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Dynamics of PD-1 expression
are associated with treatment
efficacy and prognosis in
patients with intermediate/high-
risk myelodysplastic syndromes
under hypomethylating
treatment

Suxia Geng †, Ruohao Xu †, Xin Huang, Minming Li,
Chengxin Deng, Peilong Lai, Yulian Wang, Ping Wu,
Xiaomei Chen, Jianyu Weng* and Xin Du*

Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong Academy of
Medical Sciences, Guangzhou, China
Hypomethylating agents (HMAs) are widely used in patients with higher-risk

MDS not eligible for stem cell transplantation. However, the general response

rate by HMAs is lesser than 50% in MDS patients, while the relapse rate is high.

Emerging evidence indicates that demethylating effects committed by HMAs

may facilitate the up-regulation of a range of immune checkpoints or cancer

suppressor genes in patients with MDS, among which the programmed death

protein 1 (PD-1) and its ligands are demonstrated to be prominent and may

contribute to treatment failure and early relapse. Although results from

preliminary studies with a limited number of enrolled patients indicate that

combined administration of PD-1 inhibitor may yield extra therapeutic benefit

in some MDS patients, identifications of this subgroup of patients and optimal

timing for the anti-PD-1 intervention remain significant challenges. Dynamics

of immune checkpoints and associated predictive values during HMA-

treatment cycles remained poorly investigated. In this present study,

expression levels of immune checkpoints PD-1 and its ligands PD-L1 and

PD-L2 were retrospectively analyzed by quantitative PCR (Q-PCR) in a total

of 135 myelodysplastic syndromes (MDS) cohort with higher-risk stratification.

The prognostic value of dynamics of these immune checkpoints during HMA

cycles was validated in two independent prospective cohorts in our center

(NCT01599325 and NCT01751867). Our data revealed that PD-1 expression

was significantly higher than that in younger MDS patients (age ≤ 60) and MDS

with lower IPSS risk stratification (intermediate risk-1). A significantly up-

regulated expression of PD-1 was seen during the first four HMA treatment

cycles in MDS patients, while similar observation was not seen concerning the

expression of PD-L1 or PD-L2. By utilizing binary logistic regression and

receiver operating characteristic (ROC) models, we further identified that
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higher or equal to 75.9 PD-1 expressions after 2 cycles of HMA treatment is an

independent negative prognostic factor in predicting acute myeloid leukemia (AML)

transformation and survival. Collectively, our data provide rationales for monitoring

the expression of PD-1 during HMA treatment cycles, a higher than 75.9 PD-1

expression may identify patients who will potentially benefit from the combined

therapy of HMA and PD-1 inhibitors.
KEYWORDS

Myelodysplastic syndromes (MDS), programmed death protein 1 (PD-1), programmed
death-ligand 1 (PD-L1), programmed death-ligand 2 (PD-L2), hypomethylating agent (HMA)
Introduction

Myelodysplastic syndromes (MDS) are a heterogeneous

group of clonal hematopoietic stem cell diseases characterized

by bone marrow failure, dysplasia of myeloid cell linage, and a

high risk of acute myeloid leukemia (AML) transformation (1).

Hypomethylating agents (HMAs) such as decitabine and

azacitidine are the current standard of care for patients with

higher-risk MDS (1). Despite prolonged survival achieved when

patients respond to HMA, the overall response rate (ORR)

remains low, and the duration of response is often transient

(2). According to the revised prognostic scoring system of MDS

(IPSS-R), median overall survival (OS) ranges from 3.0 years for

the intermediate-risk group to 0.8 years for the very high-risk

group in MDS, with progression to AML accounting for almost

half of deaths (3).

The pathogenesis of MDS remains poorly understood.

Studies have revealed the involvement of both hematopoietic

cell-intrinsic events (such as age-related mutations) and

extrinsic alternations (such as immune deregulation and

proinflammatory microenvironment) (4–6). More recently,

emerging evidence emphasizes an immune evasion mechanism

in the pathogenesis of MDS. Dysfunctional T cells may

contribute to the disease progression of MDS and be

preferentially associated with a higher risk of AML

transformation (7, 8). Negative immune regulatory factors

have been proposed to contribute to a protect ive

microenvironment for malignant cells and are associated with

a higher risk of AML transformation (9–11).

Immune checkpoint proteins, expressed on different cell

subsets with the ability to initiate immune responses either by

their activation or inhibition, have been considered a vital part of

immune evasion in multiple cancers. The programmed death

protein 1 (PD-1) immune checkpoint is considered one of the

central mediators of immune tolerance in multiple tumors (12).

PD-1 binds two ligands, programmed death-ligand 1 (PD-L1)

and PD-L2. PD-L1 is the primary ligand expressed on T and

primary B cells, which induces co-inhibitory signals in activated
02
T cells. Furthermore, PD-L1 is expressed in multiple tumor types

that deliver negative signals, inhibiting anti-tumor immunity (4).

PD-L2 expression is mainly restricted to antigen-presenting

cells, such as dendritic cells and macrophages (13). The

combined therapy of HMA with PD-1 inhibitors may be of

potential therapeutic value in treating patients with higher-risk

or relapsed/refractory MDS. Yet another important

consideration in the design of an HMA-based combination is

the timing of administration of checkpoint inhibitors (14).

Evaluation of dynamics of immune checkpoint proteins during

HMA treatment cycles may provide rational intervention time

points for the combined use of PD-1 inhibitors. However,

studies on the dynamics of these checkpoint markers in MDS

patients treated with HMA are still limited (15).

To evaluate the dynamics and prognostic value of immune

checkpoints PD-1, PD-L1, and PD-L2 in HMA treatment cycles,

a total of 135 patients with intermediate/high-risk MDS were

enrolled and retrospectively investigated in this present study.

Our data identified elevated expression of PD-1 post-HMA

treatment may serve as a prognostic marker for inferior

survival and AML transformation. Inhibition of the post-HMA

elevation of PD-1 may be of potential benefit in higher-

risk MDS.
Materials and methods

Patients

One hundred thirty-five newly diagnosed and treatment-

naïve MDS patients, including 93 males and 42 females, were

enrolled in the Guangdong Provincial People’s Hospital from

April 2008 to March 2016. For the evaluation of baseline PD-1,

PD-L1, and PD-2, expression levels of these immune

checkpoints were analyzed in a 102-patient cohort (baseline

cohort) under untreated conditions. An additional age- and risk-

matched 33-patient cohort from 2 prospective trials serve as the

validation cohort to investigate the dynamics and predictive
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value of the immune checkpoint factors during HMA cycles

(16). Treatments for these patients are azacitidine 75mg/m2/day

subcutaneously (SC) for 7 days every 28 days (NCT01599325,

n=16) and decitabine 15mg/m2 as a continuous intravenous

infusion within 3 hours, repeated every 8 hours for 3 consecutive

days (NCT01751867, n=17). Written informed consent was

obtained from all patients. The present retrospective study was

approved by the Institutional Ethics Committee of Guangdong

Provincial People’s Hospital. Diagnoses were conducted

according to the French-American-British classification and

re-classified according to the 2016 edition of WHO

classification of myeloid neoplasms and acute leukemia. The

median age of the enrolled patients was 60 (15-84) years. All

patients were classified as the intermediate/high-risk group

according to the international prognostic scoring system

(IPSS) (17). As the revised edition of the international scoring

system (IPSS-R) has re-classified the prognosis of MDS into 5

prognosis-based stratifications (18), we re-calculated the scores

of MDS patients according to each edition of IPSS systems and

compared risk-based stratifications. Results revealed that the

utilization of IPSS-R did not significantly change the

intermediate/high-risk entity of these enrolled MDS patients

(Supplemental Table 1). Thus, the IPSS- stratifications were kept

and utilized in the subsequent risk-based analysis. Karyotypes

were classified according to the new comprehensive cytogenetic

scoring system for primary MDS and oligoblastic acute myeloid

leukemia (19). All baseline characteristics, including sex ratio,

median age, bone marrow (BM) blast percentage, WHO

classification, and IPSS risk stratification, remained similar

between the baseline and the validation cohort (Table 1).
RNA extraction and cDNA synthesis

Whole bone marrow mononuclear cells (MNCs) were

collected from patients at the time points of pre-treatment,

after the 2nd (C2), the 4th HMA cycle (C4), and the 6th HMA

treatment cycle (C6). Total RNA was extracted with TRIzol

(Life Technologies) according to the manufacturer ’s

recommendations. The quality of extracted RNA was analyzed

using a 0.8% agarose gel stained with Goldview. RNA (~1mg)
was synthesized into the first single-strand cDNA with random

hexamer primers using the PrimeScript™ RT Reagent Kit

(TaKaRa) for subsequent quantitative PCR assays.
Quantitative PCR (Q-PCR)

Quantification of PD-1, PD-L1, and PD-L2 transcripts was

performed by real-time PCR (TaqMan) with the ABI 7500

Sequence Detection System (Applied Biosystems, Foster City,

CA) as previously described (20). The internal control gene

ABL1 was used for normalization of the Q-PCR results to
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compensate for variations in the quality and quantity of RNA

and cDNA (21). PD-1, PD-L1, and PD-L2 Q-PCR primers and

probes were designed by Primer Express software and

synthesized by Life Technologies (Supplemental Table 2). The

amplification efficiency of the primers and probes was

determined. ABL1 plasmids standard (1×106, 1×105, 1×104,

1×103, and 1×102 copies/ml) were made. The amplification

efficiency of the target genes was close to that of the ABL1

reference gene; thus, they shared a set of standards.

Q-PCR reactions for the cDNA samples, DNA standards,

and water as negative control were conducted in a total volume

of 20 mL, including 10 mL 2× FastStart Universal Probe Master

(ROX) (Roche, Mannheim, Germany), 300 nM of each primer,

and 200 nM probe. The thermal cycler parameters were as

follows: 2 minutes at 50°C, 10 minutes at 95°C, and 45 cycles

of 95°C for 15 seconds and 62°C for 1 minute. The expression

levels of the target genes are indicated as “(copy number of the

target gene/copy number of the internal reference*100) %” with

comparisons between different samples. All PCR assays were

performed in duplicate and reported as means.
Flow cytometry

Cell surface staining for flow cytometry was performed using

the following antibodies: CD3-AF700 (clone UCHT1, BD),

CD4-APC-H7 (clone RPA-T4, BD), CD8-APC-H7 (clone SK1,

BD) and PD-1-BV421 (clone EH12.2H7, Biolegend). Isotype-

matched antibodies, labeled with the proper fluorochromes,

were used as negative controls. Cells were analyzed using a BD

Fortessa flow cytometer (BD Biosciences), and data analysis was

performed with Flowjo 10.6 software as previously

described (22).
Targeted gene sequencing

Targeted gene sequencing of a 13-gene panel of hotspot

mutations was performed using whole bone marrow

mononuclear cells (MNCs) at diagnosis. These hot mutations

including TET2, TP53, DNMT3A, and ASXL1 were listed.

(Supplemental Table 3).
Statistical analysis

All data were analyzed using SPSS software (version 19.0;

IBM Corp.) and presented with mean ± SEM. Differences in PD-

1, PD-L1, and PD-L2 expression between two groups were

analyzed using Student’s t-test or Mann-Whitney u-test.

Differences among multiple groups were determined by one-

way or two-way ANOVA followed by Tukey’s post hoc test. For

comparisons between paired samples, paired t-test was applied.
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Spearman correlation analysis was used to analyze correlations.

The Wilcoxon signed-rank test was used to compare data

between two paired groups. Receiver operating characteristic

(ROC) curves were used to evaluate factors’ sensitivity and

specificity in predicting AML transformation events. A binary

logistic regression model was used to investigate the predictive

value of factors in predicting AML transformation events. A p-

value lower than 0.05 was considered statistically significant.
Results

Baseline and subgroup expression of
PD-1, PD-L1, and PD-L2 in MDS

Of 135 enrolled patients in this study, 58 patients (58/135,

43.0%) were diagnosed with refractory anemia with excess blast

1 (MDS-EB1), 37 patients (37/135, 27.4%) with MDS-EB2, and

40 patients (40/135, 29.6%) with MDS with multilineage

dysplasia (MDS-MLD). The median age of enrolled patients

was 60 (15-84) years. All patients were assessed and were

classified into the intermediate/high-risk group according to

the international prognostic scoring system (IPSS) (17). To

test the reliability of the Q-PCR method in investigating

checkpoint expression in BM, paired Q-PCR and flow

cytometry assays for PD-1 were performed using MNC

samples at diagnosis from nine patients with MDS. A median
Frontiers in Immunology 04
of 11.69% (7.22%-20.25%) MNCs were positive for PD-1

expression by flow cytometry (FCM) assays (Figure 1A), while

the median Q-PCR expression for PD-1 in these samples was

29.72 (5.06-47.88). Pearson’s correlation analysis indicated that

PD-1 expression levels by FCM assays correlated with those

from Q-PCR assays (R = 0.6181, P = 0.007) (Figure 1B). Thus,

these results confirmed the feasibility of the Q-PCR method in

evaluating immune checkpoint expression in MNC samples. For

mutation profiling, targeted gene sequencing of a 13-gene panel

of hotspot mutations was performed using whole bone marrow

mononuclear cells (MNCs) at diagnosis. These hot mutations

including TET2, TP53, DNMT3A, and ASXL1 were listed.

(Supplemental Table 3). Generally, a high frequency of hotspot

mutations was detected in 92.3% (48/58) patients, with the most

frequent mutations seen in SF3B1 (21.2%), SRSF2 (19.2), TET2

(19.2%), and ASXL1 (17.3%) (Figure 1C). By profiling the

expression levels of PD-1, PD-L1, and PD-L2 in MNCs from

MDS and normal individuals, a significantly elevated expression

of PD-1 was seen in MDS samples compared with normal

samples (58.77 ± 3.820 vs. 31.95 ± 3.692, P = 0.007)

(Figure 1D). In contrast, the expression of PD-L1 and PD-L2

in MDS patients was not significantly different from healthy

individuals (Figures 1E, F).

Next, PD-1, PD-L1, and PD-L2 expression levels in MDS

subgroups were investigated. BM samples from both the young

MDS cohort (age ≤ 60 years) and older MDS cohort (age > 60

years) displayed significantly higher PD-1 expression than that
TABLE 1 Baseline characteristics of enrolled patients.

Baseline cohort (n=102) Validation cohort (n=33) P value

Sex, n (%) 0.58

Male
Female

69 (66.7%)
33 (32.3%)

24 (72.7%)
9 (27.3%)

Median age (year) 60 (15-84) 61 (38-73) 0.67

2016 WHO classification, n (%) 0.61

RAEB1
RAEB2
MLD

42 (41.2%)
25 (24.5%)
35 (34.3%)

16 (48.5%)
12 (36.4%)
5 (15.2%)

Hemoglobin (g/L) 72 (49-116) 68 (42-49) 0.34

Leukocyte count (109/L) 2.4 (0.69-11.90) 2.3 (0.88-11.75) 0.82

Platelet count (109/L) 71 (11-391) 68 (14-340) 0.51

Neutrophil count (109/L) 1.07 (0.22-11.31) 0.97 (0.35-10.03) 0.61

Blast% (bone marrow) 5% (1%-18%) 5% (1%-16.5%) 0.36

Cytogenetics, n (%) 0.82

Good
Intermediate
Poor
Very poor
unassessable

59 (57.8%)
28 (27.5%)
6 (6.0%)
1 (1.0%)
8 (8.0%)

19 (57.6%)
8 (24.2%)
2 (6.1%)
1 (3.0%)
3 (9.1%)

IPSS risk group, n (%) 0.42

Int-1
Int-2
High

46 (45.1%)
32 (31.4%)
24 (23.5%)

11 (33.3%)
13 (39.4%)
9 (27.3%)
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in the normal cohort, while those young MDS patients were

associated with a slightly higher PD-1 expression than in older

MDS patients (64.49 ± 5.592 vs. 52.91 ± 5.147, P = 0.13)

(Figure 2A). Expression levels of PD-L1 and PD-L2 remained

similar across age-based subgroups in the MDS cohorts
Frontiers in Immunology 05
(Figures 2B, C). For expression levels of these immune

checkpoints in IPSS-based MDS subgroups, PD-1 expression

was significantly higher in the intermediate-1 risk MDS than

that in normal samples (59.17 ± 7.484 vs. 31.95 ± 3.692, P =

0.02), and slightly higher in the intermediate-2 (48.38 ± 5.862 vs.
A B

D E F

C

FIGURE 2

Baseline expression of PD-1, PD-L1, and PD-L2 in age-based and risk-based MDS subgroups (A–C) Normalized baseline expression levels of
PD-1, PD-L1, and PD-L2 in healthy individuals, young MDS (age ≤ 60 years), and older MDS (age>60 years). (D–F) Normalized baseline
expression levels of PD-1, PD-L1, and PD-L2 in healthy individuals and patients with intermediate-1, intermediate-2, and high-risk stratification.
Results were presented as mean ± SEM of independent cases. *P < 0.05. ***P < 0.001.
A B

D E F

C

FIGURE 1

Baseline expression of PD-1, PD-L1, PD-L2, and mutational characteristics of MDS patients. (A) FCM detection for the expression of PD-1
protein in each gated cell subset in BM-MNC samples from patients with MDS (n=9). (B) Pearson analysis between the PD-1 gene expression
(qPCR value) and protein levels in patients with MDS (n=9, R = 0.6181, P = 0.007). (C) Mutational profile of a 13-gene panel of hotspot
mutations (Supplemental Table 3) in MDS patients (n=52). (D) Normalized baseline expression of PD-1 in the bone marrow samples from normal
individuals (n=23) and MDS patients (n=102). (E) Normalized baseline expression of PD-L1 in the bone marrow samples from normal individuals
(n=23) and MDS patients (n=102). (F) Normalized baseline expression of PD-L2 in the bone marrow samples from normal individuals (n=18) and
MDS patients (n=102). Results were presented as mean ± SEM of independent cases. *P < 0.05. **P < 0.01. ***P < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.950134
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Geng et al. 10.3389/fimmu.2022.950134
31.95 ± 3.692, P = 0.06) and high-risk group (50.67 ± 12.91 vs.

31.95 ± 3.692, P = 0.12) (Figure 2D). Expression levels of PD-L1

and PD-L2 were not significantly up-regulated in MDS patients

with intermediate-1 or intermediate-2 risk groups. Interestingly,

a trend of lower expression of PD-L1 (23.35 ± 10.84 vs. 31.95 ±

3.692, P = 0.11) and PD-L2 (3.523 ± 0.479 vs. 7.847 ± 2.286, P =

0.08) were seen in those BM samples from MDS patients from

the high-risk group.
Dynamics of PD-1, PD-L1, and PD-L2
expression in HMA treatment cycles

To elucidate the dynamics of PD-1, PD-L1, and PD-L2

expression and potential predictive value during HMA

treatment cycles, expression levels of these immune

checkpoints at timepoints of pre-treatment (baseline), after the

2nd cycle (C2), 4th cycle (C4) and 6th cycle (C6) of HMA

treatment were analyzed. Furthermore, treatment response and

survival data were extracted and analyzed in an additional 33-

patient cohort of intermediate/high-risk MDS from two clinical

trials (NCT01599325 and NCT01751867). In the validation

cohort, 51.5% of patients (17/33) were treated with decitabine,
Frontiers in Immunology 06
while 48.5% (16/33) received azacitidine. HMA dosages and

treatment schedules could be seen in our previous report (16).

The median number of treatment cycles was 12 (3-21), and

57.6% of patients (19/33) acquired at least 1 clinical response to

HMA (CR/mCR/HI) according to the IWG 2006 criteria (23).

Compared with the expression at pre-treatment condition,

PD-1 levels significantly increased after the first 2 cycle (C2) of

HMA treatment (66.38 ± 7.709 vs. 42.74 ± 7.405, P = 0.03), then

gradually decreased after the 4th (47.58 ± 7.408 vs. 61.23 ± 9.304,

P = 0.05) and 6th (47.58 ± 7.408 vs. 42.74 ± 7.405, P = 0.65)

HMA cycles (Figure 3A). Similar trends of up/down-regulated

PD-L1 and PD-L2 were also seen in these MDS patients, while

these differences did not reach statistical significance during

HMA treatment cycles (Figures 3B, C). To investigate whether

PD-1, PD-L1, and PD-L2 dynamics were associated with

treatment efficacies, MDS patients were classified as HMA

responders or HMA non-responders according to the IWG

2006 criteria (23). Expression of these markers at time points

of pre-treatment (baseline), C2, C4, and C6 were analyzed and

compared between the two groups (Figures 3D–F). Generally,

the expression of PD-1, PD-L1, and PD-L2 fluctuated through

treatment cycles. Expression of PD-1 increased in most HMA

non-responders after the 2nd treatment (12/14, 85.7%) and
A B

D E F

G IH

C

FIGURE 3

Dynamics of PD-1, PD-L1, and PD-L2 expression in HMA treatment cycles. (A–C) Pre-treatment and post-treatment expression of PD-1, PD-L1,
and PD-L2 in HMA treatment cycles in MDS patients who received at least 2-cycle of HMA treatment. (D–F) Dynamic expression of PD-1, PD-
L1, and PD-L2 in HMA treatment cycles in HMA responders and HMA non-responders. (G–I) Dynamic expression of PD-1, PD-L1, and PD-L2 in
HMA treatment cycles in MDS patients with or without AML transformation event. Results were presented as mean ± SEM of independent cases.
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remained higher than that in those HMA responders (78.58 ±

8.302 vs. 55.28 ± 6.340, P = 0.06). After the 4th cycle of HMA

treatment, PD-1 expression decreased in most HMA responders

(13/19, 68.4%), while the PD-1 expression remained at elevated

levels in half of the HMA non-responders (7/14, 50.0%)

(Figure 3D). However, no difference was observed concerning

the expression of PD-L1 or PD-L2 between HMA responders

and non-responders through HMA cycles (Figures 3E, F).
PD-1 dynamics in HMA treatment cycles
were associated with the risk of
AML transformation

Patients with higher-risk MDS faced a higher risk of AML

transformation (1, 18). In this study, 17 patients progressed to

AML in the validation cohort (17/33, 51.5%), with a median

leukemia-free survival (LFS) of 24.0 months. Subgroup analysis

was performed in patients with AML transformation (AML-t,

n=17) and patients without AML transformation (MDS, n=16).

Expression of these markers at time points of baseline, C2, C4,

and C6 was analyzed. The median expression of PD-1

significantly increased at C2 (76.39 ± 16.419 vs. 46.12 ±

12.315, P = 0.04) and C4 (71.22 ± 24.915 vs. 46.12 ± 12.315,

P = 0.05) than the baseline PD-1 expression in the AML-t

subgroup, then decreased at C6. By utilizing paired t-test analysis

between subgroups, the AML-t group displayed significantly

higher expression levels of PD-1 at C2 (81.92 ± 17.482 vs. 54.21

± 14.315, P = 0.03) and C4 (74.31 ± 21.294 vs. 43.987 ± 11.411, P

= 0.05) than the that in the non-transformed group (Figure 3G).

No correlation was seen between the incidence of AML

transformation and the expression of PD-L1 or PD-L2 in the

HMA treatment cycles (Figures 3H, I). These data indicated a

potential prognostic value of post-HMA dynamics of PD-1

expression in predicting AML transformation events in

higher-risk MDS patients.
Up-regulated PD-1 after the 2nd

treatment cycle predicts long-term
survival after HMA treatment

Next, receiver operating characteristic (ROC) models were

further utilized to validate the sensitivity and specificity of

expression levels of immune checkpoints in predicting AML

transformation events. By enrolling expression levels of these

checkpoints at baseline, C2, and C4, the specificity and

sensitivity of each factor in predicting AML transformation

events were calculated and displayed. Generally, most

checkpoints failed to display values predicting AML

transformation events (Figures 4A, B). However, PD-1

expressions at C2 were associated with a significant value to

predicted AML transformation, which yielded an area under the
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ROC curve (AUC) of 0.747 (0.520-0.895), with a cut-off value of

75.9 and a sensitivity/specificity ratio of 0.72/0.77 (P < 0.05)

(Figure 4B). By using the calculated PD-1 cut-off value of 75.9 at

C2 as a factor and re-classifying MDS patients into high PD-1

expression group (≥75.9, n=17) and low PD-1 expression group

(<75.9, n=16), a binary logistic regression analysis enrolling PD-

1 C2 expression, ORR, gender cytogenetics, and age was

performed. Generally, high PD-1 expression at C2 was

significantly associated with a higher risk of AML

transformation (HR:6.919; 95%CI:1.213-39.47, P=0.03).

Meanwhile, abnormal cytogenetics also predicted the AML

transformation events in the present MDS cohort (HR: 6.863;

95%CI: 0.895-52.607, P=0.06), while the factors of ORR events

(HR: 1.045; 95%CI: 0.169-6.447, P=0.962), female gender (HR:

1.151; 95%CI: 0.047-1.341, P=0.896) and elder age (HR: 1.191;

95%CI: 0.130-4.101, P=0.845) did not reach a statistic

significance in the logistic regression model (Figure 4C).

To further validate the long-term prognostic value of PD-1

after the 2nd HMA treatment cycle, a univariate survival

analysis was performed between the high PD-1 expression

group and the low PD-1 expression group. Four patients

were still alive at the last follow-up, with a median follow-up

of 23.4 months in the whole cohort. Median leukemia-free

survival (LFS) was 27.0 months in the low PD-1 group, whereas

in the high PD-1 group was 18.0 months (HR: 2.25; 95%CI:

1.04-6.45; log-rank test, P=0.05) (Figure 5A). For overall

survival, 2-year OS in the low PD-1 group was 93.8% (15/16),

whereas in the high PD-1 group was 88.2% (15/17). Those MDS

patients in the low PD-1 group were associated with

significantly longer estimated OS than that in the high PD-1

group (38.0 vs. 20.0 months; HR:2.590; 95%CI: 1.13-5.92, P =

0.02) (Figure 5B).
Discussion

The treatment response/resistance mechanisms after HMA

cycles were not fully understood until now. Existing data

indicated that dysregulated gnomic-wide methylation is

closely involved in the development and progression of MDS

(24). Thus, demethylation and reactivation of silenced tumor-

suppressing genes are initially considered pivotal mechanisms

during the treatment cycles of HMA and other HMA-based

treatment schemes (25, 26). With emerging evidence indicating

a wider range of cellular/molecular regulations by HMAs,

induced expression of tumor antigens (27) and enhancement

of effective T cells (28) may represent parallel mechanisms.

However, despite prolonged survival in patients who have

responded to HMA, the overall response rate (ORR) to

HMAs remains low (~50%), and the duration of treatment

response is often transient (2). Loss of response frequently

happens within 2 years after the first administration of HMAs,

with no standard-of-care options for patients after treatment
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failure. Expected survival for these patients remains

dismal (29).

On the other hand, emerging evidence indicates a “side-

effect” of HMAs underlying treatment failure and disease
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progression. Based on updated concepts, HMAs demethylate a

range of immune checkpoints with negative prognostic values in

multiple cancers (30–32). Enhanced expression of PD-1, PD-L1,

PD-L2, CTLA-4, and other immune checkpoints after HMA
A B

FIGURE 5

Univariate survival analysis of LFS and OS by the post-treatment PD-1 expression. (A) LFS by PD-1 expression at C2 in MDS patients treated with
HMA. (B) OS by PD-1 expression at C2 in MDS patients treated with HMA.
A

B

C

FIGURE 4

Assessment of objective cut-off and prognostic value of PD-1, PD-L1, and PD-L2 expression in HMA treatment cycles. (A, B) Receiver operating
characteristic (ROC) curves and statistics of PD-1, PD-L1, and PD-L2 expression at time points predict AML transformation. (C) Binary logistic
regression analysis for factors to predict AML transformation in MDS patients treated with HMA.
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treatment potentially contributes to an immunosuppressive

bone marrow/peripheral environment in MDS patients (15,

33). Moreover, a recent study by Liu, Y.C., et al. revealed that

HMAs strikingly enhance the expression of SALL4 (a well-

described oncogene) by demethylation in its CpG island

within the 5’ untranslated region in a group of MDS. This

demethylating effect on SALL4 was then confirmed to associate

with an inferior clinical outcome (34–36).

In this context, many combined therapies using HMA with

novel drugs were designed for long-term synergistic effects and

prolonged survival in treating MDS (26, 37). These

combinations included HMA plus immune checkpoint

inhibitors (anti-PD-1/PD-L1) (38, 39), HMA plus histone

deacetylase inhibitors (HDACi) (40, 41), and HMA plus

immunosuppressive agent (lenalidomide) (42, 43) and others.

Combining HMA with immune checkpoint inhibitors is

designed primarily to sensitize the antitumoral immune

response of these therapies. However, although some HMA-

based combined therapies have demonstrated a favorable

response rate in patients with higher-risk MDS, survival

benefit was not achieved in these trials. At the same time,

non-neglectable toxicities were frequently noted (38, 39). A

recent head-to-head study by Zeidan, A.M., et al. revealed the

combination of azacitidine plus durvalumab (a PD-L1 inhibitor)

leads to up to 89.5% grade 3-4 hematologic adverse events (AEs)

in higher-risk MDS, while the incidence of grade 3-4 AEs

remains 68.3% in patients treated with single azacitidine (39).

Thus, a more rationally designed medication timing and dosage

of these combinations will be especially important. Evaluation of

baseline and dynamic expression of immune checkpoints during

HMA treatment cycles may provide evidence for patient

selection and rational timing for an anti-PD-1 intervention.

However, the dynamics of immune checkpoints in HMA

treatment cycles remain largely uninvestigated in patients with

MDS (15), especially in those patients with higher

IPSS stratification.

In previous studies, Yang et al. showed that the mRNA

expression of PD-1, PD-L1, and PD-L2 was increased in CD34+

cells and peripheral blood mononuclear cells fromMDS patients

(15). Kondo et al. found that PD-1 expression on CD3+, CD4+,

and CD8+ T cells was significantly increased in MDS patients

(44). Similar to these reports, our data revealed a significantly

elevated baseline expression of PD-1 in the bone marrow of

patients with MDS (Figure 1A). However, expression levels of

PD-L1 and PD-L2 in the MDS cohort remained similar to the

normal individuals (Figures 1E, F). In contrast with the

observation from Yang et al. (15), our result showed that PD-1

expression was slightly higher in high-risk MDS patients of

younger age (Figure 2A), and the expression level of PD-L1 and

PD-L2 remained similar between age-based MDS subgroups

(Figures 2B, C).

Interestingly, although the expression levels of PD-1 in MDS

were generally upregulated, it seemed that there were discrepant
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expression levels of immune checkpoints within risk-based

subgroups in higher-risk MDS. Patients with intermediate-1

risk stratification always displayed with highest median

expression levels of PD-1, PD-L1, and PD-L2. In contrast, the

expression levels decreased when the IPSS risk score increased

and remained lowest in the high-risk MDS (Figures 2D–F). A

recent study has revealed time- and dose-dependent

upregulation of immune checkpoints in CD34+ cells in vitro

(15). Similar to this observation, our data indicated a post-HMA

up-regulation of PD-1, PD-L1, and PD-L2 in MDS patients.

Median expression of PD-1 was significantly up-regulated after 2

cycles of HMA treatment, then gradually decreased during

continuous HMA treatment (Figure 3A). The potential

mechanism of these immune checkpoints’ up-regulation may

be attributed to the demethylation effect by HMA on the

transcripts (15, 33). In contrast, the mechanism of decrease of

these markers after continuous administration of HMA

remains unknown.

Next, clinical correlations between dynamics of immune

checkpoints and clinical outcomes were seen by monitoring

the expression of PD-1, PD-L1, and PD-L2 in each MDS patient.

Unlike the previous studies, which reported a clinical correlation

of baseline expression of PD-1 in MDS patients (15), our data

indicated that only the upregulation of PD-1 after the 2nd cycle

of HMA treatment was associated with inferior ORR in higher-

risk MDS patients. At the same time, similar observations were

not seen concerning the baseline expression of PD-1

(Figure 3D). For long-term survival, MDS patients with

intermediate/high-risk stratification faced a higher risk of

AML transformation and AML-related mortality (3). Our data

indicated that those MDS patients who eventually progressed to

AML displayed a significantly higher PD-1 expression of PD-1

after the 2nd cycle of HMA treatment (Figure 3G). To further

elucidate the predictive value of PD-1, PD-L1, and PD-L2 at each

timepoint in HMA treatment cycles, receiver operating

characteristic (ROC) curves were used to evaluate the potential

sensitivity and specificity of factors in predicting AML

transformation event. Similar to the results above, the baseline

expression of PD-1, PD-L1 and PD-L2 was not associated with a

significant value in predicting AML transformation events. Only

the PD-1 expression after the 2nd HMA treatment was associated

with significant specificity and sensitivity in predicting AML

transformation (Figure 4B). The optimal cut-off of the PD-1

expression after the 2nd HMA treatment cycle was compromised

at 75.9, with a sensitivity/specificity of 0.72/0.77. An additional

binary logistic regression model further validated the prognostic

value of the 75.9 cut-off of PD-1 (Figure 4C). At last, by binarily

grouping MDS patients into the low PD-1 group and high PD-1

group using this calculated cut-off, significant inferior LFS and

OS were confirmed in the high PD-1 group (Figure 5).

In summary, this present study identified discrepant

expression profiles of immune checkpoints in age- and risk-

based MDS subgroups. Our data provide detailed dynamics of
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up-regulation of PD-1 after HMA treatment and further

identified the ≥75.9 PD-1 expression as an independent

negative prognostic factor in higher-risk MDS patients. At last,

evaluation of the bone marrow PD-1 expression after the 2nd

cycle of HMA treatment may identify patients who will benefit

from the combined therapy of HMA and PD-1 inhibitors.
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