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Abstract

The use of environmental DNA (eDNA) methods for community analysis has recently been

developed. High-throughput parallel DNA sequencing (HTS), called eDNA metabarcoding,

has been increasingly used in eDNA studies to examine multiple species. However, eDNA

metabarcoding methodology requires validation based on traditional methods in all natural

ecosystems before a reliable method can be established. To date, relatively few studies

have performed eDNA metabarcoding of fishes in aquatic environments where fish commu-

nities were intensively surveyed using multiple traditional methods. Here, we have com-

pared fish communities’ data from eDNA metabarcoding with seven conventional multiple

capture methods in 31 backwater lakes in Hokkaido, Japan. We found that capture and field

surveys of fishes were often interrupted by macrophytes and muddy sediments in the 31

lakes. We sampled 1 L of the surface water and analyzed eDNA using HTS. We also sur-

veyed the fish communities using seven different capture methods, including various types

of nets and electrofishing. At some sites, we could not detect any eDNA, presumably

because of the polymerase chain reaction (PCR) inhibition. We also detected the marine

fish species as sewage-derived eDNA. Comparisons of eDNA metabarcoding and capture

methods showed that the detected fish communities were similar between the two methods,

with an overlap of 70%. Thus, our study suggests that to detect fish communities in backwa-

ter lakes, the performance of eDNA metabarcoding with the use of 1 L surface water sam-

pling is similar to that of capturing methods. Therefore, eDNA metabarcoding can be used

for fish community analysis but environmental factors that can cause PCR inhibition, should

be considered in eDNA applications.
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Introduction

Ecological community evaluation is a critical step because it provides the basic information

needed for biological conservation, for example the composition of fish communities in fresh-

water systems [1]. Previously, fish capture methods such as the use of nets and other types of

fishing gear/equipment have been used for community evaluation. However, each capture

method has been shown to incompletely detect fish species in a community because of differ-

ences in the traits and habitats of fish. Thus, evaluation of fish communities should be com-

pleted using several capture methods [2]. Some capture methods are difficult to employ in

some ecosystems. For example, examining fish species in backwater environments is difficult

because of limited access to pelagic areas, which is further complicated by the presence of mac-

rophytes and muddy sediments. Using environmental DNA (eDNA) methods, especially

DNA metabarcoding, may be a valuable new survey method for backwater habitats.

eDNA obtained directly from environmental samples can be used to evaluate species distri-

butions. These methods have recently been developed and are considered to be useful tech-

niques [3–8]. For example, in the past decade, many studies detected fish species [9, 10] and

aquatic organisms [11–17] using eDNA. Recently, high-throughput parallel DNA sequencing

(HTS) has been applied in eDNA studies to examine community composition from eDNA

samples [3, 5, 18–24]. This eDNA technique with HTS sequencing and DNA-based species

identification is called eDNA metabarcoding and is considered to be a useful method for

assessing aquatic communities [19, 20].

eDNA metabarcoding has recently been applied in fish community surveys. For example, a

universal polymerase chain reaction (PCR) primer for fish species, called MiFish (MiFish-U/

E) was developed, whereby a hypervariable region of the mitochondrial 12S rRNA gene can be

amplified [25]. The versatility of these PCR primers using eDNA from four aquaria was tested

with known species composition and natural seawater [25]. These authors successfully

detected eDNA from 232 fish species across 70 families and 152 genera in the aquaria and in

the field, with a higher detection rate for species (>93%) in the aquaria. Moreover, using the

MiFish primers and HTS, an investigation of marine fish communities in Maizuru Bay, Japan,

detected a total of 128 fish species in the water samples [26, 27]. These studies indicate the

great potential of eDNA metabarcoding as a useful tool for biodiversity assessment.

eDNA metabarcoding has been applied in fish biodiversity surveys, but testing and compar-

ing its usefulness with traditional methods is necessary for the development of this technique

as a conservation tool [28]. The performance of eDNA metabarcoding has been tested in some

studies and compared with that of capture methods [29, 30] or underwater visual consensus

[26, 27], and it was found to have similar or higher performance than that of traditional meth-

ods. Comparisons of species detected using eDNA with those detected using multiple capture

methods, which are generally used to investigate fish communities in aquatic habitats, are lim-

ited except for a study in a marine bay [26, 27]. Moreover, eDNA metabarcoding studies have

primarily been conducted in marine [25], lake [31, 32], pond [33], and river ecosystems [34–

37] but not in backwater ecosystems where there are many rare and endangered fish species

[38]. Therefore, a comparison of the performance of eDNA metabarcoding in assessing fish

communities with that using traditional methods is necessary.

The objective of this study was to evaluate the performance of eDNA metabarcoding using

HTS for fish communities in backwater lakes that are inhabited by rare and endangered fish

species, and compare the ability of this methodology to detect species in a community with

that of multiple capture methods, such as net sampling and electro-fishing. We conducted

field surveys and sampling of eDNA in backwater lakes, including oxbow lakes that are isolated

from rivers and backwater lakes, and thus, are postulated as the backwater of the rivers
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occurring from natural embankments [39]. We also tested PCR inhibition effect on the meta-

barcoding analysis in the backwater lakes. Estimations of species distributions in these lakes

using eDNA have not been widely attempted, and a direct capture of fish is difficult because of

high densities of macrophytes on the surface.

Materials and methods

Ethics statement

This project, including field survey and sampling for fish, was conducted in accordance with

the Act on Welfare and Management of Animals, and Bylaw on Welfare and Management of

Animals in Hokkaido, and the Regulations for Animal Experiments of the University of

Hyogo. Permission for fish samplings in the backwaters and rivers in this study was granted by

the Hokkaido government, Japan. An ethics statement is not required for this project.

Study sites

We conducted a field survey and sampling in 31 backwater lakes in Hokkaido, Japan (Fig 1A).

The study lakes were classified as oxbow (OL-, Fig 1B) and backwater lakes (BL-, Fig 1C). Most

of the study lakes were interconnected by canals and rivers. These lakes host many rare and

endangered fish species such as Lefua nikkonis and Rhynchocypris percnurus sachalinensis [38].

Traditional capture methods to estimate fish community composition

Traditional surveys for fish in the 31 lakes in our study were conducted, with moderate water

levels, by the Hokkaido Regional Development Bureau between August 2 and September 13,

2016. The captures were conducted at shore sites. For captures, multiple fishing equipment

were used including minnow traps, long-line fishing, gill nets, cast nets, dip nets, drag nets,

and electro-fishing (Table 1). For minnow traps and long-line fishing, we used Pacific saury as

bait. These traditional methods have been conducted for fish community surveys by the gov-

ernment such as the Ministry of Land, Infrastructure and Transport, Japan, and researchers in

the habitats. The multiple fishing equipment may catch most of the fish species occupying the

habitats. All capture methods were used for all sites and capture efforts were equal across all

study lakes. Fish captured using fishing equipment were pooled and their abundances were

calculated. Species were identified using pictorial keys [40]. Because the individuals were juve-

nile and ammocoetes, some species were difficult to identify to species level and were included

as a genus.

Water sampling and filtering

Using the aforementioned methods, we collected 1 L of surface water in bleached bottles from

the shores of each lake where fish had previously been caught. We conducted water sampling,

with moderate water levels in the lakes, from October 31 to November 4, 2016. Water samples

were vacuum-filtered on-site onto 47 mm GF/F glass filters (pore size: 0.7 μm) (GE Healthcare,

Little Chalfont, UK). During transport, the filters were stored in a cooler with ice packs. All fil-

ters were stored at -20˚C within 12 h after filtration. A liter of Milli-Q water was used as the

equipment control to monitor contamination during filtering in each site and during subse-

quent DNA extraction. The sampling bottles and filtering equipment (i.e., filter funnels and

measuring cups) were cleaned using 10% commercial bleach (approximately 0.6% hypochlo-

rous acid) and washed using DNA-free distilled water.

eDNA metabarcoding for fish communities
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Fig 1. Map. a) sampling sites, b-1, 2) aerial photograph of oxbow lakes (b-1; OL-8, b-2; OL-7), and c-1, 2) aerial photograph of backwater lakes (c-1;

BL-1, c-2; BL-7).

https://doi.org/10.1371/journal.pone.0210357.g001
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eDNA extraction from filter samples

To extract DNA from the filters, we followed previously described methods [22] using DNeasy

Blood and Tissue Kit for DNA purification (Qiagen, Hilden, Germany) and Salivatte (Sarstedt,

Numbrecht, Germany). The filter was placed in a salivated tube, and Buffer AL (400 μL) and

proteinase K (20 μL) were added to the solution. The column was placed in a 56˚C dry-oven

for 30 min. After incubation, the salivated tube was centrifuged at 6,000 × g for 1 min to collect

the DNA. To increase DNA yield from the filter, 220 μL of TE buffer was added to the filter

and again centrifuged at 6,000 × g for 1 min. The collected DNA was purified using the

DNeasy Blood and Tissue Kit following the manufacturer’s protocol. The extracted DNA sam-

ples (100 μL) were stored at –20˚C until PCR assay.

Library preparation and MiSeq sequencing

A two-step PCR-procedure was used for library preparation of Illumina MiSeq sequencing. As

the first step, a fragment of the mitochondrial 12S rRNA gene was amplified using the MiFish-

U-F and MiFish-U-R primers [25] which were designed to contain Illumina sequencing

primer regions and 6-mer Ns (forward: 50-ACACTCTTTCCCTACACGACGCTCTTCCGATCT
NNNNNN GTCGGTAAAACTCGTGCCAGC-30, reverse: 50-GTGACTGGAGTTCAGACGTGTG
CTCTTCCGATCTNNNNNN CATAGTGGGGTATCTAATCCCAGTTTG-30). The italicized and

normal letters represent MiSeq sequencing primers and MiFish primers, respectively, and the

six random bases (N) were used to enhance cluster separation on the flow cells during initial

base call calibrations on MiSeq. We used a KOD FX Neo polymerase (Toyobo, Osaka, Japan)

for the first PCR to facilitate amplifications of DNA from crude extracts. The first PCR was

performed with a 12 μL reaction volume containing 1× PCR Buffer for KOD FX Neo, 0.4 mM

dNTP mix, 0.24 U KOD FX Neo polymerase, 0.3 μM of each primer, and 2 μL template [41].

The thermal cycles of this step were as follows: initial denaturation at 94˚C for 2 min, followed

by 35 cycles of denaturation at 98˚C for 10 s, annealing at 65˚C for 30 s, and elongation at

68˚C for 30 s, followed by final elongation at 68˚C for 5 min. The first PCRs were performed

using eight replicates to mitigate false negatives (PCR dropouts). Thereafter, individual 1st

PCR replicates were pooled. The 30 μL of each PCR product was purified using AMPure XP

(Beckman Coulter, Brea CA, USA) and eluted with 30 μL of sterilized water. The purified first

PCR products were used as templates for the second PCR. The Illumina sequencing adaptors

Table 1. Capture methods employed in this study, including the fishing equipment size and effort.

Fishing methods Gears and sizes Fishing Effort

Long-line fishing Line-length 15 m

Number of baited Hooks 10/Line

2 lines/site

1 night

Minnow trap L60 cm × W45 cm × H20 cm

mesh size 25 mm

10 pcs/site

1 night

Gill net W10 m × H3 m

Mesh size 85 mm and 106 mm

1 gear/site

1 night for each size

Cast net Mesh size 12 mm and 18 mm 10~20 cast/site

Dip net Bow 80 cm × 60 cm

Net-depth 1.0 m

Mesh size 5 mm

30 min × 1 person/site

Dragnet Net-height 2.0 m

Net-length 18 m

Collect parts mesh size 15 mm

Capture parts mesh size 5 mm

2 times/site

Electro-fisher Type LR-12B (Smith–Root, Inc., Vancouver, WA, USA) 60 min/site

https://doi.org/10.1371/journal.pone.0210357.t001
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and the 8 bp identifier indices were added to the subsequent PCR process using a forward and

reverse fusion primer: 5´-AATGATACGGCGACCACCGAGATCTACAXXXXXXXXACACTCTT
TCCCTACACGACGCTCTTCCGATCT-3´ (forward) and 5´-CAAGCAGAAGACGGCATACGA
GATXXXXXXXXGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3´ (reverse). The italic

and normal letters represent MiSeq P5/P7 adapter and sequencing primers, respectively. The

8X bases represent dual-index sequences inserted to identify different samples. The second

PCR was conducted with 12 cycles of a 12 μL reaction volume containing 1× KAPA HiFi Hot-

Start ReadyMix, 0.3 μM of each primer, and 1.0 μL template from the first PCR production.

The thermal cycle profile after an initial 3 min denaturation at 95˚C was as follows: denatur-

ation at 98˚C for 20 s, annealing, and extension combined at 72˚C (shuttle PCR) for 15 s, with

the final extension at the same temperature for 5 min. The second PCR products were pooled

in equal volumes and purified using AMPure XP as the first PCR. The purified PCR products

were loaded on a 2% E-Gel SizeSelect (Thermo Fisher Scientific, Waltham, MA, USA) and the

target size of the libraries (approximately 370 bp) was collected. The library concentration and

quality were estimated by a Qubit dsDNA HS assay kit and a Qubit 2.0 (Thermo Fisher Scien-

tific). The amplicon libraries were sequenced by 2 × 250 bp paired-end sequencing on the

MiSeq platform at Ryukoku University using the MiSeq v2 Reagent Kit according to the man-

ufacturer’s instructions. Note that the sequencing run contained a total of 351 libraries includ-

ing 34 of our libraries and 317 libraries from other research projects.

Bioinformatic analysis for MiSeq sequencing

The processing formality of the MiSeq reads was evaluated by the FASTQC program (http://

www.bioinformatics.babraham.ac.uk/projects/fastqc). After confirming a lack of technical

errors in the MiSeq sequencing, low-quality tails were trimmed from each read using “Dyna-

micTrim.pl” in the SOLEXAQA software package [42] with a cut-off threshold set at a Phred

score of 10. The trimmed paired-end reads (reads 1 and 2) were then merged with each other.

The assembled reads were further filtered by custom Perl scripts to remove reads with either

ambiguous sites (Ns) or those exhibiting unusual lengths with reference to the expected size of

the PCR amplicons (297 ± 25 bp). The software TagCleaner [43] was used to remove primer

sequences with a maximum of three-base mismatches and transform the FASTQ format into

FASTA.

The pre-processed reads with an identical sequence (i.e., 100% sequence similarity) were

assembled using UCLUST [44]. The number of identical reads was added to the header line of

the FASTA formatted data file. The sequences represented by more than or equal to 10 identi-

cal reads were subjected to the downstream analyses.

The processed reads were subjected to local BLASTN searches on the comprehensive refer-

ence database of fish species that were previously established [25]. The top BLAST hit with a

sequence identity of�97% and the E-value threshold of 10−5 was applied to species detection

of each sequence, but the species were mostly identified with�99% match (Fig 2). From the

BLAST results, we identified the species using methods previously described [41]. We also cal-

culated the rate of shared sites by the number of sites with species detected by metabarcoding

per number of sites with species detected by metabarcoding and traditional methods.

PCR inhibition test

To test for inhibition in the eDNA samples, 1 μL of the plasmid including the cytochrome b

gene from Trachurus japonicus (1.5 × 102 copies), a marine fish, which was not found at the

sites and detected by the eDNA metabarcoding, was added to the PCR template. This con-

tained 900 nM of each primer and 125 nM of TaqMan probe in a 1× PCR master mix (KOD

eDNA metabarcoding for fish communities
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FX Neo) and 2 μL of the DNA solution. The total volume of each reaction mixture was 10 μL.

The real-time PCR was performed by using quantitative real-time PCR (PikoReal real-time

PCR, Thermo Fisher Scientific). The PCR (three replicates) was performed as follows: 2 min at

50˚C, 10 min at 95˚C, and 55 cycles of 15 s at 95˚C, and 60 s at 60˚C. The non-template control

(NTC) was performed in three replicates per PCR. The results of the PCR were analyzed using

PikoReal software v. 2.2.248.601 (Thermo Fisher Scientific). The primer and probe set used

was that previously reported [26]: forward primer: 50-CAGATATCGCAACCGCCTTT-30;
reverse primer: 50-CCGATGTGAAGGTAAATGCAA A-30; probe: 50-FAM-TATGCACGCCAA
CGGCGC CT-TAMRA-30. The presence of PCR inhibitors was evaluated ΔCt (Ctpositive

control−Ctsample). ΔCt of�3 cycles and is usually considered to be evidence of inhibition [45].

Fig 2. Species lists determined from captures (a) and eDNA metabarcoding (b).� N.D. means that the species was not detected.

https://doi.org/10.1371/journal.pone.0210357.g002
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Statistical analyses

To evaluate the overlapping of the species lists between the captured fish and eDNA metabar-

coding, we calculated the detection rate for eDNA metabarcoding. The equation was (the

number of species found by both the capture and eDNA methods/number of all captured spe-

cies) × 100. We conducted the community analysis for both the eDNA metabarcoding and

catching data. We used the presence/absence data of both datasets and calculated the Jaccard

similarity index and ordinated using non-metric multidimensional scaling (NMDS) with 100

iterations. We also performed an analysis of similarities (ANOSIM) for the Jaccard similarity

index to test whether there was a statistically significant difference between two or more

groups of sampling units. We tested the differences in communities between the eDNA meta-

barcoding and catching data (permutation = 999, α = 0.05). All statistical analyses were con-

ducted in the “vegan” package of R v. 3.3.2 (R Core Team 2016) [46].

Results

Traditional catching methods to estimate fish community

Using multiple capture methods, we found 26 taxa in nine families (Fig 2A). Cyprinidae was

the most abundant family (12 species).

MiSeq sequencing

A MiSeq paired-end sequencing for the 34 PCR libraries (including 31 samples and three nega-

tive controls) yielded a total of 641.056 reads. We detected 24 taxa in eight families after follow-

ing the pipeline procedure for eDNA metabarcoding, representing 85% of taxa that we found

by the traditional methods (Fig 2B). We identified Carassius buergeri and C. auratus langsdorfii
as Carassius spp. because of higher DNA-sequence similarities (<2 bp differences). We also

detected two invaive species in this region, namely, Opsariichthys uncirostris and Zacco platy-
pus. Using eDNA metabarcoding, we could not find three fish species that were detected by

capture methods (i.e., Lethenteron sp., Ctenopharyngodon idella, and Hypomesus nipponensis
at any site (Table 2).

In OL-14, OL-15, BL-1, and BL-5, we could not detect any fish species, probably because

the PCR amplification almost failed due to PCR inhibitors. In fact, PCR inhibitor tests using

real-time PCR showed remarkable inhibition (∆Ct> 3) in the samples compared with other

sites and that showed modulate inhibition (∆Ct = 1.87) at BL-1 (Table 3). We also detected

marine species using eDNA metabarcoding (Table 4). The number of reads for each of these

species was one or two orders of magnitude less than that for expected species.

Comparisons of traditional capture and eDNA metabarcoding data

To compare between traditional capture methods and eDNA metabarcoding data, the taxo-

nomic levels in the species list from traditional captures were adjusted to the lists from eDNA

metabarcoding (Fig 2). Rates of shared sites were higher than 50% in 12 out of the 25 taxa (Fig

3 and Table 5). Using detection rates from eDNA metabarcoding, we compared detection

among the sites (Fig 4). The detection rates were>50% in 22 out of 31 sites, including rates

that were 100% at three sites (Fig 4). After the exclusion of the four sites where there were no

eDNA detections (OL-14, OL-15, BL-1, and BL-5), the mean detection rate was 70.0%. How-

ever, the rate varied among the sites.
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Comparing the ordination of fish communities between traditional capture

and eDNA metabarcoding data

The NMDS ordinations for fish community similarities were similar in structure for both tra-

ditional capture and eDNA metabarcoding data (stress value = 0.14) (Fig 5). In fact, the com-

munities were not significantly different between traditional capture and eDNA

metabarcoding using ANOSIM (R = -0.0161, P = 0.585). The BL sites were clearly different

from the OL sites in both survey methods.

Discussion

We found that eDNA metabarcoding using only 1 L of water sample offered high detection

rate (85%) of fish taxa when multiple capture methods and eDNA metabarcoding to evaluate

fish communities in backwaters were compared. Multiple fish captures using seven types of

equipment required three people to be present at each site each day, whereas eDNA sampling

required only one person at each site, each day and only required a few minutes to complete.

Table 2. Species determined from capture approaches (○), eDNA metabarcoding (4), and both methods (●).

Species OL BL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 1 2 3 4 5 6 7 8

Lethenteron sp. ○
Cyprinus carpio ● ● ● ● ● ● ○ ● ● ● ● ● 4 ○ ● 4 ○ ● ● ○ ○ ● 4 ○ 4

Carassius cuvieri ● ● ● ● ● ● ● ● ● ● ● ● 4 ○ ○ ● ● ○ ○ ● 4 ● ● ○ ● 4 ○
Carassius spp. ● ● ● ● ● ● ● ● 4 ● ● ● ● ○ ○ ○ 4 ● ○ ● ● ● ○ ○ ● ○ ● ○ ● ● ●

(C.buergeri subsp.2)

(C. auratus langsdorfii)
(C.spp.)

Rhodeus ocellatus ocellatus ● ● ● ● ● ● ● ● ● ● ● ● 4 ○ ○ ○ ● ● ○ ● ○ ○ ○ ○ ○ ○ ● ●
Ctenopharyngodon idellus ○
Phoxinus perenurus sachalinensis 4 4 4 4 ○ 4 ○ ● ○ ○ ○ ● ○ ○ ● ●
Tribolodon brandtii brandtii 4 4 4 4 4 4 4 4 4 ● 4 4 4 ○ 4

Tribolodon sachalinensis ● 4 4 ● ● ● ● ● ● ● ● ○ ○ ● ● 4 ● 4 ● ● ○ 4 ○
Tribolodon hakonensis 4 4 ○ 4 4 ● 4 4 4 ● 4 4 4 4 4 ○ ● ● 4

(Tribolodon spp.) ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Pseudorasbora parva ● ● ● ● ● ● ● ● ● 4 ● ● ● ○ ○ ● ● ● ● ● ○ ○ ○ ○ ○ ● ○ ● ● ○
Gnathopogon elongatus elongatus ● ● ● 4 ● ● ● ● ● ● ● ○ ● 4 ● ● ● ○ ○ ○ 4

Misgurnus anguillicaudatus 4 4 4 ● 4 ● ● ● ● ● ● 4 ● ○ ○ ● ○ ● ● ● ○ ● ● 4 ○
Nemacheilus toni 4 ● ● 4 ● 4 ● ● 4 ○ ○ ● ● 4

Lefua costata nikkonis 4 4 4 ○ ○ ● ● 4 ○
Silurus asotus ● ● ○ ○ ○ ○ ● ○ ○ ○ ○ ○ ○ ○ ●
Hypomesus nipponensis ○
Hypomesus olidus ○ ○ ● ● ○ ● ● ○ ○ ○ ○ ○ ● 4 ○ ○ ○ ● ○ ● ○
Oncorhynchus sp. 4 4 ○

(Oncorhynchus masou masou)

Pungitius sinensis 4 4 4 ● 4 ● ● ● 4 ○ ○ ● ○ ○ ○ ● ● ○ ● ○ ● ○ ● ●
Gymnogobius urotaenia ● 4 4 ● ●
Gymnogobius castaneus ○ ● ● ● ● ● ○ ● ● ● ● ● ○ ○ ○ ● ○ ● ● ○ ○ ○ ● ○ ● 4

Rhinogobius sp. 4 ● ○ ○ ● ● ○ ● ● ○ ○ ● ○ ○ ● ○ ○ ● ● ○ ● ○
Tridentiger brevispinis 4 ● 4

Channa argus ● ● ● ● ● ○ ● ○ ● ● ○ ○

https://doi.org/10.1371/journal.pone.0210357.t002
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Here, we showed that only 1 L of water would be sufficient to evaluate fish community compo-

sition, and we also illustrated the similarity of fish communities across our study sites using

NMDS and ANOSIM results. Thus, eDNA metabarcoding can reduce the cost and effort of

surveying fish communities in backwaters and other freshwater habitats.

Comparison between the traditional capture and eDNA metabarcoding

data

Some taxa that were captured using traditional methods were not detected by eDNA metabar-

coding. Between 1 and 11 individuals caught using the seven capture methods were taxa that

were not detected using eDNA. These were: Lethenteron sp., Ctenopharyngodon idella, and

Table 3. The mean ΔCt for PCR inhibitor tests for the extracted samples.

Site ΔCt eDNA metabarcoding Site ΔCt eDNA metabarcoding

OL-1 -0.26 Detected OL-17 0.22 Detected

OL-2 -0.29 Detected OL-18 -0.11 Detected

OL-3 -0.19 Detected OL-19 0.25 Detected

OL-4 -0.44 Detected OL-20 -0.15 Detected

OL-5 -0.21 Detected OL-21 0.31 Detected

OL-6 -0.29 Detected OL-22 -0.17 Detected

OL-7 -0.21 Detected OL-23 0.25 Detected

OL-8 -0.27 Detected

OL-9 -0.10 Detected BL-1 1.87 Not Detected

OL-10 0.06 Detected BL-2 0.16 Detected

OL-11 0.17 Detected BL-3 -0.20 Detected

OL-12 -0.04 Detected BL-4 0.25 Detected

OL-13 0.11 Detected BL-5 4.57 Not Detected

OL-14 12.48 Not Detected BL-6 -0.37 Detected

OL-15 6.54 Not Detected BL-7 -0.50 Detected

OL-16 0.07 Detected BL-8 -0.62 Detected

https://doi.org/10.1371/journal.pone.0210357.t003

Table 4. Marine fish species detected using eDNA metabarcoding and the total reads by high-throughput parallel DNA sequencing (HTS).

No. Family Species Common name eDNA Detective Site Total reads BLAST Identity (%)

1 Clupeidae Sardinops melanostictus Japanese sardine OL-1 15 100

2 Clupeidae Clupea pallasii Pacific herring OL-1 23 100

3 Gadidae Gadus chalcogrammus Alaska pollock OL-1 27 100

4 Gadus morhua Atlantic cod OL-1,OL-21,OL-22 148 100

5 Gadus macrocephalus Pacific cod OL-1 13 100

6 Scomberesocidae Cololabis saira Pacific saury OL-1,OL-22 60 100

7 Sebastidae Sebastes trivittatus - OL-1 134 100

8 Sebastes ruberrimus Yelloweye rockfish OL-1 21 100

9 Hexagrammidae Pleurogrammus azonus Okhotsk atka mackerel OL-1 32 100

10 Carangidae Seriola quinqueradiata Japanese amberjack OL-1 199 99.4

11 Sparidae Pagrus major Japanese seabream OL-1 70 100

12 Scombridae Scomber australasicus Blue mackerel OL-1 17 100

13 Pleuronectidae Pleuronectes schrenki Flounder OL-1 19 100

14 Pseudopleuronectes americanus Winter flounder OL-1 233 100

15 Microstomus achne Slime flounder OL-1 11 100

https://doi.org/10.1371/journal.pone.0210357.t004
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Hypomesus nipponensis. The low abundance of the taxa may be the result of a limited amount

of eDNA in the water samples. Moreover, because Lethenteron sp. inhabits the sediment or

sand bed of the lakes, an adequate amount of eDNA may not be available around the surface

water [40], resulting in a lack of detection by eDNA metabarcoding. Such limitations of eDNA

were also reported in previous real-time PCR based studies [47]. In this study, we only col-

lected 1 L-samples from the lakes without biological replications. Increasing replications

induces the detection of fish species by eDNA metabarcoding [41], thus, the limited sampling

may have also caused non-detection by eDNA metabarcoding.

Tribolodon brandtii was caught at only two sites, but eDNA metabarcoding detected the

taxa at 14 sites, probably indicating that most of the individuals identified as Tribolodon sp. in

the field actually represent T. brandtii. In fact, individuals of Tribolodon genus with<10 cm

body length were not identified to the taxa level in the field because of difficulties in morpho-

logical identification. For example, to identify the genus Tribolodon in the field, the number of

predorsal scale rows must be counted and therefore, eDNA metabarcoding is advantageous

where such genera are difficult to identify. An additional advantage of eDNA metabarcoding

occurs in the case of some taxa for which only juveniles and ammocoetes are available and can-

not be identified to species by traditional methods. The eDNA metabarcoding can identify the

species regardless of the maturity stage.

We were not able to detect eDNA from four sites using metabarcoding, namely, OL-14,

OL-15, BL-1, and BL-5. The results of PCR inhibitor tests showed remarkable inhibitions at

these four sites (Table 3). High humic acid in the surface water of the backwater lakes in the

region has been described [48]. Humic acid is a major PCR inhibitor that would reduce the

number of present amplicons [49–52]. Therefore, the PCR inhibitor probably decreased the

Fig 3. Detections of species in study lakes detected by multiple capture and eDNA metabarcoding methods.

https://doi.org/10.1371/journal.pone.0210357.g003
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detection rate at these sites, despite the fact that we used the PCR master mix (KOD FX Neo)

to amplify the DNA from samples with high PCR inhibitors, such as soil samples. Thus, we

suggest the need for caution when applying eDNA metabarcoding in backwater habitats where

Table 5. The species list with the number of positive sites, shared sites for multiple capture methods and eDNA metabarcoding with total reads of high-throughput

parallel DNA sequencing (HTS), and the number of captured individuals.

Capture

No.

eDNA

detection

No.

Family Species Number of positive sites Number

of shared

site

Number

of eDNA

reads

Number

of

captures

BLAST

Identitiy of

eDNA

reads

eDNA method Traditonal

method

eDNA

method

Traditonal

method

1 - Petromyzontidae - Lethenteron sp. 1 0 1 0 0 1 (by Dip

net)

-

2 1 Cyprinidae Cyprinus carpio C. carpio 25 19 21 15 19,621 92 100

3 2 Carassius cuvieri C. cuvieri 27 21 24 18 90,484 304 100

4–5 3 Carassius sp. C.buergeri subsp.2

C. auratus
langsdorfiiC.sp.

31 23 29 21 91,034 1,219 100

6 4 Rhodeus ocellatus
ocellatus

R. ocellatus
ocellatus

28 18 27 17 26,521 1,106 99.7

7 - Ctenopharyngodon
idellus

C. idellus 1 0 1 0 0 1 (by Gill

net)

-

8 5 Phoxinus perenurus
sachalinensis

P. perenurus
sachalinensis

16 9 11 4 2,038 366 98.9

9 6 Tribolodon brandtii
brandtii

T. brandtii
brandtii

15 14 2 1 25,675 4 100

10 7 Tribolodon
sachalinensis

T. sachalinensis 23 19 18 14 38,905 235 100

11 8 Tribolodon
hakonensis

T. hakonensis 19 17 6 4 24,289 25 100

- - - Tribolodon sp. 24 - 24 - - 2,203 -

12 9 Pseudorasbora
parva

P. parva 30 21 29 20 60,005 1,473 100

13 10 Gnathopogon
elongatus elongatus

G. elongatus
elongatus

21 17 18 14 9,524 644 100

14 11 Cobitidae Misgurnus
anguillicaudatus

M.

anguillicaudatus
25 20 19 14 25,276 242 100

15 12 Nemacheilus toni N. toni 14 12 9 7 14,384 77 100

16 13 Lefua costata
nikkonis

L. costata nikkonis 9 6 5 2 1,010 94 99.9

17 14 Siluridae Silurus asotus S. asotus 15 4 15 4 104 42 100

18 - Osmeridae Hypomesus
nipponensis

H. nipponensis 1 0 1 0 0 11 -

19 15 Hypomesus olidus H. olidus 21 8 20 7 3,724 2,592 100

20 16 Salmonidae Oncorhynchus sp. Oncorhynchus
masou masou

3 2 1 0 1,243 1 (by Gill

net)

100

21 17 Gasterosteidae Pungitius sp. P. sinensis 24 16 19 11 4,941 815 100

22 18 Gobiidae Gymnogobius
urotaenia

G. urotaenia 5 5 3 3 1,601 15 100

23 19 Gymnogobius
castaneus

G. castaneus 26 16 25 15 34,055 1,599 99.4

24 20 Rhinogobius sp. R. sp. 22 11 21 10 2,433 449 100

25 21 Tridentiger
brevispinis

T. brevispinis 3 3 1 1 1,348 8 99.8

26 22 Channidae Channa argus C. argus 13 8 13 8 3,331 34 100

https://doi.org/10.1371/journal.pone.0210357.t005
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many PCR inhibitors are present, such as in streams [53]. In this study, we extracted DNA

from water samples using DNeasy blood and tissue kits. The use of another DNA extraction

kit, such as the PowerSoil kit (Qiagen), might reduce the amount of humic acid extracted from

samples, mitigating the negative effects of PCR inhibitors, but further study is still needed.

Fig 4. Species number and detection rate compared between eDNA metabarcoding and capture methods.

https://doi.org/10.1371/journal.pone.0210357.g004

Fig 5. NMDS ordination for the fish community evaluated by multiple capture methods (TM, green color) and eDNA metabarcoding (MB, pink color).

https://doi.org/10.1371/journal.pone.0210357.g005
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We also found similarities between NMDS ordinations using traditional capture methods

and eDNA metabarcoding, indicating that fish community structures across sites were not sig-

nificantly different between the two methods. In fact, the taxa list showed a 70% overlap.

Therefore, the community analysis using eDNA can be useful for spatially broad areas with

remarkably little effort.

eDNA detections of fish species

We detected marine species using eDNA metabarcoding. In addition to marine species,

Oncorhynchus keta, Oncorhynchus masou masou, Spirinchus lanceolatus, and Plecoglossus alti-
velis, that inhabit freshwater habitats, are often used in regional cuisine and therefore, sewage

water may contain eDNA from these species. Thus, sewage water may be a source of the

eDNA of unusual species in the freshwater of backwater lakes. Furthermore, marine species

were exclusively detected in the OL-1 site because this site was an exception, with sewage

water flowing directly into the lake. Thus, it is possible that samples collected in the lake water

were contaminated by the marine fish-derived DNA from the sewage. It has been suggested

that the eDNA of commonly consumed species may originate from wastewater contamination

[54]. It is, therefore, necessary to consider the source of DNA release to address the false-posi-

tive detections in eDNA metabarcoding, especially if it is from sewage water.

Through eDNA metabarcoding, we also detected two domestic invasive species in OL-12

that had never been found in the region: Opsariichthys uncirostris (1817 reads) and Zacco
platypus (678 reads). The species Z. platypus was found in another region of Hokkaido Island,

whereas O. uncirostris had never been found on Hokkaido Island. In this study, we caught

seven domestic invasive species that had previously been found in this region, including Cypri-
nus carpio, Pseudorasbora parva, and Gnathopogon elongatus. Aside from these species, O.

uncirostris and Z. platypus are possibly new invasive species to the region. Although further

evaluation of capture is needed, eDNA metabarcoding can identify potentially invasive species

in aquatic habitats.

Conclusion

In conclusion, eDNA metabarcoding of fish communities was performed similarly through

multiple capture methods in backwater lakes. Traditional fish-capture methods, using nets or

electro-fishing, require more effort and are more time-consuming in the field. Here, we

showed that eDNA in 1 L water samples had a similar detectability to that of traditional meth-

ods of fish capture, suggesting the usefulness of eDNA in detecting fish community in the hab-

itats. The eDNA metabarcoding can provide us with various information about fish

communities, including species compositions of fish, emergence of new invasive species, and

survival of locally extinct species. We also noted some disadvantages of the eDNA metabarcod-

ing such as PCR inhibition for eDNA analysis and false positives of some marine species origi-

nating from wastewater contamination. Such disadvantages of eDNA methods should be

considered in future applications.
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