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Abstract: (1→3)-β-glucan (BDG) testing as an adjunct in the diagnosis of invasive fungal disease
(IFD) has been in use for nearly three decades. While BDG has a very high negative predictive value
in this setting, diagnostic false positives may occur, limiting specificity and positive predictive value.
Although results may be diagnostically false positive, they are analytically correct, due to the presence
of BDG in the circulation. This review surveys the non-IFD causes of elevated circulating BDG.
These are in the main, iatrogenic patient contamination through the use of BDG-containing medical
devices and parenterally-delivered materials as well as translocation of intestinal luminal BDG due
to mucosal barrier injury. Additionally, infection with Nocardia sp. may also contribute to elevated
circulating BDG. Knowledge of the factors which may contribute to such non-IFD-related test results
can improve the planning and interpretation of BDG assays and permit investigational strategies,
such as serial sampling and BDG clearance evaluation, to assess the likelihood of contamination and
improve patient care.
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1. Introduction

Over the last four decades, increasing numbers of fungal biomarkers have been added
to the roster of tests available as aids to the diagnosis of invasive fungal disease (IFD) [1–3].
Among these is (1→3)-β-glucan, a cell wall component of almost all pathogenic fungi,
with the exception of the Mucorales [4,5]. At this point, analysis of circulating titers of
(1→3)-β-D-glucan (BDG) has been practiced for almost three decades, as an adjunct to the
diagnosis of IFD [6]. The BDG test offers a relatively simple, non-invasive opportunity to
obtain information on a near pan-fungal biomarker with demonstrated relevance to IFD
diagnosis and, importantly, anti-fungal stewardship [7,8]. As such, over the years, it has
been incorporated into an increasing number of clinical guidelines and routine practice
algorithms [9,10].

Commercialization of BDG diagnostics has primarily involved reagent preparations
from the blood cells of two genera of Horseshoe Crabs, Limulus polyphemus and Tachypleus
tridentatus [11,12]. The former is found only on the east coast of North America while the
latter is found off the coast of China and in coastal waters to its south. These preparations
of BDG detection reagents utilize a protein zymogen extract from Horseshoe Crab granulo-
cytes commonly referred to as Limulus amebocyte lysate or LAL [13]. The key detection
components are referred to as the LAL cascade. The LAL cascade is comprised of two
independent proteolytic activation pathways, one activated by bacterial endotoxin and the
other by BDG, and a common terminal protease (Figure 1) [11].
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kinetic photometric methods [16]. Examples of chromogenic kinetic reactions of BDG are 
presented in Figure 2. The linear range of glucan concentrations accessible to LAL-based 
reagent BDG detection is dependent upon the formulation used and normally extends 
over a serum range that includes a negative, indeterminate, and positive range, with re-
spect to invasive fungal disease [17]. 
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and is presumed to occur chemically, through hydrolytic mechanisms [23]. Some of the 
myriad functions of BDG include use as a cell wall structural material in fungi [24], as 

Figure 1. Limulus amebocyte lysate cascade.

Inactivation, or elimination, of the endotoxin-specific components of the cascade
renders it exclusively sensitive to BDG, permitting the creation of a reagent suitable for
laboratory assays for BDG [14,15]. These assays have been established, commercially,
using kinetic photometric methods [16]. Examples of chromogenic kinetic reactions of
BDG are presented in Figure 2. The linear range of glucan concentrations accessible to
LAL-based reagent BDG detection is dependent upon the formulation used and normally
extends over a serum range that includes a negative, indeterminate, and positive range,
with respect to invasive fungal disease [17].
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Figure 2. Kinetic analysis of BDG activation of LAL cascade [Unpublished data, Associates of Cape
Cod, Inc.]. BDG: (1→3)-β-glucan; LAL: Limulus amebocyte lysate.

2. (1→3)-β-Glucan Distribution and Structure

(1→3)-β-glucan is widely synthesized, for multiple purposes, among bacteria, fungi,
algae, and plants [18–21]. It is not produced in mammals, nor are mammals capable of
its enzymatic degradation [22]. Degradation of BDG has been observed in phagocytic
cells and is presumed to occur chemically, through hydrolytic mechanisms [23]. Some of
the myriad functions of BDG include use as a cell wall structural material in fungi [24],
as extra-cellular and intra-cellular matrix material in certain bacteria [25], and algae [26],
respectively. In plants, it appears as a wound repair and specialized structural material [27],
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typically in wound response tissue [28], vascular elements [29], and as intracellular pressure
regulators in plasmodesmata [30]. In mammals and insects, which do not make BDG, it is
recognized as an innate immune system-activating pathogen-associated molecular pattern
and influences innate immuno-metabolism [31–33]. BDG is comprised of sequential D-
glucose molecules linked by (1→3)-β-glycosidic linkages. The primary backbone structure
of BDG is presented in Figure 3, with a fungi-typical (1→6)-β-linked glucose branch.
The β linkage imposes steric constraints upon the orientation of the adjacent glucose
molecules leading to the formation of a helical structure as the polyglucan chain becomes
elongated [34–36]. Side chain addition, or branching, in multiple forms and with multiple
moieties is also observed to occur, creating characteristic BDG types among different
taxonomic groups [37]. Single helical BDG is observed to anneal through hydrogen bonding
and hydrophobic interactions, resulting in native triple helical structures. Assemblages of
triple helical structures also form, leading to ordered cable-like materials that contribute
mechanical strength and structure to fungal cell walls [38].
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3. Diagnostic Performance and the Role of Non-IFD Origin BDG

BDG can be contributed to the circulation during cell wall remodeling in the life cycle
of fungal cells [39]. The extent to which this occurs is dependent upon myriad factors
including fungal genus and species, site of infection, access to the vasculature, host factors
including immune response, and clearance efficacy. Assay reactivity is dependent upon
structural factors such as BDG molecular weight, branching, and single versus triple helical
structure [40]. While commercial BDG assays are considered qualitative assays, due to
the multiple factors that can contribute to titer, they have continuous numerical outputs
which have permitted the validation of clinical thresholds for negative, indeterminate,
and positive association with invasive fungal disease. In this context, the results of BDG
testing are usually evaluated using the principles appropriate to quantitative assays [7].

The diagnostic performance of BDG assays has been assessed in approximately
200 publications, including multiple meta-analyses [7,41]. Although the heterogeneity
of many studies is relatively high, diagnostic performance characteristics are reasonably
reproducible. Typically, BDG negative predictive value is very high, often greater than
95%, while positive predictive value is lower, due to observations of BDG titers above the
positive threshold, which are deemed to be diagnostic false positives [42]. Analytically,
the BDG reagents are being activated by the actual presence of BDG in the serum samples.
Accordingly, these findings beg the question of the source or sources of the BDG. At this
point, three decades of clinical BDG testing experience as well as pre-clinical research
suggest that three main sources of circulating BDG exist. These include IFD, iatrogenic con-
tamination, and intestinal translocation. Non-specific pulmonary translocation due to
fungal colonization is also a potential source, given the high levels of serum BDG observed
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to translocate from the alveoli in pneumocystosis [43], but non-IFD pulmonary transloca-
tion studies have not been performed and represent an area where data are needed [44].

4. Major Sources of Circulating BDG
4.1. Invasive Fungal Disease

The subject of fungal cell wall-originating BDG contribution to the circulation has
been well described in numerous publications, including multiple meta-analyses [43,45–48].
This occurs as a result of the normal processes of the fungal life cycle in which the cyclical
processes of wall polysaccharide synthesis and degradation occur [38,49]. Minute quanti-
ties of wall material, including BDG, are sloughed into the peri-fungal environment and
migrate to the circulation. In the case of fungemia, in which the fungi are growing in the
bloodstream, the contribution to the circulation is direct. The longitudinal characteriza-
tion of circulating BDG titers typically demonstrates rising BDG levels early in infection,
followed by slow declines which may only return to baseline well after successful disease
resolution [50,51]. Another route of entry to the circulation was described by Hong et al.
2004, among others, in which phagocytosed fungal cells are degraded by hydrolytic pro-
cesses within the phagolysosomes followed by externalization of degraded material [23].
BDG from phagocytosed yeast sacculi was demonstrated to be processed by macrophages
both in vivo and in vitro. In the latter experiments, externalized BDG titers rose in the cell
culture supernatants while declining within the cells. This may be a process that influences
the observed slow decline of circulating BDG post-therapeutic success [52].

4.2. Iatrogenic Contamination

Medical treatment-related BDG contamination has been assessed in a variety of clinical
contexts including multiple types of intravenously administered materials including drugs
and blood fractionation products, invasive use of surgical materials, and cellulosic dialysis
membranes Table 1. In the case of drug formulations, BDG may be present in the original
source material itself, such as products made by fungal fermentation [53], in excipients
added to the formulation [54], from media used in microbial or cell culture [55], or from
process equipment, materials, and solutions [56]. In the case of blood fractionation products
such as IVIg and serum albumin, the filtration of blood plasma through cellulosic depth
filters can result in leached plant BDG (callose) [57,58]. It is fairly common to observe highly
elevated BDG titers in patients receiving albumin or immunoglobulin (IVIg) infusions [59].
These high titers are usually observed to decline relatively quickly and such responses
support suspicion of iatrogenic contamination. Figure 4 present observations for serum
BDG pre-and post-infusion of an intravenous immunoglobulin product and the follow-up
titers from subsequent blood draws two days and a week later. The very rapid rise and fall
of serum BDG subsequent to its infusion is characteristic of such contamination events.

Surgical materials such as sponges and gauze permit large quantities of BDG (up to
millions of pg/gm of gauze or sponge material) to be leached during intra-cavity or other
invasive use, as well as contact with surgical solutions and bodily fluids such as with certain
autologous blood recovery procedures [60,61]. Mohr et al. 2011, demonstrated that BDG
diagnostic specificity in post-surgical patients improved, substantially, between sampling
immediately post-surgery and after 3 days [62]. Similarly, the use of gauze in surgery
has been observed to contribute to leaching and elevated circulating burdens of BDG [63].
BDG is also a licensed drug in certain countries, as an anticancer adjunctive therapy based
upon its innate immune activation properties. Injected particulate BDG has been shown
to generate elevated circulatory BDG for years after administration, making detailed
medical history analysis critical to interpretation of unexpectedly high BDG titers in
patients in whom IFD is unsuspected [64]. Renal replacement therapy utilizing regenerated
cellulose was demonstrated to contribute to elevated BDG in hemodialysis patients [65].
As regenerated cellulose dialysis membranes have been replaced by non-BDG-leaching
synthetic membranes, these are now an unlikely source [66].
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Based upon these observations of patient contamination by multiple types of medical
materials and procedures, blood draw planning for BDG titer determination should take
these into account and unexpected BDG elevation should prompt chart review.

Another category of iatrogenic patient contamination, one that has had significant de-
bate, is that of parenteral administration of potentially contaminated antibiotics.
Multiple publications asserting the occurrence of patient false positives by this route
as well as the opposite have been presented [67–69]. While this route of patient contam-
ination is possible, the high level of dilution generated upon injection of relatively low
volumes of antibiotic make this unlikely. Further, the high negative predictive value for
IFD observed for patients receiving a vast array of antibiotics suggests that this is not a
significant problem [70,71].

Table 1. Medical products and processes associated with patient/product contamination.

Material Reference

Gauze [63] Kanamori, H. Tohoku J. Exp. Med. 2009, 217,
117–121.

Surgical sponge [60] Stycznski, A. J. Fungi (Basel) 2018, 4, E114.

Process equipment [56] Vigor, K. Biotechnol. Prog. 2016, 32, 1494–1502

Fermentation media [58] Gefroh, E. Biotechnol. Prog. 2013, 29, 672–680.

Cellulosic depth filters [57] Holstein, M. Biotechnol. Prog. 2020, e3086

Hemodialysis with cellulosic membranes [65] Kanda, H. Kidney Int. 2001, 60, 319–323.

Intravenous immunoglobulin [52,59]
Angebault, C. Open Forum Infect. Dis. 2016, 3,
ofw128.Duffner, U. Bone Marrow Transpl. 2012,

47, 151–152.

Human serum albumin [72] Nakae, H. Acute Med. Surg. 2017, 4, 251–254

Anti-tumor adjuvant [64] Tokuyasu, U.H. Int. J. Gen. Med. 2010, 3,
273–277.

Antibiotics [67,68]
Liss, B. J. Antimicrob. Chemother. 2016, 71,

913–915.Furfaro, E. Clin. Vaccine Immunol. 2014,
21, 1357–1359.
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4.3. Intestinal Translocation

The past two decades have seen an explosion in data regarding intestinal barrier
permeability, its myriad causes, and its relationship to inflammation-related pathophysiol-
ogy [73–75]. Multiple biomarkers such as zonulin and various claudins have been identified
as useful markers in characterizing the nature of barrier injury [76,77]. Data regarding
elevated circulating BDG, its correlation with other markers of microbial translocation
and inflammation, and orthogonal testing with enteral polysaccharides such as fluores-
cein labeled dextran demonstrate that it is also a translocated entity [78–80]. Ellis et al.
2008 observed that in a series of non-IFD hematological malignancy patients undergoing
chemotherapy, those with enterocyte damage and/or mucositis had BDG titers that were
persistently elevated compared to patients without those pathologies (p = 0.002) [78]. MAF:
Sentence added with a new reference to restore numerical reference sequencing. Pre-clinical
models of sepsis also demonstrate elevated levels of circulating BDG [79]. The kinds
of insults that contribute to intestinal barrier permeability include intestinal ischemia,
mesenteric hypoxia, microbial toxins, viral infection of intestinal tissue, metabolic toxic-
ity such as in uremia, chemotherapy-associated mucositis, large total surface area burns,
and protease-producing intestinal enterococci (Table 2). All of these conditions have been
observed to be associated with elevated BDG titers. Thus, it is important to fully understand
the host and clinical factors that could be contributing to intestinal barrier permeability as
part of the consideration of BDG titer interpretation.

Table 2. Conditions associated with elevated circulating BDG.

Clinical Setting Reference

Burns, large surface area [81] Shupp, J. Mycoses 2011, 55, 224–227.

Chronic kidney disease [82] Wong, J. BMC Nephrol. 2020, 21, 118.

Cystic fibrosis [44] Rautemaa, V. DMID 2017, 88, 16–21.

Cytomegalovirus infection [83] Ramendra, R. CID 2019, ePub.

Enteroccocemia [84] Held, J. et al. J. Clin. Microbiol. 2013, 51,
1158–1164.

Hepatitis C virus [85] Moon, M.S. Open Forum Inf. Dis. 2019, ePub.

HIV neurocognitive decline [86] Hoenigl, M. Medicine 2016, 95.

HIV non-AIDS-related adverse events [87] Hoenigl, M. CID 2019, 69, 676–686.

Invasive mechanical ventilation [88] Heyland, D. J. Crit. Care 2011, 26, 536.e1–536.e9

Lupus erythematosus [80] Issara-Amphorn, J. J. Innate Immun. 2018, 10,
18.

Sepsis-septic shock transition [89] Leelahavanichkul, A. Shock 2016, 46, 506–518.

Post-major abdom. Surgery [90] White, P.L. CID 2020, In Press.

Ulcerative colitis [91] Shah, J. J. Dig. Dis. 2019, 20, 642–648.

Several conditions may contribute to intestinal hypoxia, which is a causative fac-
tor in intestinal permeability barrier injury. These include large surface area burns,
intestinal ischemia reperfusion injury, mesenteric hypoxia, and intra-dialytic hypoten-
sion. Studies have described the relationship between large surface area burns and BDG
false positives [81,92]. Similarly, a Japanese study evaluated the use of BDG testing in the
diagnosis of candidemia in severe burn patients and demonstrated high sensitivity, 100%,
but lower specificity, 68%, when the test manufacturer’s positive cutoff of 11 pg/mL was
used. A cutoff of 40 pg/mL generated a sensitivity of 100% with a specificity of 95% [93].
Validation of alternative cutoffs in specific clinical contexts known to contribute to elevated
BDG titer may represent a means of dealing with specificity issues.
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End stage renal disease is a condition associated with intestinal permeability barrier
injury and microbial metabolite translocation from the lumen [94]. Additionally, hemodialy-
sis is associated with intradialytic hypotension and attendant loss of intestinal permeability
barrier patency [95]. It has been reported that hemodialysis within the previous 72 h was
associated with BDG false positives, p = 0.011 [96].

4.4. Intestinal Contents: Mycobiome and BDG Translocation

Translocation of BDG from the intestinal lumen through the intestinal epithelium
and then to the wider circulation raises questions concerning the sources of luminal BDG.
Research over the last few decades suggests that both ingested foodstuffs and the intestinal
mycobiome are potential contributors. With respect to the former, certain foods are ex-
tremely rich in BDG. Oat bran BDG content is in the range of 4.5%, by weight [97]. Similarly,
foods rich in fungal mycelium, such as mushrooms, represent potential sources of BDG
which might translocate. At this point, the case for translocating foodstuff-derived BDG
remains to be more fully evaluated. A recent study evaluated a single bolus of extremely
high BDG content foodstuff consumption in an HIV population and serial testing over 24 h
failed to reveal meaningful serum BDG titer elevation [98]. The intestinal mycobiome rep-
resents another potential source of translocatable BDG and there are structural differences
between fungal and plant-origin BDG which may affect translocation. This is of particular
interest in patients receiving gut-active broad spectrum antibacterials. The administration
of such drugs has been demonstrated to produce 1–2.5 log increases in gut Candida pop-
ulations in patients [99]. It is possible that the release of mycobiome-origin BDG in the
gut lumen, proximal to the luminal epithelium, may result in more efficient translocation.
These are areas of continuing investigation with the potential to illuminate prognosis of
gut-originating candidiasis and inflammatory disease. In this light, recently published data
by Zhai et al. 2020 revealed an expansion of pathogenic Candida species in the intestinal
mycobiota of post-stem cell transplant patients two–ten days prior to their developing
candidemia. DNA analysis showed that the candidemia strains clustered tightly with the
luminal contents strains [100]. Similarly, the role of the gut mycobiome has been examined
in the context of alcohol-induced liver disease in a chimeric murine model. In this model,
alcohol feeding resulted in intestinal Candida overgrowth and BDG translocation with
resulting hepatic inflammation, thought to occur through BDG ligation of hepatic Kuppfer
cell dectin-1. Dectin-1 knock-out mice failed to develop the inflammation, leading to the
conclusion that translocated intestinal origin BDG played a major role [101].

4.5. Hepatic Function

In animal models, BDG is primarily cleared through the liver [102]. Human clinical
conditions which result in reduced hepatic function have been shown to be associated with
elevated serum BDG. Sanada et al. 2014 have described the relationship between serum
BDG levels in the setting of pediatric end stage liver disease [103]. The liver clearance
function was underscored by significantly higher BDG titers in portal blood relative to the
peripheral circulation. There was a very significant negative correlation (p < 0.001) between
the pediatric end-stage liver disease patients score and the hepatic clearance of BDG in the
transplant patients. Sanada et al. 2012 also described elevated serum BDG in end-stage
liver disease patients with and without fungal infections. Of note, median hepatic clear-
ance of circulating BDG was measured as 87.9% [104]. Elevated patient peripheral blood
levels of BDG pre-transplant predicted a much longer course of recovery (p < 0.001) and,
post-operatively, fungal infections. The peripheral BDG titers in the infected patients were
significantly higher than the uninfected patient levels, suggesting the potential of diagnos-
tic utility despite compromised clearance. Recently, Moon et al. 2020 analyzed microbial
translocation markers in the blood of hepatitis C virus infected patients [85]. Serum BDG
was significantly elevated in hepatic fibrosis (Ishak Score 0–2 and 5–6), relative to controls
(Mann–Whitney, p < 0.0001 and p < 0.001, respectively). That this may be due to inadequate
clearance rather than intestinal translocation is suggested by observations that enhanced
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microbial translocation was not observed in HCV-infected chimpanzees which do not
develop liver fibrosis [105]. Thus, hepatic function status is an additional factor to be
considered in the evaluation of the significance of circulating BDG titers.

4.6. Bacterial Infections

As discussed earlier in this review, a number of publications have asserted that bacte-
rial infections have been the source of elevated serum BDG [106]. While elevated BDG titers
have been associated with bacterial infections in a number of studies, the demonstration of
a contribution of BDG derived directly from the bacterium has not, in the main, been sys-
tematically demonstrated. Mennink-Kersten and colleagues described elevated BDG titers
in a case series of bacteremic patients, particularly in infections with multiple Pseudomonas
sp. and a Streptococcus pneumoniae [107]. Among the Streptococci, S. pneumoniae Type 37 has
been described as producing a BDG with a (1→3)-β-backbone with each glucose moiety
having a (1→2)-β-glucose side chain [108]. Held et al. 2013 described a mean serum BDG
titer of 135 pg/mL in patients with enterococcemia while patients with other causes of
bacteremia displayed a mean level of 15 pg/mL [84]. Enterococcal species, which produce
exopolysaccharides of mixed monosaccharide and glycosidic linkage composition, are not
known to produce BDG. As the etiology of enterococcal bacteremia includes overgrowth
in the intestinal lumen followed by invasion through the intestinal barrier [109], the pos-
sibility of BDG translocation through a damaged intestinal barrier represents a plausible
mechanism of its elevation in the circulation. Recently, the Enterococcal exopolysaccha-
ride poly-N-acetyl glucosamine has been determined to be a virulence factor due to its
role in breaching the intestinal permeability barrier [109]. In contrast to bacterial species
not observed to directly produce BDG, circulating BDG derived from invasive Nocardia
infections has been definitively demonstrated in a series of independent case reports.
Elevated BDG titers were reported in infections caused by multiple species of Nocardia
including N.abscessus, N. elegans, N. farcinica, and N. nova [110,111]. Additional evaluation
to verify the presence of BDG involving the culturing of clinical isolates of N. asteroides, N.
neocalidoniensis, and N. cyriacgeorgica, as well as the control species Staphylococcus aureus and
Escherichia coli, and the semi-purification of the post-growth culture broth supernatants was
conducted. The un-inoculated medium and the controls were negative for BDG while the
Nocardia species’ supernatants were all over-range in the assay, confirming the source of the
BDG as the Nocardia infections [112]. Thus, while a number of bacterial genera are known
to produce BDG, very few are human pathogens. Of those pathogenic genera that do
make beta-linked polyglucans, the genus Pseudomonas makes small, 2-12-mer, periplasmic
osmoregulatory cyclic (1→2)-β-linked glucan sequences [113] which are broadly simi-
lar to the short (5-12-mer) branched (1→2)-β-linked glucans produced by E. coli [114].
Accordingly, while some bacteria are capable of producing (1→3)-β-linked beta-glucans,
such as Agrobacterium tumefaciens [115], of those genera that are human pathogens it is rare
that they make the (1→3)-β-linked glucan structures that are the only forms known to be
capable of the activation of Limulus-based detection reagents.

5. Manufacturing-Associated BDG Contamination

Production processes for parenterals are another potential source of patient-contaminating
BDG. During manufacturing, the introduction of BDG to parenterals may occur through
multiple sources. These include fermentation media components such as yeast extracts,
plant material extracts, sugars, as well as the use of fungal organisms as the source of
fermentation products [53,55,57]. If downstream processing does not remove the con-
taminating BDG, it may result in patient exposure. Examples of patient contamination
after infusions have been reported in the literature and represent a failure to control an
easily measurable contaminant [59,116]. Another source of parenteral contamination is
the use of cellulosic depth filters [57]. These devices are generally mixtures of cellulose
and diatomaceous earth and are used to provide initial clarification of cell culture fluid,
microbial fermentation broths, and blood plasma. As plant material contains small quanti-
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ties of BDG (callose) in various plant tissues [117], BDG is readily leached from the depth
filters to enter downstream processing as a contaminant [57,118], Blood fractionation prod-
ucts, whose starting material is depth filtered blood plasma, are recognized sources of
product contamination with BDG [119,120].

In addition to process equipment, process solutions may contain BDG and introduce
contamination. Vigor et al. 2017 reported two sources of process-related BDG contami-
nation. One was BDG contamination in sucrose, used as a formulating excipient, and the
other was a virus filter storage solution [56]. With its recognition as a bioactive contaminant,
pharmaceutical manufacturing organizations are beginning to measure and control BDG
contamination of parenterals [55,57].

6. False Positive Investigation

BDG is indicated as an adjunct to the diagnosis of invasive fungal disease. It is to
be considered with reference to host, clinical, and other laboratory characteristics and
findings. When an elevated BDG titer appears to be discordant with respect to these
other observations, it is useful to evaluate potential sources of diagnostically false positive
BDG presence. Table 3 provides a listing of a series of medical product and clinical
condition-related questions which may help to clarify a previously unrecognized source of
non-IFD-related BDG.

Table 3. Major factors to consider in investigating suspected BDG false positives.

A. Medical Product-Related False Positives

1. Has the patient received IVIg infusions?

2. Has the patient received human serum
albumin infusions?

3. Has the patient received total parenteral
nutrition?

4. Has the patient undergone invasive surgery
within the past 4 days?

5. Does the patient have indwelling gauze,
surgical sponges packings?

6. Are any other invasive cellulosic medical
devices in use?

B. Medical Condition-Related False Positives

1. Does the patient have evidence of severe
mucositis or enterocolitis?

2. Is the patient on hemodialysis?

3. Does the patient have invasive nocardiosis?

4. Is gut ischemia or hypoxia suspected?

5. Has pneumocystosis been ruled out?

In addition to investigation of the above-listed potential sources of circulating BDG,
support for the likely presence of a fungal source of the observed BDG may be found by
utilizing additional tests. These include microscopic examination of appropriate patient
tissue and fluid samples, as well as various PCR and antigen tests, as well as emerging
novel diagnostic technologies [121]. Positive results on ancillary tests for the presence of
fungi can add to support for ruling out BDG diagnostic false positivity. Multiple studies
have reported improved specificity in the setting of multiple fungal marker utilization.
Boch et al. 2016 reported the increase in specificity, in the setting of invasive aspergillosis,
from 48% to 94% when serum BDG results were combined with BAL galactomannan
results [122]. In the setting of acute leukemia, Qian et al. 2019 described specificity values
for either BDG or GM alone, for invasive fungal disease, at 90% and 40%, respectively [123].
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In combination, the specificity was 98%. Similarly, Urabe et al. 2017 demonstrated that com-
bining Aspergillus PCR with BDG raised specificity from 48.2% in bronchoalveolar lavage
fluid, to 96.7% and 99.2% with two different PCR assays, respectively [124]. In contrast,
Held et al. 2013 reported that, in the setting of candidemia, combining mannan antigen
testing with serum BDG lowered the specificity marginally, from 85.5% with BDG alone to
85.0% [84].

7. Discussion

As described above, circulating BDG titer is an important adjunct in the diagnostic
process for patients suspected of invasive fungal infections. While the NPV is very high,
optimizing the utility of positive BDG results requires consideration of both host and clinical
factors, as well as potential sources of iatrogenic contamination. The latter factors may
include introduction of BDG-contaminated materials in the course of medical care. In that
circumstance, institutional observations suggesting an association between elevated BDG
and certain parenterals or devices should prompt evaluation of BDG burdens present in
those products. Prospective BDG testing practices should employ blood draws taken prior
to introduction of materials considered suspect. Similarly, blood draws obtained during the
initial 3 days post-surgery involving intra-cavity use of gauze and surgical sponges need
to be interpreted cautiously and the observation of very rapidly declining serial sample
values may indicate contamination rather than infection. In addition, BDG testing results of
samples taken after intra-operative autologous blood recovery using surgical sponges must
be similarly considered. In patients with intestinal permeability barrier injury risk factors,
the presence of elevated BDG absent a diagnosis of IFD and iatrogenic contamination
should prompt consideration of potential luminal contents translocation. This is also of
significant importance given the association of intestinal permeability barrier injury and
the potential for infection due to translocation of viable microorganisms, including Candida,
to the circulation. Other potential sources of elevated BDG include hepatic insufficiency,
potentially leading to reduced BDG clearance, and infection with Nocardiales sp.

Invasive fungal disease continues to have high morbidity and mortality and the
development of adequate diagnostics has been challenging [3,125]. Fungal antigen tests,
including BDG, represent advances toward the goal of improving the effective diagnosis
of IFD. In order for them to be used effectively, it is critical that laboratories and health
care practitioners are well acquainted with the factors that can influence results, within the
patient’s clinical context.
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