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Abstract
Advancements in comprehending myelodysplastic neoplasms (MDS) have unfolded significantly in recent years, elucidating a myriad of cellular
and molecular underpinnings integral to disease progression. While molecular inclusions into prognostic models have substantively advanced risk
stratification, recent revelations have emphasized the pivotal role of immune dysregulation within the bone marrow milieu during MDS evolution.
Nonetheless, immunotherapy for MDS has not experienced breakthroughs seen in other malignancies, partly attributable to the absence of an
immune classification that could stratify patients toward optimally targeted immunotherapeutic approaches. A pivotal obstacle to establishing
“immune classes” among MDS patients is the absence of validated accepted immune panels suitable for routine application in clinical labora-
tories. In response, we formed International Integrative Innovative Immunology for MDS (i4MDS), a consortium of multidisciplinary experts, and
created the following recommendations for standardized methodologies to monitor immune responses in MDS. A central goal of i4MDS is the
development of an immune score that could be incorporated into current clinical risk stratification models. This position paper first consolidates
current knowledge on MDS immunology. Subsequently, in collaboration with clinical and laboratory specialists, we introduce flow cytometry
panels and cytokine assays, meticulously devised for clinical laboratories, aiming to monitor the immune status of MDS patients, evaluating both
immune fitness and identifying potential immune “risk factors.” By amalgamating this immunological characterization data and molecular data, we
aim to enhance patient stratification, identify predictive markers for treatment responsiveness, and accelerate the development of systems
immunology tools and innovative immunotherapies.
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INTRODUCTION

Myelodysplastic neoplasms (MDS) are a heterogeneous group of clonal
hematopoietic stem and progenitor cell (HSPC) disorders arising in the
bone marrow (BM),1 characterized by ineffective hematopoiesis, dyspla-
sia, peripheral cytopenias, and an increased risk of transformation to acute
myeloid leukemia (AML).2,3 MDS evolve from clonal HSPC outgrowth
with the acquisition of genetic lesions and the implementation of genetic
alterations into prognostic scoring systems has improved MDS risk
stratification.4–6

In addition to cell‐intrinsic lesions, increasing evidence suggests
that immune disruption and tumoral BM microenvironment altera-
tions occur during MDS pathogenesis.7–10

The association between inflammation and MDS11 is reinforced by
their linkage to an autoimmune disorder, present in 10%–20%
of MDS patients.12–14 MDS‐associated autoimmune disorders
are typically refractory to immunosuppressive agents and difficult to
manage,12,15 and are associated with adverse impact on both patients'
quality of life and clinical outcome.16 While immunomodulatory therapies
may lead to a sustained response in some patients, universally accepted
biomarkers that predict such a response are not yet established.17–19

Despite growing evidence highlighting the role of immune dys-
regulation in the pathogenesis and prognosis of MDS,20,21 immune
therapies remain underutilized in MDS management. Additionally,
current diagnostic workups and prognostic models do not typically
assess host immunity.5,22

The International Integrative Innovative Immunology for MDS
(i4MDS) initiative, supported by the European Hematology Associa-
tion (EHA), is a consortium of clinician scientists, biologists, and
physicians actively engaged in MDS patient research and clinical care.
We envision that incorporating immunological profiling alongside
molecular data could enhance patient stratification, uncover pre-
dictive treatment response biomarkers, and steer the development of
innovative immunotherapies.

In this position paper, we review the main immune cell dysregula-
tion during the disease course and propose comprehensive guidelines to
harmonize and routinely implement immune assessment in MDS.

METHODS

Since its establishment in 2023, the i4MDS consortium has grown to
encompass 27 centers across 10 countries, selected for their ex-
perience in the field of immunology in MDS.

The consortium has conducted several meetings to assess ex-
isting literature on immune dysregulation in MDS and to formulate
recommendations for the monitoring of immune cells and cytokines.

As an initial step, i4MDS conducted a comprehensive literature
search, including articles published between 1999 and 2023. This search
focused on keywords such as “Myelodysplastic Syndromes” in conjunc-
tion with the name of specific immune cell types, including “Cytotoxic
T lymphocytes (CTL),” “Regulatory T (Treg) cells,” “T helper (Th) cells,”
“Gamma‐delta (γδ) T cells,” “B lymphocytes (Ly),” “Natural Killer (NK)
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cells,” “Dendritic cells (DC),” “Monocytes,” “Macrophages,” “Myeloid‐
derived suppressor cells (MDSC),” “Mesenchymal Stem cells (MSC),” and
“Cytokines.” Articles selected for the review of each immune cell
type were included if they explored variations in cell number, phenotype,
and/or function among MDS patients (Figure 1).

Second, i4MDS conducted a survey involving eleven hemato‐
immunological clinical centers with expertise in the field: Leipzig
University Hospital (Germany), MLL Munich Leukemia Laboratory
(Germany), The National Heart, Lung and Blood Institute (US),
Rigshospitalet, University of Copenhagen (Denmark), UMC of
Amsterdam (Netherlands), University Hospital of Dresden Carl Gustav
Carus (Germany), Vall d'Hebron Hospital (Spain), HMDS of Leeds (UK),
Saint‐Louis Hospital of Paris (France), and Cochin Hospital of Paris
(France). The aim was to identify a core set of immune cell markers for
clinical flow cytometry and clinically relevant cytokines for routine as-
sessment in clinical care. The proposed recommendations underwent
an iterative panel review process aimed at achieving consensus.

IMMUNE CELL DYSREGULATIONS IN
MYELODYSPLASTIC NEOPLASMS

Low‐risk (LR) MDS are characterized by a “proinflammatory state”with a
higher prevalence of effector cells (e.g., Th17 and CTL)8,23 whereas high‐
risk (HR) MDS are dominated by an “immunosuppressive state” with

increased regulatory T cells (Tregs).7 We highlight the complex mod-
ifications in cell repertoire that occur during MDS progression (Figure 2
and Table 1). Additionally, as malignant stem cells can differentiate into
mature immune cells, MDS‐related genetic lesions transmitted to
downstream myeloid and lymphoid progeny can trigger aberrant in-
flammatory signaling and contribute to maturation defects and immune
dysregulation.106,107

CHANGES IN INNATE IMMUNITY

Neutrophils

Functional deficits, including reduced phagocytosis108 and decreased
bactericidal and fungicidal activities,109 have been described in MDS
neutrophils. Moreover, neutrophils have been found to display an
aberrant phenotype with reduced expression of GM‐CSF receptor26

and CD43 adhesion molecule,25 correlating with defective chemo-
taxis mostly in HR‐MDS.110 A recent study demonstrated a higher
frequency of low‐granule neutrophils in individuals with clonal
hematopoiesis related to TET2 mutations.111 TET2‐inactivated
neutrophils had more compact neutrophil extracellular traps (NET)
and decreased flow cytometer (FCM) median side scatter (SSC)‐
assessed granularity. Consistently, decreased granularity has also
been reported in MDS patients.112,113

Natural killer (NK) cells

MDS are characterized by a decrease in NK cells, mostly the mature
cytotoxic CD56dim subset, and numbers inversely correlate with disease
severity.29,30,32 MDS NK cells further show a “less activated” phenotype,
reduction of lytic perforin/granzyme granules, and licensing NK Killer Ig‐
Like Receptors (KIRs) molecule expression.29,32,37 These phenotypic al-
terations further correlate with reduced tumor necrosis factor‐α (TNF‐α)
and interferon‐γ (IFN‐γ) secretion following interleukin‐2 (IL‐2) stimula-
tion,29,33,38 defective NK in vitro degranulation,33 and reduced cytotoxi-
city capacities,33,37,38 which have been associated with adverse
prognosis.42 A recent study correlated the presence of TET2 mutations
with reduced KIR expression and impaired NK functions, which were
restored with hypomethylating agent (HMA) therapy.114

Dendritic cells (DC)

In MDS, all BM DC subsets show significantly lower frequencies ex
vivo or following in vitro generation from DC precursors.43,46,48,115

MDS patients also have reduced numbers of DC progenitors,21 and
the reduction in DC further correlates with higher blast percentage
and IPSS risk.46 Additionally, CD141high conventional myeloid DC
numbers are decreased in MDS patients and correlate with worse
overall survival (OS).21 Functionally, MDS DCs have reduced T‐cell
priming capacities, with clear T helper 1 skewing,48 together with a
reduction of their endocytic ability.43 These functional defects are
accompanied by a reduction of HLA‐DR, CD11c, and costimulatory
molecule expression after activation.47,49

Myeloid‐derived suppressor cells (MDSC)

The fundamental MDSC function is to secrete immunomodulatory
molecules (arginase‐1, indoleamine 2,3‐dioxygenase, NADPH‐oxidase‐2),
which suppresses T‐lymphocyte proliferation while transforming growth
factor‐β (TGF‐β) and IL‐10 promote NK‐cell energy and the development
of suppressive Treg.116,117

F IGURE 1 Flow diagram for literature review regarding immune cell type

alterations in myelodysplastic neoplasms.
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HR‐MDS patients have increased MDSC numbers that correlate
with increased Treg levels.10 Consistently, levels of TGF‐β and IL‐10
are elevated in HR‐MDS patients.52 MDSC from MDS patients also
display an aberrant chemokine receptor profile with increased CXCR4
and CX3CR1 expression.118

Monocytes and macrophages

While an increase in classical monocytes ≥94%119 is highly suggestive of
chronic myelomonocytic leukemia,120 monocyte subset composition in
the context of MDS remains controversial. Velegraki et al. reported a
higher proportion of CD14+/CD16+ intermediate monocytes in MDS
patients,55 while Talati et al. reported increased CD14+/CD16− classical
monocytes in SF3B1‐mutatedMDS.62 Further studies may help elucidate
the role of monocyte repartition in MDS and its distinction from chronic
myelomonocytic leukaemia, especially in light of the most recent inter-
national classifications.2,3

In MDS, macrophages exhibit an altered phenotype char-
acterized by reduced levels of CD206 and SIRPα,53 along with

heightened expression of CD68, CD86, and CD163.121 Function-
ally, Meers et al. demonstrated an increase in the CD40 (on
monocytes)/CD40L (on T Lymphocytes) axis in MDS patients, re-
sulting in elevated TNF‐α secretion by monocytes and subsequent
hematopoiesis suppression.56 Furthermore, MDS monocytes dis-
play impaired ability to differentiate in macrophages and reduced
in vitro phagocytic abilities.53,55

CHANGES IN ADAPTIVE IMMUNITY

T cells

The current body of literature strongly indicates the presence of
clonal or oligoclonal T‐cell expansion as a distinctive feature in
MDS.122,123 These observations support the hypothesis of a domi-
nant clonal T lymphocyte population suppressing hematopoietic
precursors, ultimately leading to BM failure.

In one of the largest studies conducted on T cells in MDS pa-
tients,61 the numbers of peripheral blood (PB) CD4+ and CD8+ T cells

F IGURE 2 Immune and bone marrow environment changes during the MDS course. Main alterations in low‐risk, high‐risk, or all MDS patients are specified in

red, blue, and black, respectively. DC, dendritic cell; IL, interleukin; Ly, lymphocyte; MDS, myelodysplastic neoplasms; MDSC, myeloid‐derived suppressor cell; MSC,

mesenchymal stromal cell; NK, natural killer; Th, Helper CD4+ T cell; Treg, regulatory T cell. Dashed lines represent impaired differentiation.
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in MDS patients did not significantly differ from those in age‐matched
healthy individuals. However, there appeared to be a reduction in
CD8+ T cells in patients with high‐risk (HR) disease. Additionally, the
authors verified that most T cells exhibited an activated phenotype, both
in PB and BM. This activation was characterized by heightened expression
of HLA‐DR and CD57, coupled with diminished expression of CD28 and
CD62L. Importantly, the presence of this activated phenotype did not
appear to influence symptoms, prognosis, or risk of disease progression.61

Furthermore, T cells derived from MDS patients exhibited elevated ex-
pression of chemokine receptors CCR3, CCR5, and CX3CR1, while
showing reduced expression of CCR7. This pattern suggests thatT cells in
MDS tend to possess a more mature chemokine receptor profile.124

Hypocellular MDS seem to be characterized by clonal T and NK cell
expansions, respectively in HR and LR MDS.125

Cytotoxic CD8+ T cells

Multiple studies have consistently depicted a cytotoxic environment in
low and intermediate‐risk MDS. This is evidenced by several factors,
including the expansion of mature effector CTLs (CD8+, CD28−, CD57+),
heightened expression of granzyme B and perforin, alterations of TCR‐
Vβ repertoire, and reduced frequencies of Tregs when compared to
healthy individuals.63–65 This augmented cytotoxicity has a dual impact:
first, it suppresses BM hematopoiesis and contributes to cytopenias;
second, CTLs exhibit heightened activity against MDS cells, under-
scoring their role in restraining the malignant clone.71

With the progression of MDS alterations in the immune micro-
environment hinder effective anti‐tumor responses. Yang et al. re-
vealed that PD‐1 and its two ligands, PD‐L1 and PD‐L2, along with
CTLA‐4, were aberrantly upregulated in BM cells from patients with
myeloid disorders. This upregulation predisposes individuals to an
exhausted CTL phenotype, allowing the malignant clone to evade
immune surveillance.67 This finding aligns with another study that
reported reduced cytotoxic capacity in high‐risk MDS patients.65

CD4+ T helper cells (Th)

In MDS, there is an elevation in theTh1/Th2 ratio, characterized by aTh1
bias in patients with LR‐MDS. Two studies have demonstrated a corre-
lation between Th1 bias and the presence of proapoptotic
cytokines, such as IFN‐γ and TNF‐α. This suggests that Th1 cells may
contribute to nucleated cell apoptosis, and therefore BM failure, by
overproducing proapoptotic cytokines.72,82

Th17 cells represent a distinct subset of CD4+ T cells, char-
acterized by the production of IL‐17. Kordasti et al. found a sig-
nificantly elevated Th17 population in LR‐MDS compared to HR‐
MDS and controls, together with elevated proinflammatory cyto-
kines and a higher apoptotic index.8 Similarly, Zhang et al. showed
elevated levels of IL‐17/IL‐17R as well as increased levels of the
potentially pathogenic cytokines IFN‐γ and TNF‐α in BM super-
natants. Li et al. found a positive correlation between the percen-
tage of Th17 cells, neutrophils, and hemoglobin levels, and a
negative correlation with morphologic blast percentage, as well as a
significantly lower Th17 frequency in unfavorable karyotype groups.
The authors speculate that Th17 may have a protective role in MDS
that contributes to malignant clone inhibition as well as sustaining
normal hematopoiesis.84

Th22 cells, which mainly secrete IL‐22, TNF‐α, and IL‐13, are
markedly elevated in MDS compared with healthy donors, especially
in HR‐MDS.24 There may be a role of Th22 cells in the immune
evasion of MDS clone(s) and disease progression. However, their role
may be more complex. Current studies on Th22 in autoimmunity andT
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cancer show a potential biphasic activity, with both inflammatory and
immunosuppressive activity, based on the focal microenvironment.24

Regulatory T cells (Tregs)

In HR‐MDS, Tregs are increased compared to LR‐MDS and con-
trols.7,73,126,127 The expansion is typically polyclonal and involves a pre-
dominantly naïve subset.7 High levels of Tregs have been significantly
correlated with MDS with excess blasts, high IPSS score, and disease
progression.7 In early‐stage disease, published results are inconclusive.
Some studies show normal or near‐normal Treg frequencies,7 whereas
others show an increased number compared to healthy controls.77,78 This
may indicate that even LR disease can harbor a dysregulation of immune
tolerance, which can negatively affect OS.79 Kotsianidis et al. showed that
early and advanced‐stage diseases are associated with differential Treg
activity.74 In early‐stage MDS, Tregs' anti‐inflammatory potential is
compromised by a suppressed CXCL12/CXCR4 axis due to CXCR4
downregulation and impaired BM homing. As a result, the authors
showed a reduction of Tregs in the BM microenvironment, which could
be a significant mechanism supporting the autoimmunity and BM failure
observed in LR‐MDS. In late disease stages, Tregs retain their function
and homing and can expand locally and systemically.74 In both early and
late‐stage diseaseTregs show an inverse correlation with the numbers of
Th17 and CTL,8,75 which could permit the emergence of the autoimmune
responses observed in the context of LR‐MDS.

B lymphocytes

Literature on the role of B cells in MDS pathogenesis is limited. Meers
et al. showed that MDS patients had lower B cell counts compared
to age‐matched controls.61 B‐cell progenitors are reduced in MDS
patients compared with healthy controls,90 and BM B cells display
increased apoptosis. The increase of B progenitors has been shown to
correlate with adverse prognosis in LR‐MDS.79

CHANGES IN BONE MARROW
MICROENVIRONMENT

Smoldering inflammation, particularly driven by NLRP3 inflamma-
somes and damage‐associated molecular pattern (DAMP) molecules
(e.g., S100A8/A9) via Toll‐like receptors (TLR), is a main feature in
MDS.128,129 Constitutively activated TLR‐signaling with downstream
mitogen‐activated protein kinase (MAPK) and nuclear factor kappa B
(NF‐κB) activation further induces the release of proinflammatory
cytokines propagating the vicious inflammatory loop, increasing pyr-
optosis and consequently cytopenias.129 TLR activation promotes the
secretion of several proinflammatory cytokines, including IL‐1, IL‐6,
IL‐8, TNF‐α, INF‐γ, and GM‐CSF, and leads to the priming of in-
flammasome components and ASC (apoptosis‐associated speck‐like

protein containing a caspase‐recruitment domain) protein aggregation
into large cytoplasmic aggregates (ASC specks). These large com-
plexes act as adaptors to promote pro‐caspase1 activity leading to
the conversion of pro‐IL1β and pro‐IL18 into their active form, fur-
ther amplifying the inflammatory loop.129 As a result, pyroptosis, a
proinflammatory lytic form of cell death, participates in ineffective
hematopoiesis.

Kornblau et al. found several upregulated (CSF3, IL‐1RA, IL‐8,
IL‐12, IL‐15, and CXCL10) and downregulated (IL‐4, IL‐6, IL‐7, IL‐10,
IFN‐γ, CCL3, PDGF‐BB) cytokines in PB from MDS patients com-
pared to age‐matched controls130 (Table 2). This points toward a
profound cytokine dysregulation in MDS patients, which differs ac-
cording to the MDS risk group. Kordasti et al. reported higher serum
levels of proinflammatory molecules, including IL‐7, IL‐12, RANTES,
and IFN‐γ in LR‐MDS patients, whereas HR‐MDS showed higher
levels of suppressive cytokines IL‐10 and soluble IL2R.8 Feng et al.
also observed differential cytokine profiles according to IPSS risk
stratification, with decreased levels of CCL5, CXCL5, CD40L, VEGF,
and EGF in HR‐MDS compared to LR‐MDS.131

Interestingly, some studies reported a correlation between cy-
tokine levels with clinical outcomes. Tsimberidou et al. found that
higher TNF‐α levels (>10 pg/mL) were associated with lower rates of
responses and significantly lower event‐free survival and OS.134

Additionally, increased serum CXCL10, IL‐7, and IL‐6 levels were
independently associated with adverse OS in a retrospective series of
79 patients.135

Mesenchymal stromal cells (MSC)

Numerous reports found that MDS MSC exhibit functional defects in
vitro,91 such as increased senescence, a decline in proliferation
ability,136,137 and a decreased osteogenic potential.91,138,139 Perhaps
most importantly, MDS MSC showed altered capacities to sustain
HSPC maintenance both in MDS animal models140 and in in vitro
cocultures.91 This could be partly attributed to the reduced expres-
sion of essential HSPC ligands, including CXCL12, ANGPT1,
and KITL,141 coupled with higher production of the proinflammatory
cytokines IL‐6 and TNF‐α.59

There is very little data regarding the dysregulation of other
stromal and vascular niche cells in the context of MDS, however, BM
stromal fibroblasts of MDS patients have also shown altered cytokine
expression, including IL‐6, TNF‐α, IFN‐y, and TGF‐β.142

In summary, MDS is characterized by a multitude of intricated
and interconnected dysregulations within cellular immunity and
the BM microenvironment. These dysregulations exhibit hetero-
geneity across MDS subtypes, genetic mutations, and disease
stages. This diversity underscores the importance of establishing
standardized FCM panels and cytokine measurements for in‐
depth exploration of immunity in MDS and for risk stratification
(Figure 3).

TABLE 2 Summary of major cytokine alterations in MDS.

Proinflammatory Anti‐inflammatory Growth factors Outcome

Cytokines In all MDS: ↑ IL‐1RA, IL‐15, TNFα, IL‐6,130,131

IL‐8,130,132 CCL2, CXCL10132; ↓ CCL3,130

CCL4131 (PB + BM)
In LR‐MDS: ↑ IL‐7, IL‐12, CCL5, INF‐γ,8 IL‐

178,133 (PB + BM)
In HR‐MDS: ↓ IL‐1870 (BM)

In all MDS: ↑ TGF‐β,130 IL‐27132;
↓ IL‐4130 (PB + BM)

In HR‐MDS: ↑ IL‐10, soluble IL‐
2R8 (PB)

In all MDS: ↑ G‐CSF131 (PB)
↑ VEGFA130 (PB)

↑ TGF‐β correlated with higher BM
blasts %54 (BM)

↑ TNF‐α correlated with higher BM
blasts %, adverse
prognosis134 (PB)

↑ IL‐6, IL‐7, and CXCL10 correlated
with adverse prognosis135 (PB)

Abbreviations: BM, bone marrow; PB, peripheral blood.
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RECOMMENDATIONS FOR IMMUNE
PROFILING IN MDS PATIENTS

Guided by current knowledge and expert consensus, the i4MDS
consortium presents the following recommendations as an initial
step toward standardizing the assessment of immune parameters in
patients with MDS.

All patients, whether they are under evaluation due to suspicion
of MDS or have a confirmed diagnosis, should be requested to
provide prescreening consent. This consent allows for the collection of
the necessary samples for local or centralized immune profiling and the
ongoing storage of research samples for future evaluations. Besides
patients with suspected/diagnosed MDS, patients who are currently
undergoing evaluation for persistent unexplained cytopenias (Hb
<13 g/dL in men and <12 g/dL in women, ANC <1.8 × 109, PLT
<150 × 109) as well as those who have already received a diagnosis of
immune aplastic anemia, clonal cytopenia of undetermined significance
(CCUS), VEXAS syndrome, or idiopathic cytopenia of undetermined
significance (ICUS) are considered eligible for participation (Figure 4).
When possible, patients will be part of registries where central
diagnosis screening is not prohibited.

Concomitant clinical data to be collected should include coex-
isting conditions (especially autoinflammatory and autoimmune dis-
orders) and immunomodulatory drugs (especially systemic steroids
>10mg/day). Laboratory data should include CRP and autoimmunity‐
related tests if indicated and available. Molecular sequencing
(standard MDS NGS panels) should also be performed in all patients,
to complement both molecular and immune data.

We recommend the collection of PB and, if feasible, BM aspirates
to monitor the immune signature. Notably, significant variations in the
innate and adaptive cell composition and status between peripheral
and BM samples can provide valuable insights into the mechanisms
underlying defective immune surveillance. Aspirates should be per-
formed at the time of diagnosis and before initiating any new therapies.

We strongly encourage sequential assessments in accordance
with institutional guidelines to monitor the dynamic evolution of the
immune response during treatment. This is particularly crucial for
patients undergoing treatment with hypomethylating agents (HMA)
for a minimum of three cycles, given the potential immunomodulatory
properties of this therapy.

When feasible, a portion of the PB and BM mononuclear cells
and serum samples should be biobanked to enable more advanced
multiparameter technologies, such as cytometry by time of flight or
spectral flow cytometry, which can facilitate more in‐depth immune
profiling. Thus, the collection of these important immunological and
clinical/demographic data will enable advanced analyses to answer
outstanding research questions to improve the experience and out-
comes of patients with MDS.

IMMUNE CELL MONITORING USING FLOW
CYTOMETRY

Table 3 summarizes the primary antigens the i4MDS panel re-
commends for the identification, characterization, and functional as-
sessment of immune cells during clinical care. For each type of

F IGURE 3 Multiomics modeling pipeline to integrate the assessment of the immune signature in myelodysplastic neoplasms.
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immune cell lineage, we have devised a suggested panel along with
optional markers. The selection of these additional markers should be
guided by local protocols, equipment availability, available resources,
and the source of aspirates.

This approach has been designed to facilitate effective and rou-
tine immune cell assessment in clinical laboratories, particularly in
secondary and tertiary centers.

In the case of BM, hemodilution should be prevented, if pos-
sible, by using the first aspirate pull. Samples can be collected in
ethylenediaminetetraacetic acid tubes and processed up to 72 h
after collection. Nevertheless, if high dimensional flow cytometry
is to be performed, we would generally recommend citrate col-
lection tubes as they allow both genomic and flow cytometry
analysis from the same sample. We recommend ammonium
chloride (homemade or commercially available) lysis of mature RBC
before antibody staining and suspension in paraformaldehyde for
data acquisition.143

The panels of marker combinations in Table 3 have been
constructed based on 10 colors FCM, CD45 hematopoietic mar-
ker, and a viability stain.132 Optional markers are proposed for
exploring cell type‐specific functions (immune‐related) or those
known or suspected to be dysregulated in the context of MDS
(malignancy‐related).

In the case of BM aspirates, we also recommend the addition
of a combination that includes CD34 and other appropriate

markers to distinguish hematopoietic stem and progenitor cells
(HSPC). Based on the current level of evidence regarding altera-
tions in cell types in MDS (as outlined in Table 3), we strongly
recommend performing, at a minimum, the T‐ and B‐cell panels.
The choice to implement additional panels may be influenced by
the intended treatment strategy.

We designed specific tubes for T‐cell monitoring (Panel A) and
set a core panel of markers to distinguish cytotoxic, Th, and Tregs, as
well as their naïve/memory phenotype (Panels E and F). For both Th
(CXCR3, CCR4, CCR6, and CXCR5) subsets and Treg (CD25, CD127),
cell‐surface identifying markers were preferred given their good
correlation with intracellular staining and to facilitate routine im-
plementation.144 Panel B explores B cell isotypes, activation status,
and repartition. NK cell panel D discriminates CD56bright/dim NK
subsets and major activating/inhibitory/licensing NK receptors
known to be dysregulated in MDS. Myeloid panel C investigates
monocyte (classical, nonclassical, and intermediate) subsets along
with M‐MDSC and PMN‐MDSC based on CD14/15 differential ex-
pression, while panel G analyzes plasmacytoid and myeloid DC sub-
sets (Figure 5).

Neutrophils can be individualized based on FSC/SSC scales and
assessed for SSC‐based granularity. Given the lack of data regarding the
immune impact of red cell nucleated progenitors and megakaryocytes in
MDS, we do not recommend their monitoring in routine workup of MDS
immune profiling.

F IGURE 4 Patients screening for immune signature evaluation. ANC, absolute neutrophile count; CCUS, clonal cytopenia of unknown significance; Hb,

hemoglobin; ICUS, idiopathic cytopenia of unknown significance; MNC, mononuclear cells; PLT, platelets.
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CYTOKINE MONITORING IN MDS
PATIENTS

Cytokine detection has classically used enzyme‐linked immunosorbent
assays (ELISA), whose routine implementation has been limited by the
analysis of one analyte at a time, and a relatively large sample volume to

ensure accurate detection.145 Multiplex immunoassays overcome the
limitations of single‐analyte ELISA allowing simultaneous analysis of
multiple cytokines with a reduced sample volume. While routine
implementation of cytokine analysis is not yet widespread, we feel these
techniques will play an important role in the therapeutic management of
many inflammatory diseases, including MDS.

TABLE 3 Flow cytometry panel recommendations.

Panel Immune subsets Recommended markers Optional (immune)
Optional
(malignant)

A T cell CD45, CD45RA, CD3, CD4, CD8, CD5, CD7, CD16/56, CD27, TCRγδ HLADR, CD38, CD95, CD62L, CD45RO,
PD1/CTLA4/TIM3

TRBC1, CD26

B B cell CD45, CD20, CD19, CD10, CD27, CD38, IgD, IgM, CD25, CD22 CD305, CD185 kappa, lambda,
CD5, CD23

C Monocyte/MDSC CD45, CD14, CD16, CD64, CD300e, CD56, HLADR, CD11b, CD33,
CD15, Lin

SLAN, CD141, CD45RO CD34, CD13

D NK cell CD7, CD56, CD8, CD94, CD57, CD161, CD16, CD3, KIR3DL1/DL2,
CD45RO

DNAM1, NKG2D, NKp30, NKp46, KIR2DL2

E T cell subset − 1 CD3, CD4, CD8, CD19, CD25, CD127, CXCR5, CXCR3, CCR4, CCR6 CD95, CD28, CCR7

F T cell subset − 2 CD45RA, CD3, CD4, CD25, CD127, CD194 (CCR4), CD95, CD28,
CCR7, CD8

FOXP3, CXCR5, CXCR3, CCR6, CD45RO

G Dendritic cells CD45, Lin, CD123, CD88, HLADR, CD5, CD11C, CD141, CD163,
CD11B, CD14

CD1c, CD303, CD11b. CD45RO

Note: Each panel explores a specific immune subset with a set of core markers and additional extra‐markers to explore their status and function (immune) or known to be
dysregulated in the context of cancer (malignant).

F IGURE 5 Cell markers to identify cell subtypes from the International Integrative Innovative Immunology for MDS panel (optional markers in red). *Functional

assay is necessary for definite identification of myeloid‐derived suppressor cells.
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Serum cytokine levels have been shown to robustly reflect BM
cytokine concentration8 and there is high agreement between
serum and plasma concentrations.146 Peripheral blood serum (5 mL
dry tube) should be the preferred source for cytokine analysis, al-
though we also encourage BM supernatant biobanking. Lastly, it is
crucial to exercise diligence regarding the patient's clinical condi-
tion to prevent sample collection during concurrent inflammatory
or infectious episodes that could confound results. Additionally,
any ongoing treatments, particularly those involving growth fac-
tors, immunomodulators, or novel inflammasome inhibitors, should
be documented and reported, as they have the potential to impact
result interpretation.

Table 4 summarizes the recommended cytokine panel, ranked
in priority order established based on their potential role in disease
genesis and their reported altered expression in MDS patients.
Multiplex assays may allow simultaneous analysis of both pro‐
inflammatory (IFN‐γ, TNF‐α, IL‐1β, IL‐1RA, IL‐2, IL‐2R, IL‐6, IL‐7,
IL‐8, IL‐12, VEGF, GM‐CSF, CCL2, CCL3, CCL4, CCL5, CXCL10)
and anti‐inflammatory (IL‐4, IL‐10, TGF‐β) molecules known to be
dysregulated in the context of MDS. We also suggest additional
markers: IL‐5 and IL‐15 for their broad proinflammatory roles in
granulocyte stimulation, NK and T cell activation and proliferation,
respectively; CXCL9 and CXCL12 for their important function in
immune cell migration toward inflamed and BM tissue,
respectively.

DISCUSSION AND FUTURE DIRECTIONS

In this work, we offer recommendations to establish a structured fra-
mework for evaluating immune cells and monitoring cytokine changes
at the time of diagnosis and throughout the course of the disease to
standardize the immune profiling of MDS patients. Currently, manual
gating and expert analysis remain the conventional practices, but we
anticipate that automated gating and cell identification algorithms,
currently in development or used in research studies,147 will likely find
their place in clinical practice in the near future.

Looking ahead, more sophisticated technologies, such as mass
cytometry or spectral flow cytometry, could become readily available.
These advancements have the potential to streamline the monitoring
process, potentially reducing the need for multiple tubes and enhancing
the efficiency of immune profiling.

We envision the integration of comprehensive immunological data
with existing genomic analyses through the setup of a big data con-
sortium. Through advanced statistical analysis, this could lead to im-
proved risk stratification, identification of new prognostic biomarkers
and patient subsets most likely to benefit from immunomodulatory
treatments, including allogeneic hematopoietic stem cell transplantation
and emerging immunotherapies.
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