
J Pathol Inform Editor-in-Chief:
 Anil V. Parwani ,	 Liron Pantanowitz,
 Pittsburgh, PA, USA	 Pittsburgh, PA, USA

For entire Editorial Board visit : www.jpathinformatics.org/editorialboard.asp

OPEN ACCESS
HTML format

Technical Note

OpenSlide: A vendor‑neutral software foundation for digital
pathology

Adam Goode1,2, Benjamin Gilbert1, Jan Harkes1, Drazen Jukic3,4, Mahadev Satyanarayanan1

1School of Computer Science, Carnegie Mellon University, 3Departments of Pathology and Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States,
2Google, Pittsburgh, PA, USA, 4James A. Haley Veterans Hospital and University of South Florida, Tampa, FL

E‑mail: *Mahadev Satyanarayanan ‑ satya@cs.cmu.edu
*Corresponding author

Received: 17 July 13	 Accepted: 19 August 13	 Published: 27 September 2013

Abstract

Although widely touted as a replacement for glass slides and microscopes in pathology,
digital slides present major challenges in data storage, transmission, processing and
interoperability. Since no universal data format is in widespread use for these images
today, each vendor defines its own proprietary data formats, analysis tools, viewers
and software libraries. This creates issues not only for pathologists, but also for
interoperability. In this paper, we present the design and implementation of OpenSlide,
a vendor‑neutral C library for reading and manipulating digital slides of diverse
vendor formats. The library is extensible and easily interfaced to various programming
languages. An application written to the OpenSlide interface can transparently handle
multiple vendor formats. OpenSlide is in use today by many academic and industrial
organizations world‑wide, including many research sites in the United States that are
funded by the National Institutes of Health.

Key words: Diamond, digital imaging and communications in medicine, digital
slide, OpenDiamond, PathFind, scanner, whole‑slide image

Copyright: © 2013 Goode A. This is an open‑access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.

INTRODUCTION

Anatomic pathology stands at the threshold of a major
transformation. Starting in the late 20th century and
continuing into the 21st century, digital slide technology
has evolved from early attempts to manually digitize the
entire glass slide to sophisticated slide formats and robotic
scanning devices. The online storage, Internet‑based
access and archival preservation of digital slides (also
known as “whole‑slide images”) overcome numerous areas
of inefficiency in the conventional workflow of anatomic
pathology. For example, they eliminate the need for
physical transport and archival storage of glass slides. They
also enable within‑hospital‑network and Internet‑based

sharing of digital slides for a variety of purposes ranging
from diagnoses and quality control to medical research.
In addition, there are numerous advances in computer
vision and machine learning that enable automated or
semi‑automated analysis and comparison of digital slides.

For example, an area ripe for the taking is what pathologists
affectionately refer to as “wallpaper matching” − namely,
comparison of an unknown diagnostic entity encountered
under the microscope to entities described and/or
photographed in textbooks. This is a long and arduous
process with conventional textbooks, hampered by the fact
that color imagery is minimal in printed literature because
it increases printing costs. Further, only small regions
of entire glass slides can be shown in textbooks because

This article may be cited as:
Goode A, Gilbert B, Harkes J, Jukic D, Satyanarayanan M. OpenSlide: A vendor-neutral software foundation for digital pathology. J Pathol Inform 2013;4:27.

Available FREE in open access from: http://www.jpathinformatics.org/text.asp?2013/4/1/27/119005

Access this article online
Website:
www.jpathinformatics.org

DOI: 10.4103/2153-3539.119005

Quick Response Code:

J Pathol Inform 2013, 1:27	 http://www.jpathinformatics.org/content/4/1/27

their format is too small. If an entire glass slide were to
be photographed at ×40 objective (×400 magnification
equivalent), the size of the image would roughly be the
size of a football field! Using digital slides in conjunction
with deep‑zoom visualization software and a content‑based
image search tool called Diamond,[1,2] we hope to
circumvent this problem. This would enable pathologists
to leverage Internet‑based software to greatly improve
the speed and accuracy of analysis and to rapidly identify
archival material that is comparable to current material.

An important non‑technical challenge when transitioning
to digital slides will be the ability and willingness of
experienced pathologists who are comfortable with glass
slides to embrace new technology. Digital pathology will
need to offer some benefits (such as improved accuracy,
speed or convenience) to practicing pathologists to
encourage them to become more proficient with the
new workflows. These changes will take time to percolate
through the system, possibly a decade or even longer.
Newly‑trained pathologists who are comfortable with
digital slides from the beginning of their careers will
accelerate this process of transformation.

One technical challenge is the difficulty of processing
digital slides using standard image processing tools and
libraries. These are typically designed for images that can
be comfortably uncompressed into memory. Unfortunately,
digital slides are enormous relative to image data such as
personal photographs. Even after aggressive compression,
file sizes of hundreds of megabytes to many gigabytes
are common in this domain. At full resolution, images
routinely exceed memory sizes and often occupy tens of
gigabytes when uncompressed. These images are typically
multi‑resolution, with only a small amount of image data
being relevant at any particular resolution and viewpoint.

A second technical challenge is that each vendor
implements its own digital slide formats, libraries and
viewers. Vendors typically do not document their formats.
Even when there is documentation, important details are
omitted or inaccurate. Because a vendor’s library or viewer
is the only way to view a particular digital slide, doctors and
researchers suffer from long‑term vendor lock‑in − they are
unable to take advantage of improvements offered by other
vendors. In 2010, a Digital Imaging and Communications
in Medicine (DICOM) standard for digital slides was
released (supplement 145).[3,4] This standard was based
on experience with the DICOM standard for visible light
images (supplement 15, released in 1999)[5] and the efforts
of DICOM Working Group 26.[6] Although the DICOM
standard may eventually alleviate the problem of format
proliferation, there is no evidence of this yet. Realistically,
it may be many years before this standard is widely
supported by all vendors. Even after widespread adoption,
each vendor may continue to preferentially advocate its
own proprietary format and merely provide slow export/

import functionality for conversion to/from the DICOM
standard. Further, unless an extensive effort of format
conversion is undertaken, access to archived digital slides
in pre‑DICOM formats will remain an important obstacle.

A third technical challenge is that few vendors provide
libraries and viewers for non‑Windows platforms. While
Windows dominates clinical settings, there is significant
use of Linux in medical research and some use of
Apple Mac OS X. In addition, the explosive growth of
mobile platforms such as Android and iOS tablets and
smartphones suggests that these platforms may play
important roles in future clinical settings. Some vendors
offer multi‑platform support through a server‑based
approach, but this hurts performance by adding a
network round‑trip delay on every digital slide operation.
This makes it suboptimal for high‑latency settings
such as 3G and 4G cellular networks and unusable
in non‑networked environments. There are also some
open‑source projects to read and convert digital slides,
such as the LOCI Bio‑Formats library[7] and the NYU
Virtual Microscope project,[8] but these are limited to a
particular programming environment such as Java or to a
small number of slide formats.

To address these technical challenges, we have created
OpenSlide. This is a C library for reading and manipulating
digital slides of diverse vendor formats. This library can
be linked to applications written in C or C++, as well
as to applications written in other programming languages
such as Java and Python that support C bindings. The
use of OpenSlide enables clean separation of concerns
for an application developer. Rather than dealing with
proliferation of vendor‑specific formats, the developer
need only develop his application using the OpenSlide
application programming interface (API). It is OpenSlide’s
responsibility to deal with the idiosyncrasies of different
vendor formats and to translate back and forth at runtime
between the OpenSlide API and a specific vendor’s data
format. In this context, the DICOM standard can be
viewed as yet another vendor format. OpenSlide currently
handles the following vendor formats:
•	 Aperio SVS
•	 Hamamatsu VMS
•	 Hamamatsu VMU
•	 Leica SCN
•	 3DHISTECH MRXS (“MIRAX”)
•	 Trestle TIFF
•	 Generic tiled TIFF.

Since OpenSlide is released as open‑source software
under the LGPL v2.1 license, the digital pathology
community can collaboratively extend it to support new
vendor formats. Today, OpenSlide is supported on many
Linux distributions, on Windows and on Mac OS X.
Although it is not available yet on Android and iOS, we
do not foresee any fundamental obstacles to supporting

J Pathol Inform 2013, 1:27	 http://www.jpathinformatics.org/content/4/1/27

OpenSlide on these platforms.

DESIGN AND IMPLEMENTATION

OpenSlide aims for a good user experience on
desktop‑class hardware. Its design leverages the fact that
although digital slide formats vary widely across vendors,
they all address a common set of problems. As a result,
vendor formats typically share some broad high‑level
features:
•	 They pre‑compute and store downsampled versions

of the full‑resolution image for quicker access to
lower resolutions

•	 They use various kinds of lossy compression
•	 They are, to varying degrees, optimized for random

access
•	 They are effectively unbounded in width and height
•	 They can store slide metadata and additional small

images such as thumbnails that serve as annotations
•	 They may not store pixel data for all regions of the

image.

OpenSlide is designed to support these features while
shielding applications from the details of the various
vendor formats. Its vendor‑neutral API provides read‑only
access to digital slides stored in a file system. Table 1
shows the API calls that relate to file access. For brevity
and clarity, the prefix “openslide_” is omitted from the
calls shown in Tables 1 through 5 and in their discussion
throughout this section.

The OpenSlide API provides efficient random access to
multiresolution image data using the concept of pyramid
levels. Table 2 shows the relevant calls. A digital slide is
represented as an ordered list of pyramid levels; level 0 is
the highest‑resolution level and each subsequent level is a
downsampled version of the previous level. In general, no
image scaling is performed by the library; the only levels
available through the API are those actually stored in the
slide file. The centerpiece is the read_region() function,
which extracts a rectangular region of a whole‑slide image
at a particular pyramid level. Image data is returned in
uncompressed, premultiplied ARGB (Alpha, Red, Green
and Blue) format. Additional calls exist to determine the
downsampling factor for each level (relative to level 0)
and to determine the next largest level for an arbitrary
downsample factor. All image coordinates are specified
with respect to the coordinate system of level 0. Pixel data
for missing image regions is rendered as transparency.

The API provides functions for accessing slide
metadata and auxiliary images. All other vendor‑specific
information, such as tile placement and compression
formats, is hidden from the application; access to pixel
data is only provided in uncompressed, premultiplied
ARGB format. This allows OpenSlide to be extended to
support new slide formats without changing the external

API or the design of applications using the library. As
shown in Table 3, OpenSlide exposes slide metadata as
a set of properties, each of which is identified by a string
and has a string‑typed value. OpenSlide exposes generic
properties for common slide metadata. Individual vendor
drivers also expose properties containing format‑specific
metadata. In addition, small additional images embedded
in the slide file, such as thumbnail or barcode images,
are exposed as associated images. Unlike the main slide
image, associated images are single‑resolution and can
only be read in their entirety. Table 4 shows the calls
relating to associated images.

Table 1: Calls to access files
can_open (filename) Return true if the file is a readable

digital slide
open (filename) Open a digital slide and return a

handle
close (handle) Close an OpenSlide object

Table 2: Calls relating to image pyramids
get_level_count
(handle)

Get the number of levels in the
whole‑slide image

get_level0_dimensions
(handle, *w, *h)

Get the dimensions of level 0
(the largest level)

get_level_dimensions
(handle, level, *w, *h)

Get the dimensions of a level

get_level_downsample
(handle, level)

Get the downsampling factor of a
given level

get_best_level_for_
downsample (handle,
downsample)

Get the best level to use for
displaying the given downsample

read_region (handle,
dest, x, y, level, w, h)

Read a region of a whole‑slide image
as premultiplied ARGB pixel data

ARGB: Alpha, Red, Green and Blue

Table 3: Calls relating to properties
get_property_names (handle) Get an array of property

names
get_property_value (handle, name) Get the value of a specific

property

Table 4: Calls relating to associated images
get_associated_image_names
(handle)

Get an array of associated
image names

get_associated_image_
dimensions (handle, name, *w, *h)

Get the dimensions of an
associated image

read_associated_image (handle,
name, dest)

Read an associated image as
premultiplied ARGB pixel data

ARGB: Alpha, Red, Green and Blue

Table 5: Utility calls
get_error (handle) Get the current error string
get_version() Get the version of the OpenSlide library

J Pathol Inform 2013, 1:27	 http://www.jpathinformatics.org/content/4/1/27

Calls for error handling and version control are shown
in Table 5. If an unrecoverable error such as an I/O
error occurs while a slide is being read, the slide handle
transitions terminally into an error state. Subsequent
invocations of OpenSlide functions on the handle (other
than close()) will have no effect; functions that are
expected to return values will instead return an error
value; read_region() will clear its destination buffer
instead of filling it. The get_error() function can be used
to check for errors and obtain a string describing the
error. This style of error handling allows programs written
in C to check for errors only when convenient, without
the need to check after every call.

OpenSlide is implemented in C99 and uses GLib[9]
extensively for memory allocation, data structure
manipulation and text file parsing. OpenSlide relies
upon LibTIFF,[10] IJG’s JPEG library,[11] OpenJPEG,[12]
and LibXML2[13] for image reading and processing of the
various formats and upon the Cairo graphics library[14] for
positioning and rendering slide tiles.

OpenSlide’s internal architecture is structured in a
manner similar to the device driver model found in
operating systems. Application‑facing code is linked
to vendor‑specific code by way of internal constructors
and function pointers. When a slide file is first opened,
vendor‑specific driver code is responsible for parsing
the slide’s metadata and locating the compressed
image data for each region of the slide. Thereafter, read
requests are forwarded to the vendor‑specific driver,
which reads the appropriate compressed data from the
slide file and renders it to an ARGB image. To do this,
the driver can handle the request itself or – in simple
cases – forward it to generic handlers provided by the
OpenSlide core.

DIGITAL SLIDE FORMATS

As previously discussed, many vendors provide limited
or no public documentation for their slide formats. In
some cases documentation is available, but only under
disclosure restrictions incompatible with open‑source
software. As a result, OpenSlide’s support for many
formats has been implemented via empirical analysis
of the raw slide data and a significant amount of trial
and error. This is an inherently imperfect and iterative
process that relies critically on feedback from the user
community. As an OpenSlide driver gets more widely and
extensively used, we discover more subtle cases where our
understanding of the file format is in error. This leads to
modifications that result in a more accurate version of
the driver. Over time, the implementation of the driver
converges to a stable and accurate version.

This approach is dependent upon the availability of sample
slide files for analysis. Because it is often difficult to create

these samples without access to a corresponding scanner,
we are often dependent on the OpenSlide user community
to contribute digital slides in interesting formats. The
remainder of this section summarizes the slide formats
currently supported by OpenSlide. More detailed
documentation, as well as a variety of freely‑redistributable
slide files, is available on the OpenSlide website.[15]

Aperio SVS
Aperio SVS is a single‑file, TIFF‑based[16] format
with non‑standard metadata and a specific internal
organization.[17] This format reuses a TIFF field,
originally intended for free‑form text data, to store
structured metadata. Some SVS slides store tiles in
JPEG 2000 format, which is not contemplated by the
TIFF specification and not supported by LibTiff. For
these slides, OpenSlide uses low‑level LibTiff routines to
extract the tile data and decodes it using OpenJPEG.

Hamamatsu VMS and VMU
Hamamatsu VMS is a multi‑file, JPEG‑based[18] format
with primarily text‑based metadata. Unlike other formats,
which split a slide into a two‑dimensional array of small
tiles encoded with JPEG or JPEG 2000, VMS delivers
slide data in a small number of large JPEG images.
Support for random access is retrofitted into the JPEG
format via a JPEG feature called “restart markers,”
originally designed for error recovery. These markers allow
the decoder to resynchronize at intervals throughout
the image, thus creating “virtual tiles” with a very large
aspect ratio (512:1 is not unusual). This aspect ratio
forces superfluous decoding of image data well beyond
the borders of a region of interest.

IJG’s JPEG library does not natively support decoding
of individual “virtual tiles,” but can be made to do so
via careful restructuring of the image data. The slide
metadata records the file offsets corresponding to the
first tile in each row; to locate the remainder, OpenSlide
scans the slide file in the background. Hamamatsu VMS
files contain only two pyramid levels. However, the JPEG
algorithm permits efficient downsampling of image data
during decode; OpenSlide takes advantage of this feature
to generate intermediate slide levels for the convenience
of the application.

Hamamatsu VMU is a variant of Hamamatsu VMS,
which stores uncompressed 16‑bit RGB pixel data. Unlike
in VMS, there is no efficient way to synthesize additional
downsampled levels, so OpenSlide does not do so.

Leica SCN
Leica SCN is a single‑file format based on BigTIFF. Slide
metadata is stored in XML format in a TIFF text field.
Unlike the other supported formats, SCN provides a
pyramidal thumbnail image, though OpenSlide currently
provides access to only the highest‑resolution level. An
SCN file can contain image pyramids for multiple regions

J Pathol Inform 2013, 1:27	 http://www.jpathinformatics.org/content/4/1/27

of a slide; OpenSlide currently does not support such
slides due to API limitations.

3DHISTECH MRXS (“MIRAX”)
MRXS is a multi‑file format with very complicated
metadata in a mixture of text and binary formats.
MRXS supports storing image tiles in JPEG, PNG and
BMP formats; OpenSlide currently only supports JPEG.
Though image tiles are approximately arranged into a
grid, each group of (typically) 16 tiles has an individual
offset from its “natural” grid position, which is recorded
in the metadata.

Unique among the formats supported by OpenSlide,
MRXS does not align overlapping tiles before
concatenating and downsampling them to produce the
lower‑resolution levels of the image pyramid. As a result,
a single 338 × 254 JPEG image might contain as many
as 16,384 subimages, which must be separately extracted
and positioned for display at subpixel granularity. This
greatly complicates the rendering task.

The MRXS format continues to surprise us. Different
versions of the vendor’s software produce slightly
different variants of the format and we regularly have to
modify OpenSlide to support new variants discovered by
the user community.

Trestle TIFF
Trestle TIFF is a multi‑file format. It consists of a TIFF
file containing the image pyramid and a text field with
structured metadata, plus additional files containing
metadata and thumbnail images. In contrast to standard
TIFF, Trestle tiles are individually positioned (as in
MRXS) and can overlap. The metadata records the
nominal overlaps for a given pyramid level as well as
the individual overlaps that apply to particular tiles.
OpenSlide currently respects the nominal, but not the
individual overlaps. Deviations from the nominal overlaps
are typically small so this has not been a major problem
in practice.

Generic Tiled TIFF
The standard TIFF format is adequate to support a
digital slide containing minimal slide metadata. Such
TIFF files can be produced by some scanners and can
also be generated using existing open‑source tools such
as VIPS[19] and ImageMagick.[20] OpenSlide supports tiled
TIFF images containing one or more pyramid levels.

EXAMPLE APPLICATIONS

Web‑Based Viewer
To enable remote viewing of digital slides across the
Internet, we have created a web application using the
OpenSeadragon AJAX image viewer[21] as shown in
Figure 1. The client component of our application is
JavaScript that is dynamically loaded into a standard

web browser from the web page being browsed. The
server component is a web server that returns tiles of
specified coordinates and zoom levels on demand. These
tiles can be pre‑generated using an OpenSlide‑based tool
and served from the file system or can be produced on
demand by a web application that invokes OpenSlide
at runtime to generate the tiles. Our experience is that
there is no user‑perceptible performance difference
between dynamically‑tiled and statically‑tiled viewing
sessions. Using dynamic tiling avoids a preprocessing step
in the workflow and eliminates the storage overhead of
storing tiles. A demo of our viewer is available at http://
openslide.org/demo/.

PathFind
As mentioned earlier, enabling knowledge from
previously encountered entities to be brought to
bear on an unknown, but similar‑looking diagnostic
entity is a valuable capability in pathology. Of
course, “similar‑looking” is expressed in terms of
visual attributes that have specific significance to
the pathology of the tissue sample being examined.
PathFind is an OpenSlide‑based tool that accepts a wide
range of similarity‑detection software called searchlets.
Each searchlet is a plugin for the OpenDiamond®
platform, which enables interactive, semi‑automated,
hypothesis‑driven searches of complex images. (The
OpenDiamond platform was created by the same
research group that created OpenSlide.) For example,
we have created searchlets for similarity detection of
cytologic atypia and pagetoid spread in skin lesions,
using a machine‑learning technique called Semantic
Texton Forests.[22] We have also created searchlets for
attributes such as nuclear density using ImageJ,[23] an
open‑source tool supported by the National Institutes
of Health. Figure 2 shows the user interface presented
to a pathologist by PathFind. The pathologist can zoom
and navigate case data just as he does with a microscope
and glass slides today. At any point, he can request a
search for archival digital slides that have areas similar to
the area currently in view. The results that are returned
include entire digital slides as well as specific matching
regions within each of those digital slides. Figure 3 shows
the end‑to‑end architecture of the whole system with

Figure 1: Internet viewer for digital slides

J Pathol Inform 2013, 1:27	 http://www.jpathinformatics.org/content/4/1/27

the roles of OpenSlide and the OpenDiamond platform
highlighted. For each result, associated metadata such
as anonymized patient information and diagnosis are
returned.

SlideTutor
OpenSlide has also been used in SlideTutor, an intelligent
tutoring system for dermatopathology.[24] Digital slides
of the cases to be solved by a student are stored on a
server and accessed through OpenSlide by the server‑side
SlideTutor software. Students access these digital slides
over the Internet through a standard web browser.
A correct response by a student advances him to the
next case. An incorrect response triggers remediation
that includes helpful visual and textual information. The
results of studies using SlideTutor suggest significant
learning gains after just one tutoring session.[25]

Other Use Cases
Several pathology education projects use OpenSlide
to decode digital slides. One example is the Cardiac
Transplant Endomyocardial Biopsy Acute Cellular

Rejection Tutorial[26] from the Society for Cardiovascular
Pathology and the Association for the European
Cardiovascular Pathology. Another example is the Smart
Histology app[27] from Smart In Media. OpenSlide is
also used in the backends of online slide management
systems such as Simagis Live[28] and Emory’s Pathology
Image Database System.[29] The VIPS image processing
system,[19] a toolkit for analysis and manipulation of very
large images, supports reading slide files using OpenSlide.

FUTURE WORK

OpenSlide is an evolving tool and we see many areas for
improvement and enhancement:
•	 Supporting new digital slide formats and new variants

of existing formats is an ongoing challenge. We
would like OpenSlide to ultimately support all major
formats, including Hamamatsu NDPI, Olympus VSI,
Ventana BIF and DICOM

•	 Language bindings currently exist for Java and
Python. We would like to create open‑source bindings
to additional programming languages such as C# and
image‑processing toolkits such as MATLAB. GObject
bindings would allow OpenSlide to be transparently
used by any programming environment that supports
GObject Introspection

•	 OpenSlide is designed primarily to support
high‑resolution brightfield images. As a result, the
API supports only three 8‑bit color channels per
image. Multiple focal planes, z‑slices, or time points
are not supported. In the future, we would like to
extend OpenSlide to support arbitrary numbers of
fluorescence channels and physical axes

•	 OpenSlide is designed as infrastructure for
third‑party applications that wish to support digital Figure 2: PathFind screenshot with search results

Figure 3: How OpenSlide is used by PathFind

J Pathol Inform 2013, 1:27	 http://www.jpathinformatics.org/content/4/1/27

slides. While we provide simple viewer programs and
tools to exercise the library, including the web‑based
viewer described earlier, there is no high‑quality,
open‑source viewer application that can easily be
installed by end users. Such an application would
greatly assist pathologists and researchers wishing to
view slide files from Mac OS X or Linux, especially
in a multi‑vendor environment

•	 The web‑based viewer could be extended to support
additional features such as annotations, image
rotation and synchronized panning/zooming of
multiple images. Some of these features already exist
in third‑party applications built with OpenSlide.
In addition, the creation of an embeddable viewer
widget for desktop applications, similar to what
OpenSeadragon provides in a web browser, would
ease third‑party development of such applications.

CONCLUSION

Pathology is one of the last medical specialties to be
digitized, largely because of the technical problems posed
by the capture, storage, transmission, archiving, viewing
and annotation of high‑resolution, multi‑gigabyte,
zoomable images. While future improvements in network
bandwidth and storage capacity can alleviate these
difficulties, their benefit will be limited by the increasing
size and complexity of digital slides due to improvements
in the resolution, multi‑spectral capabilities and other
aspects of digital scanner technology. The growth of
mobile computing in health‑care delivery will exacerbate
these challenges because of the need to access digital
slides over bandwidth‑limited wireless networks from
mobile devices with limited screen size. Today’s
vendor‑specific and fragmented approach to digital
pathology software offers few opportunities for the
latest computer science innovations to be brought to
bear on these difficult technical challenges. OpenSlide
enables such innovations to be contributed by the best
software talent. The merits of specific innovations and
their implementations can be evaluated, critiqued and
evolved by the entire digital pathology community. We
look to a future where this process leads to a vibrant
hardware‑software ecosystem for digital pathology that
fosters interoperability and sharing while preserving ample
opportunity for proprietary innovations in hardware and
application software.

ACKNOWLEDGMENTS

This research was supported by the Clinical and Translational
Science Institute of the University of Pittsburgh (CTSI), under
National Institutes of Health (NIH) Clinical and Translational
Science Award (CTSA) program grants UL1RR024153 and
UL1TR000005. We would like to thank Steve Reis and Michelle
Broido for their sustained support of this work and Laura

Drogowski for her help in the early phases of this project.
We gratefully acknowledge and thank the entire OpenSlide
community for its continuing contribution of bug reports,
patches and slide data. Support for the SCN and MRXS 2.2
formats was contributed by Agelos Pappas. Stephan Lamont
contributed initial support for VMU. Hauke Heibel and Marco
Feuerstein implemented initial support for Windows and
provided valuable feedback. Yves Sucaet contributed sample
data in several formats. OpenDiamond is a registered trademark
of Carnegie Mellon University.

REFERENCES

1.	 Huston L, Sukthankar R, Wickremesinghe R, Satyanarayanan M, Ganger GR,
Riedel E, et al. Diamond: A Storage Architecture for Early Discard in
Interactive Search, in 3rd USENIX Conference on File and Storage
Technologies. San Francisco, CA; 2004.

2.	 Satyanarayanan M, Sukthankar R, Goode A, Bila N, Mummert L, Harkes J,
et al. Searching complex data without an index. Int J Next‑Gener Comput
2010;1:146‑67.

3.	 Singh R, Chubb L, Pantanowitz L, Parwani A. Standardization in digital pathology:
Supplement 145 of the DICOM standards. J Pathol Inform 2011;2:23.

4.	 DICOM Standards Committee Working Group 26. Supplement 145: Whole
slide microscopic image IOD and SOP classes. Rosslyn, VA; 2010.

5.	 DICOM Standards Committee Working Group 13. Supplement 15: Visible
light image for endoscopy, microscopy, and photography. Rosslyn, VA; 1999.

6.	 DICOM Standards Committee Working Group 26. Pathology analytical
imaging standards, 2013. Available from: http://confluence.cci.emory.edu:
8090/display/PAIS/DICOM+WG26 [Last accessed on 2013 Aug 26].

7.	 Laboratory for Optical and Computational Instrumentation, Bio‑Formats,
2013. Available from: http://loci.wisc.edu/software/bio-formats [Last
accessed on 2013 Aug 26].

8.	 Holloway W, Triola M. NYU Virtual Microscope, 2013. Available from: http://
cloud.med.nyu.edu/virtualmicroscope/[Last accessed on 2013 Aug 26].

9.	 The Gtk+ project, GLib, 2013. Available from: http://www.gtk.org/[Last
accessed on 2013 Aug 26].

10.	 Leffler S. LibTIFF, 2013. Available from: http://www.remotesensing.org/libtiff/
[Last accessed on 2013 Aug 26].

11.	 Independent JPEG Group. The Independent JPEG Group’s JPEG software,
2013. Available from: http://www.ijg.org/[Last accessed on 2013 Aug 26].

12.	 OpenJPEG project, OpenJPEG, 2013. Available from: http://www.openjpeg.
org/. [Last accessed on 2013 Aug 26].

13.	 Veillard D. libxml2, 2013. Available from: http://www.xmlsoft.org/[Last
accessed on 2013 Aug 26].

14.	 Cairo project, Cairo, 2013. Available from: http://www.cairographics.org/
[Last accessed on 2013 Aug 26].

15.	 OpenSlide project, OpenSlide, 2013. Available from: http://openslide.org/
[Last accessed on 2013 Aug 26].

16.	 Adobe Systems Incorporated, TIFF 6.0 specification, 1992. Available from:
http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf [Last accessed
on 2013 Aug 26].

17.	 Aperio Technologies, Inc., Digital slides and third‑party data interchange,
2008. Available from: http://www.aperio.com/documents/api/Aperio_
Digital_Slides_and_Third‑party_data_interchange.pdf. [Last accessed on
2009 Dec 1].

18.	 International Telegraph and Telephone Consultative Committee. Technology
Information – Digital Compression and Coding of Continuous‑Tone Still
Images – Requirements and Guidelines. 1992.

19.	 VIPS project, libvips, 2013. Available from: http://www.vips.ecs.soton.ac.uk/
[Last accessed on 2013 Aug 26].

20.	 ImageMagick Studio LLC. ImageMagick, 2013. Available from: http://www.
imagemagick.org/[Last accessed on 2013 Aug 26].

21.	 OpenSeadragon project, OpenSeadragon, 2013. Available from: http://
openseadragon.github.io/[Last accessed on 2013 Aug 26].

22.	 Shotton J, Johnson M, Cipolla R. Semantic texton forests for image
categorization and segmentation. In: IEEE Conference on Computer Vision
and Pattern Recognition. Anchorage, AK; 2008.

J Pathol Inform 2013, 1:27	 http://www.jpathinformatics.org/content/4/1/27

23.	 NIH. ImageJ: Image processing and analysis in Java, 2013. Available from:
http://rsbweb.nih.gov/ij/[Last accessed on 2013 Aug 26].

24.	 DBMI‑Pitt, Use SlideTutor, 2013. Available from: http://slidetutor.upmc.edu/
[Last accessed on 2013 Aug 26].

25.	 Crowley RS, Legowski E, Medvedeva O, Tseytlin E, Roh E, Jukic D.
Evaluation of an intelligent tutoring system in pathology: Effects of external
representation on performance gains, metacognition, and acceptance. J Am
Med Inform Assoc 2007;14:182‑90.

26.	 Society for Cardiovascular Pathology and Association for the European

Cardiovascular Pathology, Cardiac transplant endomyocardial biopsy acute
cellular rejection tutorial, 2013. Available from: http://www.scvp.net/acr/
[Last accessed on 2013 Aug 26].

27.	 Smart In Media, Smart Histology, 2013. Available from: http://www.
smarthistology.net/[Last accessed on 2013 Aug 26].

28.	 Smart Imaging Technologies, Simagis Live, 2013. Available from: http://live.
simagis.com/[Last accessed on 2013 Aug 26].

29.	 Wang F, Oh T, Vergara‑Niedermayr C, Kurc T, Saltz J. Managing and Querying
Whole Slide Images. In: SPIE Medical Imaging. San Diego, CA; 2012.

