MTS/PMS solution by

reading absorbance at 490 nm with a microplate reader (Bio-Rad, Hercules, CA, USA). Viability was calculated from the absorbance ratio between values obtained at

the end point with respect to those measured in SCR untreated cells. Measurements were carried out in triplicate for 4 independent experiments, and the results are

expressed as means with their SEM. Statistically significant differences at P < 0.001, P < 0.01, and P < 0.05 are identified by ***, **, and *, respectively (one-way

ANOVA followed by Dunnet’s post hoc test). (B) Flow-cytometry analyses: A549 cells with normal (SCR) or knockdown (sic-Jun) levels of c-Jun were exposed to

α-toxin (5 µg ml-1) for 4 h or left untreated. Subsequently, cells were double stained with propidium iodide and the fluorescence-labeled annexin V followed by flow

cytometric analyses to quantify cell death. One representative experiment of two is shown. (C) Knockdown of c-Jun was carried out using 25 nM of siRNA for c-Jun,

using SignalSilence® Control siRNA (SCR) for controls. A representative Western Blot performed with specific antibodies against c-Jun is shown. Ponceau staining of

total transferred proteins were used as loading controls.
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