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Lnc-mg is a long non-coding RNA that promotes
myogenesis
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Sumin Hu3, Zuolin Wang5, An Hong1, Yingxian Li2, Yao Sun5 & Xiaogang Wang1

Recent studies indicate important roles for long noncoding RNAs (lncRNAs) as essential

regulators of myogenesis and adult skeletal muscle regeneration. However, the specific roles

of lncRNAs in myogenic differentiation of adult skeletal muscle stem cells and myogenesis are

still largely unknown. Here we identify a lncRNA that is specifically enriched in skeletal

muscle (myogenesis-associated lncRNA, in short, lnc-mg). In mice, conditional knockout of

lnc-mg in skeletal muscle results in muscle atrophy and the loss of muscular endurance

during exercise. Alternatively, skeletal muscle-specific overexpression of lnc-mg promotes

muscle hypertrophy. In vitro analysis of primary skeletal muscle cells shows that lnc-mg

increases gradually during myogenic differentiation and its overexpression improves cell

differentiation. Mechanistically, lnc-mg promotes myogenesis, by functioning as a competing

endogenous RNA (ceRNA) for microRNA-125b to control protein abundance of insulin-like

growth factor 2. These findings identify lnc-mg as a novel noncoding regulator for muscle cell

differentiation and skeletal muscle development.
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M
yogenesis in the adult is a highly regulated process that
begins with the activation and differentiation of muscle
stem cells (MuSCs), and then proceeds with cell

proliferation, migration and fusion. With the further accretion
of nuclei, terminal differentiation is initiated to form multi-
nucleated myotubes with the capacity to contract1,2. Long
noncoding RNAs (lncRNAs), commonly defined as transcribed
RNAs of more than 200 nucleotides with no coding potential, are
involved in numerous important biological processes3,4. To date,
only a limited number of lncRNAs have been well characterized,
with a diverse array of mechanisms identified, including roles as
signalling molecules5–7, scaffolds8, guides9 and decoys10,11. It is
worth noting that some lncRNAs have been determined to
regulate myogenesis12,13. For example, noncoding RNA steroid
receptor RNA activator (SRA) was reported to promote myogenic
differentiation by regulating the transcriptional activity of
MyoD14,15. LncRNA H19 has a critical role in skeletal muscle
differentiation and regeneration, which is mediated by miR-675-
3p and miR-675-5p, which are encoded within H19 (ref. 16).
MUNC, located upstream of MyoD and specifically expressed in
skeletal muscle, is a lncRNA that can promote myogenesis by
regulating MyoD expression17. Similarly, LncMyoD, activated by
MyoD, plays an important role in promoting myogenesis and
skeletal muscle regeneration18. lnc-MD1 (ref. 19), Glt2/Meg3
(ref. 13), lnc-YY1 (ref. 20) and lncRNA-Dum21 are also believed as

important positively regulators of myogenesis. In contrast, recent
studies have shown that certain lncRNAs negatively regulate
myogenesis. For instance, m½-sbsRNA inhibits myogenesis via
reducing TRAF6 by Staufen-mediated messenger RNA decay22.
Yam (YY1-associated muscle lncRNAs)23, H19 (ref. 24), lnc-31
(ref. 25) and Sirt1 AS lncRNAs22,26 were reported to inhibit
myogenic differentiation.

Recently, a class of lncRNAs, referred to as competing
endogenous RNAs (ceRNAs), has been characterized19,24,27–29.
ceRNAs protect mRNAs by acting as molecular sponges for
microRNAs (miRNAs) that specifically repress the target
mRNAs30–32. For instance, lnc-MD1, the first identified ceRNA
involved in myogenesis, has been shown to control muscle cell
differentiation by competing for the binding of miR-133 and
miR-135 (ref. 19). Metastasis-associated lung adenocarcinoma
transcript 1 also contains a functional miR-133 target site and can
modulate myoblast differentiation by competing for miR-133
(ref. 33). In addition, H19 has been demonstrated to act as a
molecular sponge regulating let-7 to control skeletal muscle
differentiation24. Although functions of these lncRNAs have been
partially identified in vitro and in vivo, most of their roles for
myogenesis are still waiting for disclosing. Thus, the aim of our
investigation is to explore the role of lncRNAs in regulating
myogenic differentiation of adult skeletal MuSCs and skeletal
muscle development.
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Figure 1 | Skeletal muscle-enriched lnc-mg is induced during myogenesis. (a) Microarray heat map of annotated lncRNAs in undifferentiated MuSCs

(growth media, GM) and 5-day differentiated MuSCs (differentiation media, DM). (b) Real-time PCR analysis of lnc-mg expression in mouse tissues.

Mean values±s.e.m., n¼ 6, *Po0.05. Mice were 8 weeks old, three for male, three for female. (c) Real-time PCR analysis of lnc-mg expression in mouse

skeletal muscles and other major organs. Mean values±s.e.m., n¼ 6. Mice were 8 weeks old, three for male, three for female. (d) Real-time PCR analysis

of lnc-mg expression in MuSCs during 5 days of differentiation. Mean values±s.e.m., n¼ 3. (e) lnc-mg associated gene subsets were determined by Gene

Ontology analysis. The data statistical significance is assessed by Student’s t-test.
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In this study, we describe the function of a myogenesis-
associated lncRNA (lnc-mg) in mice. lnc-mg is induced during
myogenesis and is required during MuSC differentiation. Our
study further reveals that lnc-mg promotes myogenesis and
enhances muscle mass in vivo. In addition, we demonstrate that
lnc-mg results in decreased miR-125b by acting as a molecular
sponge in vitro and in vivo, which subsequently controls the
expression of insulin-like growth factor 2 (Igf2)34, a critical
regulator of skeletal myogenesis.

Results
lnc-mg is induced in myogenesis. To identify functional
lncRNAs correlating with myogenesis, we isolated and induced
mouse skeletal MuSCs to differentiation (Supplementary Fig. 1a).
Microarray data from the original and differentiated MuSCs
revealed that 70 lncRNAs were upregulated and 12 were
downregulated during this change (Fig. 1a and Supplementary
Table 1). Among the increased lncRNAs, we identified a lncRNA
(named lnc-mg) enriched in skeletal muscle (Fig. 1b and
Supplementary Fig. 1b). To validate whether lnc-mg expressed
differently in various types of muscles, we examined the levels of
lnc-mg in different types of muscles. It is found that the
expression levels of lnc-mg have only a little difference among
different types of muscles, while higher than in other tissues
(Fig. 1c and Supplementary Fig. 1c). The general information and
sequence of lnc-mg are supplied in Supplementary Fig. 1d,e.

In addition, lnc-mg has a polyA tail and a 50-cap
structure (Supplementary Fig. 1f) but without coding capacity
(Supplementary Fig. 1g). Consistent with the microarray data,
lnc-mg is shown to be induced in MuSCs differentiation (Fig. 1d).
Interestingly, in Gene Ontology analysis, lnc-mg-related genes are
mainly clustered into muscle contraction and muscle system
process classification categories (Fig. 1e).

lnc-mg promotes MuSCs differentiation. To investigate the role
of lnc-mg during myogenesis in vitro, we used RNA interference
to knock down lnc-mg and an expression vector to overexpress
lnc-mg in MuSCs. Successful knockdown of lnc-mg (Fig. 2a)
results in significant inhibition of MuSCs differentiation proved
by the reduced expression of myosin heavy chain (MyHC)
(Fig. 2b), decreased number of positive myotubes (Fig. 2c) and
downregulated expression of myogenic marker genes Myod and
Myog (Fig. 2d). Moreover, overexpression of lnc-mg (Fig. 2e)
accelerates the differentiation of MuSCs with increased MyHC
immunostaining (Fig. 2f), increased myotubes numbers (Fig. 2g)
and upregulated Myod and Myog expression (Fig. 2h).

lnc-mgskl� /� mice result in muscle atrophy and weakness. We
next sought to determine the function of lnc-mg during myo-
genesis in vivo. Consequently, lnc-mg skeletal muscle-conditional
knockout mice were generated (Supplementary Fig. 2a,b).
Compared with control floxp mice (lnc-mgfl/fl), morphometric
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Figure 2 | lnc-mg promotes MuSC differentiation in vitro. (a) Real-time PCR analysis of lnc-mg expression in MuSCs transfected with control shRNA

or lnc-mg shRNA. (b) MyHC immunostaining of MuSCs transfected with control shRNA or lnc-mg shRNA then cultured in differentiation medium (DM)

for 5 days. Scale bar, 40mm. (c) Comparison of cultured MyHC-positive cells transfected with control shRNA or lnc-mg shRNA. (d) Real-time PCR analysis

of Myog and Myod expression in MuSCs transfected with control shRNA or lnc-mg shRNA then cultured in DM for 5 days. (e) Real-time PCR analysis

of lnc-mg expression in MuSCs transfected with control vector or lnc-mg vector. (f) MyHC immunostaining of MuSCs transfected with control vector

or lnc-mg vector then cultured in DM for 5 days. Scale bar, 40 mm. (g) Comparison of cultured MyHC-positive cells transfected with control vector or

lnc-mg vector. (h) Real-time PCR analysis of Myod and Myog expression in MuSCs transfected with control vector or lnc-mg vector then cultured in DM for

5 days. All data are shown as mean values±s.e.m., n¼4, *Po0.05. The data statistical significance is assessed by Student’s t-test. Transient transfection

of MuSCs with control shRNA or lnc-mg shRNA, control vector or lnc-mg vector by using Lipofectamine 3000 reagent.
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analysis shows the lower weight of gastrocnemius muscle (GAS),
soleus muscle (SOL), extensor digitorumlongus (EDL), tibial
anterior (TA) in lnc-mg skeletal muscle-conditional knockout
mice (lnc-mgskl� /� ) (Fig. 3a). Moreover, the cross-sectional area
of muscle fibres in the GAS is smaller in lnc-mgskl� /� mice
(Fig. 3b,c). Measurement of the mean diameter of muscle fibres
reveals that lnc-mgskl� /� mice have a larger number of thinner
fibres (Fig. 3d). In addition, the force and specific tetanic
force (Fig. 3e), as well as muscle performance in forced treadmill
running tests (Fig. 3f) are all reduced in lnc-mgskl� /� mice.

lnc-mg TG mice result in muscle hypertrophy. To further
confirm the role of lnc-mg in myogenesis in vivo, lnc-mg skeletal
muscle-specific transgenic mice (TG) were established. The GAS,
SOL, EDL and TA weight are higher in TG mice than their wild-
type siblings (WT) (Fig. 4a). The TG mice also show visibly larger
cross-sectional area of muscle fibres (Fig. 4b,c). Consistently,
further measurement reveals that force and the specific tetanic
force are higher (Fig. 4d) and muscle performance is improved

in TG mice (Fig. 4e). Furthermore, to extend these findings in
muscle formation, we explored the function of lnc-mg in
denervated skeletal muscular atrophy mice. It shows that the
reduction of muscle mass in the TG is weaker than that in WT
mice upon denervation, as proved by the larger cross sectional
area of dystrophin-positive muscle fibres (Fig. 4f,g).

lnc-mg acts as a molecular sponge for miR-125b in vitro.
lnc-mg locates in both cytoplasm and in nucleus (Supplementary
Fig. 3a,b), and the amount of lnc-mg in cytoplasm
increases significantly in differentiated myoblast C2C12 cells
(Supplementary Fig. 3c). We speculated that lnc-mg may function
as a ceRNA, leading to the liberation of corresponding miRNA-
targeted transcripts. To test this hypothesis, we used microarray
analysis to detect miRNAs expression in C2C12 cells with lnc-mg
overexpression or lnc-mg knockdown (Fig. 5a and Supplementary
Table 3). Among the candidate miRNAs, we determined that
miR-125b was substantially down regulated when lnc-mg was
overexpressed, while substantially upregulated when lnc-mg
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was knocked down (Fig. 5b) with a dose-dependent manner
(Supplementary Fig. 4a,b). Moreover, bioinformatics analysis
reveals a predicted miR-125b response element resides in the
lnc-mg transcript. To validate that lnc-mg was indeed targeted by
miR-125b, WT and mutant miR-125b were synthesized (Fig. 5c),
and luciferase reporters containing a WT or mutant target site
from lnc-mg were also constructed (Fig. 5d). Only WT miR-125b
(AgomiR-125b) significantly reduces luciferase activity for the
WT lnc-mg reporter (Fig. 5e) and only WT lnc-mg targeting site
is recognized by AgomiR-125b (Fig. 5f). Further studies show that
the luciferase activity of WT lnc-mg reporter is specifically
increased upon reduction of endogenous miR-125b levels with
Antagomir-125b (Fig. 5g,h). All these data demonstrate that
lnc-mg contains functional miR-125b binding sites. For further
confirmation, Ago2 immunoprecipitation and biotin-labelled
miR-125b capture followed by real-time PCR confirm the
interaction between miR-125b and lnc-mg (Fig. 5i,j).

Previous research has shown that miR-125b could negatively
modulate myoblast differentiation by directly targeting Igf2
(ref. 34). Thus, we examined Igf2 expression in C2C12 cells
with lnc-mg overexpression or knockdown. It reveals that Igf2 is

downregulated by lnc-mg knockdown and upregulated by lnc-mg
overexpression, as assessed by western blotting (Fig. 5k), and the
ability of lnc-mg to modulate Igf2 expression in cell supernatant is
further verified by enzyme-linked immunosorbent assay (ELISA)
(Fig. 5l). Furthermore, overexpression of lnc-mg leads to the
increased enrichment of Ago2 on lnc-mg, while substantially
decreased enrichment on Igf2 (Supplementary Fig. 4c). For
further confirmation, luciferase reporter assay shows that the
luciferase activity of Igf2 30-untranslated region reporters is
increased upon WT lnc-mg overexpression but not upon
miR-125b binding site mutated lnc-mg (Supplementary
Fig. 4d). Streptavidin capture analysis further suggests that
the binding enrichment of miR-125b on Igf2 decreases with
overexpression of WT lnc-mg, but not with miR-125b-binding
site mutated lnc-mg (Supplementary Fig. 4e).

lnc-mg modulates miR-125b by functioning as a ceRNA in vivo.
To determine whether lnc-mg functions as a molecular sponge
for miR-125b in vivo, we performed real-time PCR analysis of
miR-125b levels in mice. Compared with lnc-mgfl/fl mice,
the relative expression of miR-125b is higher in GAS from
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lnc-mgskl� /� mice (Fig. 6a). Western blotting and ELISA assay
indicate that, conversely, the levels of Igf2 protein are lower in
GAS and serum from lnc-mgskl� /� mice compared to lnc-mgfl/fl

mice (Fig. 6b,c). In addition, miR-125b levels are lower and the
Igf2 protein levels are higher in GAS and serum from lnc-mg TG
mice compared to WT mice (Fig. 6d–f).

Discussion
In recent years, several groups have described lncRNAs contain-
ing miRNA binding sites that function as molecular sponges
to effectively inhibit miRNA function35,36. lnc-RoR controls
self-renewal of human embryonic stem cells by protecting OCT4,
SOX2 and NANOG transcripts from miR-145-mediated
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suppression37. Another lncRNA, PTENP1, regulates the
expression of the tumor suppressor phosphatase and tensin
homologue by competing for shared miRNAs38. In addition,
a novel class of RNA molecules, termed circular RNAs, has also
been demonstrated to function as efficient miRNA sponges39,40.

Although several lncRNAs have been shown to have roles in
skeletal muscle cell differentiation and muscle development
in vitro16,41,42, little is known about their function during
myogenesis in vivo, with the exception of a putative lncRNA
that actually encodes for a micropeptide43,44. In this study, we
identify a skeletal muscle-enriched lncRNA (named lnc-mg), that
promotes myogenesis in vitro and in vivo. This study provides
comprehensive functional and mechanistic characterization of
lnc-mg, using both lnc-mg skeletal muscle-conditional knockout
mice and skeletal muscle-specific TG mice. By functioning as a
ceRNA, lnc-mg blocks miR-125b to control Igf2 protein level
in vitro and in vivo. Although we observe that transgene induces
hypertrophy, the rescue effect of lnc-mg on muscle loss needs to
be carefully investigated, for we find that muscle loss is not
significant changed after denervation in TG mice.

In this study, we demonstrate that miR-125b expression is
notably suppressed when lnc-mg is overexpressed. Interestingly,
miR-125b has been reported to negatively modulate myoblast
differentiation and its expression is known to be down-regulated
during myogenesis34. In addition, Igf2 (refs 34,45,46), a key
regulator of myogenesis, has been confirmed to serve as a target
of miR-125b47. We demonstrate that miR-125b levels in tissue
and cells are down-regulated when lnc-mg is overexpressed,
resulting in increased Igf2 protein to enhance myogenesis. The
graphic abstract of lnc-mg regulating myogenesis is shown in
Fig. 7. In conclusion, lnc-mg is a key myogenesis enhancer by
functioning as a ceRNA for miR-125b controlling protein
abundance of Igf2.

Methods
Mice. Animal protocol are approved by the Animal Ethics Committee of Peking
Union Medical College, Beijing, China. Eight-week old, C57B/6J mice were used in
our study, three for male and three for female in each group.

In vitro cell culture and differentiation. Mouse skeletal MuSCs were isolated
from 10-day-old C57B/6J mice according to the previously described procedure48.
Briefly, total hind limb muscles were incubated with muscle dissociation buffer
(700–800 U ml� 1 collagenase II solution prepared in Ham’s F-10 wash medium
supplemented with 10% horse serum and 1� penicillin–streptomycin) in 37 �C
with agitation and washed with cold wash medium. Next, the cells were centrifuged
at 500 g for 5 min at 4 �C. After stocking solution was added to the cells to block
collagenase II dispase, cells were incubated in 37 �C with agitation for 30 min. Next,
the cell suspensions were filtered through 40 mM cell strainer, then pre-plated for
1 h. Non-adherent cells were centrifuged and separated by antibody staining and
cell sorting. The cells were cultured in DMEM medium with 10% fetal bovine

serum (Life Technologies), 2 mM L-glutamine, 100 U ml� 1 penicillin and
100 U ml� 1 streptomycin at 37 �C in a 5% CO2 incubator. To induce
differentiation, MuSCs were seeded in 24-well plates and after cells reached 80%
confluence the medium was changed by DMEM containing 5% horse serum
(Life Technologies). C2C12 myoblasts were obtained from ATCC, cultured in
DMEM with 10% fetal bovine serum (growth media) and induced myogenic
differentiation by switching the medium to DMEM containing 2% horse serum
(differentiation media).

Real-time PCR analysis. Total RNA from tissues or cells was extracted in TRIzol
Reagent (Life Technologies) according to the manufacturer’s instructions. RNA
(1 mg) was reverse-transcribed by using the PrimeScript RT reagent Kit with gDNA
Eraser (Perfect Real Time) (Takara). One microlitre of a 1:5 dilution of the
synthesized complementary DNA was used for real-time PCR analysis. The relative
abundance of the mRNAs was determined using SYBR Premix Ex Taq II (TliRNaseH
Plus) (Takara) according to the manufacturer’s instructions. The following thermal
settings were used: 95 �C for 30 s followed by 40 cycles of 95 �C for 5 s and 60 �C for
30 s. Primers49 used for real-time PCR were listed in Supplementary Table 2. Relative
expression values were calculated using the comparative threshold cycle (DDCT)
method in accordance with the MIQE guidelines50,51.

Cell transfection. Transient transfection of cells with miRNA mimic, short
hairpin RNA (shRNA) or DNA plasmids was performed in 24-well plates using
Lipofectamine 3000 reagent52 (Life Technologies). For lnc-mg functional analyses,
lnc-mg expression plasmid (500 ng per well) or empty plasmid (500 ng per well)
and shRNA control (100 nM) or shRNA lnc-mg (100 nM) were transfected into
cells in culture medium and then harvested for further detection. For luciferase
experiments, miRNA agomir (100 nM) or miRNA antagomir (100 nM) and
psiCHECK-2 (500 ng per well) containing the WT or mutated sequence of lnc-mg
were transfected into cells. Cells were harvested for the dual-luciferase assay 24 h
after transfection.

Immunofluorescence staining. Cells were fixed in 4% paraformaldehyde for
15 min and permeabilized in 0.25% Triton X-100 for 10 min at room temperature.
The cells were blocked in 1% BSA for 30 min at room temperature and then
incubated with primary antibody to MyHC (MF20, 1:400, Developmental Studies
Hybridoma Bank, University of Iowa) at 4 �C overnight with gentle shaking,
followed by incubation with fluorescein isothiocyanate-conjugated secondary
antibody (Cell Signaling Technology, 1:100) at room temperature for 1 h, with
thrice PBS washes after each antibody incubation. Nuclei were counter-labeled with
DAPI. The immunofluorescence images were visualized with a fluorescence
microscope (Leica image analysis system, Model Q500MC).

Skeletal muscle-conditional lnc-mg knockout mice model. For the generation of
lnc-mgflox/flox mice, targeting vector was constructed by inserting a Frt-flanked
neomycin cassette upstream and two loxP sites downstream of the first exon of
lnc-mg and then electroporating into embryonic stem cells from C57BL/6J mice
(conducted by Beijing Biocytogen Co. Ltd). Skeletal muscle-conditional lnc-mg
knockout mice were generated by crossbreeding of lnc-mgflox/flox mice with
MCK-Cre mice (from Jackson Laboratory).

Skeletal muscle-specific lnc-mg TG mice model. A plasmid containing the
MEF2-myogenin promoter (kind gift from Prof. Eric N. Olson, University of Texas
Southwestern Medical Center) to drive lnc-mg-specific expression in skeletal
muscle was used to generate skeletal muscle-specific lnc-mg TG mice. A fragment
of the MEF2-myogenin-promoter-lnc-mg was purified and microinjected into

Figure 5 | lnc-mg functions as a ceRNA for miR-125b in vitro. (a) Microarray heat map of differential expressed miRNAs in C2C12 myoblasts transfected

with control vector (ctrl), lnc-mg vector (lnc-mg), control shRNA (shRNA ctrl) and lnc-mg shRNA (shRNA lnc-mg), respectively. (b) Real-time PCR

analysis of miR-125b expression in C2C12 myoblasts transfected with control vector (ctrl), lnc-mg vector, control shRNA and lnc-mg shRNA, respectively.

(c) The lnc-mg site is predicted to be a target of miR-125b. Two seed sequence mutants of miR-125b (miR-125b-mut1 and miR-125b-mut2) are shown

below. The blue letters represent the mutant sites. (d) Luciferase reporter constructs: WT lnc-mg and two lnc-mg (lnc-mg-mut1 and lnc-mg-mut2) with

mutations in the miR-125b-binding sites were inserted into psiCHECK-2 vector. The blue letters represent the mutant sites. (e) The relative luciferase

activity of psiCHECK-2 containing WT lnc-mg co-transfected with AgomiR-NC, AgomiR-125b or mutated AgomiR-125bin C2C12 cells. (f) The relative

luciferase activity of psiCHECK-2 containing WT or mutated lnc-mg co-transfected with AgomiR-125b in C2C12 cells. (g) The relative luciferase activity of

psiCHECK-2 containing WT lnc-mg co-transfected with AntagomiR-NC, Antagomir-125b or mutated Antagomir-125b. (h) The relative luciferase activity of

psiCHECK-2 containing WT or mutated lnc-mg co-transfected with Antagomir-125b. (i) Ago2 immunoprecipitation was performed in C2C12 myoblasts

transfected with control miRNA (miR-NC) or miR-125b, followed by real-time PCR, to detect lnc-mg associated with Ago2. (j) Streptavidin capture was

performed for C2C12 myoblasts transfected with biotin-miR-NC, biotin-miR-125b or mutated biotin-miR-125b, followed by real-time PCR to detect lnc-mg,

Igf2 mRNA and Gapdh mRNA levels. (k) Western blot analysis of Igf2 protein levels in C2C12 myoblasts transfected with control shRNA or lnc-mg shRNA,

control vector (ctrl) or lnc-mg vector. (l) ELISA analysis of secreted Igf2 protein levels in supernatant from C2C12 myoblasts transfected with control

shRNA or lnc-mg shRNA, control vector (ctrl) or lnc-mg vector. All data are shown as mean values±s.e.m., n¼ 3, *Po0.05. The data statistical

significance is assessed by Student’s t-test. Transient transfection of C2C12 cells using Lipofectamine 3000 reagent.
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C57BL/6J mouse oocytes, and the oocytes were then surgically transferred into
pseudopregnant C57BL/6J dams by Cyagen Biosciences Inc (Guangzhou, China).

Denervated skeletal muscular atrophy mice. To denervate the GAS muscle,
mice were deeply anesthetized by intraperitoneal injection of 2 ml kg� 1 chloral
hydrate, and then a dorsolateral skin incision was made on the lower hind limb to
excise about 1.5 cm of the sciatic nerve. The nerve was sewn on the muscle
membrane to prevent it from reconnecting. Control group was performed by
exposing the sciatic nerve but keeping it intact and then stitching the incision.

Muscle fibrosis staining. Fibrosis staining was performed according to the
published method53 with slight modification. Briefly, paraffin sections of GAS were
incubated with 5% BSA for 30 min, with primary antibodies against dystrophin
(Abcam, 1:100) at 4 �C overnight and then with fluorescein isothiocyanate-
conjugated secondary antibody (Cell Signaling Technology, 1:100) for 1 h at room
temperature. Images were visualized and captured with a fluorescence microscope
(Leica image analysis system, Model Q500MC).

Cross-section area and diameter of muscle fibres. The measurement of
cross-section area was performed according to the published method with slight
modification54. The cross-section area of each muscle (fibres number, n¼ 500) in
four fields from each animal of six mice (8-week old C57BL/6J mice, three for male,
three for female) were randomly chosen and determined using the ImageJ
programme, and then calculated the mean cross-section area of each group.
Fibre diameter was calculated as the caliper width perpendicular to the longest
chord of each fibre. The total fibre number was calculated using an image of
� 20 magnification from the entire field of muscle section, which was randomly
chosen.

Hematoxylin and eosin staining. Histological analysis of muscle sections was
performed essentially according to the published method55. The GAS was fixed in
4% paraformaldehyde, processed and embedded in paraffin prior to sectioning
(10 mm) and staining. The tissues were fixed in 1% osmium tetraoxide in 0.1%
M-cacodylate buffer for 1 h at 4 �C, then dehydrated and embedded in a pure epoxy

resine, which became solid after 48 h at 60 �C. Semi-thin sections were made, and
the epoxy resine eluted and stained with haematoxylin and eosin.

Measurement of muscle weight and muscle force. The SOL, EDL, GAS and TA
of 8-week-old (three for male and three for female) lnc-mgSkl� /� , WT and TG
mice were harvested and weighed by electronic 1/10,000 scale. The muscle force
measurement was performed essentially according to the published method56.
Mice were anaesthetized via intraperitoneal injection of a cocktail containing
25 mg ml� 1 ketamine, 2.5 mg ml� 1 xylazine and 0.5 mg ml� 1 acepromazine at
2.5 ml per gram body weight. The entire GAS was isolated and preserved in
Ringer’s solution which was continuously aerated with 95% O2 and 5% CO2, and
maintained at 37 �C. The distal end of GAS was connected to an isometric
transducer. The GAS was stimulated with electrical stimulation of 100 Hz. Optimal
muscle length was multiplied by 0.85, to calculate the optimal fibre length. Tetanic
contractions induced by optical and electrical stimulation were 2 s long with an
interval of 3 min between stimulations. Maximal force (M) was analysed for single
twitch contractions. Specific force was normalized for muscle cross-sectional area
(CSA), which was calculated by mass (mg)/fibre length (mm)*1.06 (mg mm� 3).
The specific force was calculated by M/CSA.

Exercise performance test. An exercise performance test was performed
essentially according to the published method57. Briefly, mice were first
accustomed to treadmill running on a 20� incline and 25 cm s� 1 belt speed for
3 days. In the first day, 10 min running in the morning and 10 min running in the
afternoon was employed at 20 cm s� 1 belt speed without incline. In the second
day, 10� incline 20 cm s� 1 belt speed in the morning and 10� incline 25 cm s� 1 in
the afternoon was used for each 15 min running. In the third day, 25� incline
25 cm s� 1 belt speed in the morning and 25� incline 30 cm s� 1 in the afternoon
was put into use for each 20 min running; In the fourth day, mice ran on a
25� incline and 30 cm s� 1 belts peed for 20 min and then the belt speed was
increased by 4 cm s� 1 every 20 min until the mice were exhausted.

Microarray assay. The microarray experiments were performed by RiboBio
(Guangzhou, China). Briefly, total RNAs was extracted from cells of lnc-mg
overexpression or lnc-mg knockdown by TRIzol Reagent (Life Technologies).
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Figure 6 | lnc-mg functions as a ceRNA for miR-125b in vivo. (a) Real-time PCR analysis of miR-125b expression in GAS from lnc-mgfl/fl mice and
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PCR analysis of miR-125b expression in GAS from WT and TG mice. Mean values±s.e.m., n¼6, *Po0.05. (e) Western blot analysis of Igf2 protein levels in
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statistical significance is assessed by Student’s t-test. Mice were 8 weeks old, three for male, three for female.
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Then the RNA quality was assessed by formaldehyde agarose gel electrophoresis,
quantified spectrophotometrically and Agilent 2200 Bioanalyzer (Agilent, USA).
Total RNA (1.5 mg) was labelled on Cy5 using Universal Linkage System (ULS).
Then the CustomArray microarray was pre-hybridized in nuclease-free water at
65 �C for 10 min and then loaded the microarray onto the rotisserie in the
hybridization oven and incubated at 37 �C for 60 min with gentle rotation. The
hybridization solution was prepared with labeled miRNA target and denatured the
hybridization solution at 95 �C for 3 min, and then cooled for 20 s on ice. Next, the
microarray was loaded with the hybridization solution and incubated at 37 �C for
16 h with gentle rotation. Then, we removed the microarray from the hybridization
solution and washed the microarray by using the wash solution to remove non-
specific hybridization. Furthermore, we covered the semiconductor microarray
surface with the imaging solution and loaded the microarray into the scanner to
scan. The data were analysed by Guangzhou RiboBio Co., Ltd.

Coding capability and the 50-cap or 30-poly A detection. The RNA sequences of
Myh1, H19 and lnc-mg were put into the Coding Potential Calculator programme
and both H19 and lnc-mg were predicted to be non-coding RNAs, whereas Myh1
was identified to code for protein in Method sections. For 30-poly A detection, total
RNAs was extracted from MuSCs in TRIzol Reagent (Life Technologies) according
to the manufacturer’s instructions. Next, the RNA quality was assessed by
formaldehyde agarose gel electrophoresis, quantified spectrophotometrically
and Agilent 2200 Bioanalyzer (Agilent). Ribosomal RNA was removed using the
Ribo-Zero Magnetic Kits (Illumina) according to the manufacturer’s instructions.
Then polyAþ RNA fraction and polyA- RNA fraction were isolated by using
NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB, NEB E7490S/L).
In addition, the amount of lnc-mg was examined in PCR assay with polyAþ
RNA fraction and polyA-RNA fraction, respectively. For 50-cap detection, the
experiment was performed using the FistChoice RLM-RACE Kit (Ambion)
according to the manufacturer’s instructions. In brief, total RNAs from MuSCs was
treated with Calf Intestine Alkaline Phosphatase to remove free 50-P then treated
with tobacco acid pyrophosphatase to remove the cap structure and then an RNA
adapter oligonucleotide was ligated to the RNA population using T4 RNA ligase.
The reverse transcription was performed using primers corresponding to the
50-rapid amplification of cloned/cDNA ends Adapter sequence provided with the
system. PCR amplification was then performed using Taq DNA polymerase
(Takara).

Dual-luciferase assay. WT lnc-mg or mutated lnc-mg was inserted into
psiCHECK-2 (Promega) at the 30-end of the coding sequence of Renilla luciferase
then transfected into C2C12 myoblasts. The activity of both luciferases was
measured 24 h after transfection. Dual-luciferase assay was performed using the
Double-Luciferase Reporter Assay Kit (Promega). Cells were harvested and lysed

with Cell Lysis Buffer. Firefly and Renilla luciferase activities were evaluated using
the Dual-Luciferase Reporter Assay system (Promega). Renilla luciferase activity
was normalized to the firefly luciferase activity.

Anti-Ago2 immunoprecipitation. Cells were harvested 48 h after transfection of
FLAG-Ago2 vector. The cells were then lysed by 1 ml of lysis buffer (25 mM
Tris-HCl pH 7.4, 150 mM NaCl, 0.5% NP-40, 2 mM EDTA, 1 mM NaF and
0.5 mM dithiothreitol) with RNasin (Takara) and protease inhibitor cocktail
(Roche). The supernatant was centrifuged for 30 min at 12,000 g and then 30 ml of
anti-FLAG M2 magnetic beads were added (Sigma). After rotating the beads with
lysate for 4 h at 4 �C, the beads were washed thrice with washing buffer (50 mM
Tris-HCl, 300 mM NaCl pH 7.4, 1 mM MgCl2, 0.1% NP-40). The RNA was
extracted from the remaining beads with TRIzol Reagent (Life Technologies) and
evaluated by real-time PCR assay, which is the same to the previous real-time PCR
protocol.

Biotin-labelled miR-125b capture. Cells were harvested 24 h after transfection
and then lysed on ice for 30 min in 250ml cell lysis buffer (10 mM KCl, 1.5 mM
MgCl2, 10 mM Tris-HCl at pH 7.5, 5 mM dithiothreitol) with RNasin (Takara) and
proteinase inhibitor cocktail (Roche). The supernatant was centrifuged for 5 min at
12,000 g, then 500 ml NaCl (1 M) and 30ml beads (Dynabeads MyOne Streptavidin
C1; Life Technologies) were added. Before adding to the supernatant, the beads
were washed five times with solution A (0.1 M NaOH, 0.05 M NaCl), then washed
thrice with 0.1 M NaCl and were blocked with 1 mg ml� 1 BSA (Roche) and
1 mg ml� 1 yeast tRNA (Ambion) overnight. The beads were washed five times
using washing buffer (5 mM Tris-HCl pH 7.5, 0.5 mM EDTA, 1 M NaCl) after
rotating the beads and the lysate for 4 h at 4 �C. RNA was extracted from the
remaining beads with TRIzol Reagent (Life Technologies) and evaluated by
real-time PCR assay. The entire PCR assay is the same to the previous real-time
PCR protocol.

Western immunoblotting. Tissues or cells were lysed in RIP buffer on ice for
30 min. The supernatant was centrifuged for 30 min at 12,000 g and 4 �C, ran on
SDS–PAGE and then transferred to polyvinylidene difluoride membranes. The
membranes were blocked with 5% BSA for 1 h at room temperature and incubated
with primary antibody recognizing Igf2 (Abcam, ab9574, 1:1,000) or Gapdh
(Abcam, ab8245, 1:2,000) at 4 �C overnight. Incubation with secondary horseradish
peroxidase-labelled antibody was carried out for 1 h at room temperature.

ELISA analysis. To assess the level of Igf2 in cell supernatant or serum, ELISA
assay was performed on microtitre plates coated with antibody that recognizes Igf2
(Abcam, ab9574). The plates were incubated at 4 �C overnight and blocked with 5%
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BSA for 2 h at room temperature. The samples were added to the plates and the
plates were incubated overnight at 4 �C. Horseradish peroxidase-conjugated
secondary antibody (Sigma; 1: 5,000 diluted in 5% BSA) was added and the plates
were incubated for 2 h at room temperature. After washing, substrate solution was
added, plates were incubated at 37 �C for 30 min and the reactions were stopped
with H2SO4. Optical density values were measured on a micro plate reader
(Thermo Fisher) and the assay was calibrated by means of a serially diluted Igf2
protein standard. The excite/emission spetra were detected at 450 nm.

Data availability. All relevant data that support the finding of this study are
available from the corresponding author upon reasonable request. Microarray-seq
data have been deposited in NCBI under following Accession code: GSE93278.
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