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Abstract

Background: Physiotherapy is a critical element in the successful conservative management of low back pain (LBP). A gold
standard for quantitatively measuring physiotherapy participation is crucial to understanding physiotherapy adherence in managing
recovery from LBP.

Objective: This study aimed to develop and evaluate a system with wearable inertial sensors to objectively detect the performance
of unsupervised exercises for LBP comprising movement in multiple planes and sitting postures.

Methods: A quantitative classification design was used within a machine learning framework to detect exercise performance
and posture in a cohort of healthy participants. A set of 8 inertial sensors were placed on the participants, and data were acquired
as they performed 7 McKenzie low back exercises and 3 sitting posture positions. Engineered time series features were extracted
from the data and used to train 9 models by using a 6-fold cross-validation approach, from which the best 2 models were selected
for further study. In addition, a convolutional neural network was trained directly on the time series data. A feature importance
analysis was performed to identify sensor locations and channels that contributed the most to the models. Finally, a subset of
sensor locations and channels was included in a hyperparameter grid search to identify the optimal sensor configuration and best
performing algorithms for exercise and posture classification. The final models were evaluated using the F1 score in a 10-fold
cross-validation approach.

Results: In total, 19 healthy adults with no history of LBP each completed at least one full session of exercises and postures.
Random forest and XGBoost (extreme gradient boosting) models performed the best out of the initial set of 9 engineered feature
models. The optimal hardware configuration was identified as a 3-sensor setup—lower back, left thigh, and right ankle sensors
with acceleration, gyroscope, and magnetometer channels. The XGBoost model achieved the highest exercise (F1 score: mean
0.94, SD 0.03) and posture (F1 score: mean 0.90, SD 0.11) classification scores. The convolutional neural network achieved
similar results with the same sensor locations, using only the accelerometer and gyroscope channels for exercise classification
(F1 score: mean 0.94, SD 0.02) and the accelerometer channel alone for posture classification (F1 score: mean 0.88, SD 0.07).

Conclusions: This study demonstrates the potential of a 3-sensor lower body wearable solution (eg, smart pants) that can identify
exercises in multiple planes and proper sitting postures, which is suitable for the treatment of LBP. This technology has the
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potential to improve the effectiveness of LBP rehabilitation by facilitating quantitative feedback, early problem diagnosis, and
possible remote monitoring.

(JMIR Rehabil Assist Technol 2022;9(3):e38689) doi: 10.2196/38689
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Introduction

Low back pain (LBP) is a prevalent condition that affects both
physical and mental health [1,2]. Postural re-education and
physiotherapy aiming to reduce disc derangement and
strengthening exercises are often used to treat LBP [3-5].
Specifically, the McKenzie approach is based on a patient’s
pain response to directional movements of the spine. The
McKenzie approach has been proven to be effective and is
commonly used by physiotherapists and other rehabilitation
clinicians involved in the care of patients with LBP [2,3,6].
Research suggests that there is a positive correlation between
adherence to rehabilitation programs (quantity and quality) and
their ultimate success [4,7]. However, the quality of data (ie,
derived from self-reported patient diaries) with respect to
at-home rehabilitation program adherence can experience low
rates of patient completion and biases [8]. A lack of a gold
standard for measuring rehabilitation adherence has led to
variability in the quality of measuring standards [8,9].

Image-based and wearable sensor systems have been used for
assessing exercises and postures, applying methods developed
within the broader field of human activity recognition (HAR)
[10,11]. Image-based systems have many challenges (related
to setup, line of sight, and computational requirements) that
may limit their suitability for home-based rehabilitation
assessment and posture monitoring [12]. Wearable sensors with
inertial measurement units (IMUs) have been extensively used
for HAR in diverse scenarios [13]. IMUs are easily embedded,
compatible with multiple environments, and present fewer
privacy concerns, suggesting a promising option for
rehabilitation adherence and posture monitoring. Sensor
placement, in the context of inertial sensors, has varied among
HAR studies. Wang et al [14], O’Reilly et al [15], and Johnston
et al [16] conducted reviews of wearable sensors used for the
assessment of upper limb rehabilitation, lower limb
rehabilitation, and posture, respectively. Recently, our group
developed and validated a system to monitor home-based
adherence to shoulder physiotherapy exercises (Smart
Physiotherapy Adherence Recognition System [SPARS]) by
using a single IMU (smartwatch) and state-of-the-art machine
learning (ML) techniques [17-19]. However, LBP rehabilitation
incorporates more complex movements than those found in the
shoulder, which may not be adequately captured with a single
IMU. As such, in developing a system to monitor LBP
rehabilitation, it is important to determine the number of IMUs,
their anatomical placement, and the data channels that best
enable the classification of LBP rehabilitation exercises and
posture.

The objective of this project was to develop and optimize a
system to detect sitting posture and performance of LBP

exercises comprising movement in multiple planes (flexion,
extension, side glide, and rotation). It was hypothesized that
inertial sensor time series data collected from a
multi-IMU–based wearable device arrangement analyzed with
ML will be able to successfully identify the performance of
rehabilitation exercises and good sitting posture focused on
reducing LBP.

Methods

Study Design and Participants
This study used a quantitative classification design to optimize
a system that can detect sitting posture and performance of LBP
exercises in a cohort of healthy participants. IMU data collected
from multiple sensors were used to test and validate a range of
ML models.

Healthy participants (from a limited cohort because of
COVID-19 pandemic restrictions at that time) were recruited
to participate in the study. Inclusion criteria were adult
individuals with no prior history of LBP and a healthy BMI.
Following informed consent, basic demographic data were
collected (ie, age and sex) and study-specific ID numbers were
assigned to each participant.

Ethics Approval
Participants provided informed consent to participate in this
study, and institutional research ethics board approval (research
ethics board number: 3505; Sunnybrook Research Institute,
Toronto, Ontario, Canada) was obtained.

LBP Exercise and Posture Protocol
The McKenzie exercises represent a clearly defined, effective
exercise set widely used by physiotherapists and other clinicians
to treat LBP [2,6]. For this study, we selected a set of exercises
that are used for the treatment of disc derangement. In total, 7
specific activities based on the McKenzie framework were
identified for inclusion in the study protocol (1 static lying
position and 6 dynamic lumbar spine exercises), as well as 3
postural positions. In addition, patients were recorded while
performing various activities of daily living (ADL) such as
walking, relaxed sitting, and standing. These ADL were
collected so that models could be trained to not only differentiate
between individual physiotherapy exercises but also to classify
physiotherapy activities distinctly from typical daily activities.
As such, these heterogeneous activities were all given the same
ADL label to test the models’ ability to differentiate
physiotherapy from other common activities as a general group.
The exercise protocol incorporated flexion, extension, rotation,
and side glide motions, as well as poor, good, and forced good
sitting postures. The full list of exercises and postures is
described in Multimedia Appendix 1.
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Participants were trained to perform the exercises and postures
under the direct supervision of a single researcher, following a
protocol designed in collaboration with a McKenzie
exercise–trained physiotherapist. Dynamic exercises were
performed for 6 repetitions, and static exercises and sitting
postures were performed for 30 to 60 seconds while wearing
the multi-IMU sensor system. ADL activity data were collected
for 3 to 5 minutes for each participant.

Multisensor System
A wireless multi-IMU system was developed and used to collect
inertial data during LBP rehabilitation for input to a
classification model. The system comprised eight IMU devices
(Metamotion C; Mbientlab) [20] placed in the following
anatomical locations: (1) wrist, (2) left shoulder, (3) right
shoulder, (4) upper back, (5) lower back, (6) left thigh, (7) right
ankle, and (8) right ear. IMU locations are described in more
detail in Figure S1 and the IMU Locations section in Multimedia
Appendix 1.

The following five sensor data types, referred to here as sensor
channels, were recorded from the IMU architecture (14 signal
channels for each device, resulting in 112 channels):

1. Raw proper acceleration from the accelerometer (x, y, z),
sampled at 25 Hz

2. Raw angular velocity data from the gyroscope (x, y, z),
sampled at 25 Hz

3. Raw magnetic field strength from the magnetometer (x, y,
z), sampled at 25 Hz

4. Quaternions from the on-board sensor fusion algorithm (w,
x, y, z), sampled at 50 Hz

5. Pressure data from the barometer, sampled at 13 Hz

Data Acquisition and Software
The SPARS software platform developed by our laboratory was
extended to enable data acquisition from multiple IMUs [14-16].
To prevent sensor drift and accumulated magnetic interference,
accelerometer, gyroscope, and magnetometer sensor channels
were calibrated on a weekly basis according to the
manufacturer’s instructions. IMUs were secured to each
participant by using Velcro straps and adherent tabs, with 1
IMU integrated into a 3D printed earbud. Participants also
donned a cap, a USB hub, and Bluetooth dongles. Data files
were manually labeled by the supervising researcher, with the
participant number and exercise class immediately after each
exercise recorded. These labels served as the ground truth for
subsequent classification tasks.

Data Analysis
The flow of the data analysis is outlined in Figure 1. The data
collected using the SPARS-LBP system was used to determine
the optimal placement of inertial sensors required to detect and
classify LBP exercises and postures. This was accomplished
by training a set of ML models to classify exercise data based
on the full set of IMU sensor locations. A feature importance
analysis was then performed to determine which IMUs and
sensor channels contributed the most to model performance.
Finally, a grid search was performed across a set of IMUs and
channels, which contributed the most to the model performance.
This was used to determine the optimal IMU locations, sensor
channels, and model for a scalable SPARS-LBP system.

Figure 1. ML analysis flow. (1) Class split: to determine whether posture and exercise classification tasks require distinct classifiers and whether
posture-forced good/posture good can be combined into a single class. (2) Filter models: identification of the 2 ML models with the highest performance
from the classifier set. (3) Hyperparameter tuning: optimization of preprocessing parameters and model-specific hyperparameters. (4) Optimization of
sensor channels and inertial measurement unit combinations: performing grid search over sensor channels and inertial measurement unit combinations,
in addition to practical considerations for deployment. ML: machine learning.

Data Preprocessing
Raw accelerometer, gyroscope, magnetometer, and pressure
data were taken directly from Mbientlab sensors for use in the
training pipeline. These channels were also Kalman filtered and
used to calculate the 4-axis quaternions channel with a
proprietary Mbientlab algorithm. Filtering was applied to the
quaternions channel by using the Bosch sensor fusion algorithm.
This processing occurred during data acquisition.

The accelerometer, gyroscope, magnetometer, pressure, and
quaternion channels were resampled to 25 Hz and segmented
using a sliding window of a width of 5 seconds (125 samples),
with 0 segment overlap. This segment length was chosen to be
slightly longer than an average exercise repetition. The total
number of segments after preprocessing was 7838 (5815/7838,
74.19% for exercise data, and 2024/7838, 25.82% for posture
data).
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Feature Extraction and Scaling
Following segmentation, 23 statistical and time domain features
(see the Seglearn Engineered Features section in Multimedia
Appendix 1) were calculated for each channel of each time
series segment, resulting in 2599 features. Segmentation and
feature extraction were performed using the open-source
Seglearn Python package [21]. Each feature was normalized to
have 0 mean and unit variance before model training.

Initial Models and Classification Task
In order to determine the optimal classification algorithm for
use in subsequent experiments, 10 classifiers were initially
considered: (1) decision tree, (2) random forest (RF), (3)
XGBoost (XGB), (4) k-nearest neighbors, (5) support vector
machine (SVM) trained with stochastic gradient descent, (6)
linear discriminant analysis, (7) Gaussian naive Bayes, (8) SVM,
(9) multilayer perceptron neural network, and (10) convolutional
neural network (CNN).

Models 1 to 9 were trained on engineered features by using
default settings from scikit-learn [22]. The CNN was trained
directly on time series segments. The CNN comprised 3
convolutional layers with 128, 256, and 128 channels,
respectively, followed by global average pooling, L2
normalization, and a fully connected layer. The CNN was trained
for 100 epochs using the Adam optimizer, categorical
cross-entropy loss, and a learning rate of 0.001. Initially, each
model was trained with a 6-fold cross-validation approach on
the entire data set, grouping folds based on participant. This
ensured that recordings from the same participant were not
present in both the train and test folds. A 6-fold cross-validation
approach was chosen rather than a leave one participant out
cross-validation approach because of the limited computational
resources and time available to train 10 models. The
class-weighted F1 score was used as the evaluation metric for
all classification tasks.

Models were trained to perform three classification tasks: (1)
classifying all exercises and postures (11-class output), (2)
classifying only exercises (8-class output), and (3) classifying
only posture (3-class output). The performance of the engineered
features models (models 1-9) was evaluated. The 2 classifiers
with the highest accuracies, lowest variance, and other
supporting considerations (such as processing speed) were
selected for further evaluation. In addition, the CNN model was
considered for further optimization because of its previous
success in classifying shoulder exercises [23].

Feature Importance Evaluation
To determine the optimal combination of IMU locations and
sensor channels for activity classification, the importance of
engineered features was computed for the 2 selected pretrained
engineered feature models. This was used to inform the selection
of a subset of sensors and features for hyperparameter tuning.
The following two methods of feature importance computation
were explored: Gini importance (a measure of the number of
branches learned from each feature in tree-based models [24])
and permutation feature importance (an approach where input
features are randomly permuted and the change in model
performance is measured [25]). The permutation approach is

resilient to numerical feature inflation and training set
dependence, which are found in Gini importance [24]. Features
were then grouped by IMU location and sensor channel to
determine the relative importance of each IMU and sensor
channel.

Hyperparameter Tuning and Sensor Selection
A grid search of model-specific and preprocessing
hyperparameters was conducted, again using 6-fold
cross-validation, grouping folds based on participant. The
following preprocessing hyperparameters were included in the
grid search because of their pronounced impact on time series
features:

• Window width: Each exercise took approximately 5 seconds
to complete, providing a maximum logical limit for the
window. The lower limit was chosen as 0.5 seconds as
smaller windows would not possess sufficient context.

• Window overlap: Overlap boundaries (overlap percentage
between 2 consecutive window segments) were chosen to
be 0%, representing no overlap at all and a maximum
overlap of 60%. This parameter can also be considered a
data augmentation parameter, where a higher overlap value
results in more copies of similar segments.

The following model-specific hyperparameters were also
considered. A full list of the model-specific hyperparameter
space searched is available in Table S2 in Multimedia Appendix
1.

• RF: maximum features, minimum samples leaf, minimum
samples split, and n estimators

• XGBoost: maximum depth, colsample bytree, gamma,
learning rate, maximum depth, minimum child weight, and
n estimators

• CNN: learning rate

IMU sensor channel combinations informed by the feature
importance analysis were also included in the grid search. Owing
to computational constraints, a smaller set of sensor channel
combinations was chosen based on results from the engineered
feature-based model grid search and used in a grid search for
the CNN. This approach is similar to an embedded feature
selection method. Finally, optimal configurations of the IMU
locations and sensor channels were selected, considering
supporting factors such as practicality and scalability as a future
wearable system. The RF, XGBoost, and CNN models with
optimized hyperparameters and input channels and IMU
locations were retrained using a more rigorous 10-fold
cross-validation approach, once again grouping folds based on
the participant to prevent data leakage.

Results

Study Design and Participants
In total, 19 participants were recruited into the study, of whom
12 (63%) were male and 7 (37%) were female. Although specific
height data for each patient were not recorded, all participants
were within the healthy BMI range. Demographic data for the
participants recruited for the study are displayed in Table 1.
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Table 1. Demographic data collected for the participants recruited for the study (N=19).a

ParticipantsCharacteristic

32 (12)Age (years), mean (SD)

76 (16)Body weight (kg), mean (SD)

Sex, n (%)

12 (63)Male

7 (37)Female

aAll participants had a healthy BMI and had no history of low back pain.

Initial Models and Classification Task
Engineered feature models trained on a single classification
task, combining exercise and posture activities using a 6-fold
cross-validation strategy, did not perform as well as models
separated into exercise classification (7 classes and ADL) and
posture classification (3 classes). For 3-class posture
classification, models were found to have a poor ability to
distinguish between posture-forced good and good posture,
suggesting little difference between the 2 postures. As a result,
the good posture and posture-forced good groups were
combined. The independent exercise (8 classes) and binary
posture classifications were used for subsequent experiments.

The 10 models described in the methods were trained with
default hyperparameters using a 6-fold cross-validation approach
separately for exercise and posture data sets. The top 3
engineered feature models (shown in Table 2) with respect to
average F1 score for exercise and posture classification were
found to be RF, XGBoost, and SVM (0.85, 0.85, and 0.81 for
exercise and 0.89, 0.89, and 0.88 for posture, respectively).
However, the SVM was found to have a greater SD in the
exercise set (0.12). As such, RF and XGBoost were identified
as the models with the best performance for both exercise (0.85,
SD 0.04) and posture (0.89, SD 0.07) classification problems.

Table 2. Initial averages and SDs of class-weighted F1 scores across 6-fold cross-validation for all 9 engineered feature-based models with default

settings.a

Posture classification F1 score (weighted average),
mean (SD)

Exercise classification F1 score (weighted average),
mean (SD)

Classifier

0.81 (0.08)0.76 (0.04)Decision tree

0.89 (0.08)b0.85 (0.04)bRandom forest

0.89 (0.07)b0.85 (0.04)bXGBoost

0.81 (0.11)0.79 (0.04)K-nearest neighbors

0.76 (0.17)0.83 (0.07)Stochastic gradient descent

0.59 (0.09)0.77 (0.11)Linear discriminant analysis

0.72 (0.14)0.65 (0.09)Gaussian naive Bayes

0.88 (0.09)0.81 (0.12)Support vector machine

0.76 (0.18)0.81 (0.14)Multilayer perceptron neural network

aBoth exercise and posture classification tasks are shown, with all models using all sensor channels and inertial measurement unit locations as input.
bTop classifiers.

Feature Importance Evaluation
The XGBoost and RF models trained via 6-fold cross-validation
to classify exercise and posture were used to compute the
importance of input features. Inherent model importance (Gini
importance and gain importance) and permutation importance
for each of the input features were calculated (summarized in
Figure 2 for the RF model). The importance of input features
was then grouped based on IMU and sensor channel. Inherent
model importance identified 5 (lower back), 6 (left thigh), and

7 (right ankle) as the most important devices; accelerometer
and quaternions as the most important sensors; and mean,
absolute energy, and absolute sum as the most important
features. The permutation importance revealed that devices 7,
6, and 5 (reverse order compared with the Gini/Gain technique)
had the highest importance; accelerometer and gyroscope had
the highest importance among sensors; and minimum, absolute
energy, and maximum had the top features contributing to
classification performance. These findings were similar for the
RF and XGBoost models.
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Figure 2. Average feature importance across 6-fold cross-validation for inertial measurement unit locations (y-axis) and sensor channels (x-axis).
Larger values (darker blue) represent features of relatively high importance to the model. The permutation (left column) and Gini (right column) feature
importances from the exercise random forest model are displayed in the top row, whereas the permutation and Gini importances for the posture random
forest model are displayed in the bottom row. Importance values shown in the figure were computed by taking the sum across subchannels (eg, x, y,
and z channels of acceleration) and engineered features for each subchannel. The resulting values represent the total feature importance for a given
inertial measurement unit and channel combination (eg, “acceleration” and “upper back”), which were arranged in the grid shown here.

Hyperparameter Tuning and Sensor Selection
A grid search was conducted to identify the optimal
model-specific hyperparameters and the optimal IMU sensor
configuration. The results from the feature importance analysis
were used to inform the selection of a subset of IMU sensor
configurations for input to the hyperparameter grid search.

The grid search results of the window width and window overlap
parameters for both the exercise and posture classifications sets
are displayed in Figure 3. Larger window width resulted in
higher exercise classification performance in both engineered
feature models and the CNN. Width had little impact on the

performance of posture classification. Window overlap did not
affect model performance for either classification task in the
engineered feature models. A larger window overlap led to a
small improvement in CNN exercise classification performance.
Larger window widths were explored in the CNN grid search;
however, the maximum window width was constrained by the
length of recordings and, thus, was limited to 300 (12 seconds).
On the basis of these findings, an optimal window width of 5
seconds and an overlap value of 0 were used for subsequent
analyses with RF and XGBoost models, whereas a width of 300
and overlap of 50 samples (6% of the window) were used for
the CNN.
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Figure 3. Hyperparameter grid search considering window width and overlap for the exercise (top row) and posture (bottom row) classification tasks
for the RF (left) and XGBoost (right) models. Window width is shown to have a positive impact on performance for the exercise models, whereas no
improvement is seen with overlap. Clear effectiveness is not demonstrated for the posture models with respect to window width or overlap. CV:
cross-validation; RF: random forest; XGB: XGBoost.

Following the grid search conducted across model-specific
hyperparameters, the performance of the engineered models did
not show any significant improvements. F1 scores varied within
+0.02 and –0.02 of the default hyperparameter results. As such,
default RF- and XGBoost-specific hyperparameters were used
for further analysis. The CNN performance was found to
improve with a larger learning rate (0.66, SD 0.04 for learning
rate=0.0001; 0.77, SD 0.050 for learning rate=0.01), with other
hyperparameters held constant.

Finally, a set of IMU and sensor channel combinations, informed
by the feature importance results, were included in the grid
search for the RF and XGBoost models. The sensor channels
evaluated using a 6-fold cross-validation approach, along with
their corresponding performance scores, are displayed in Figure
4. The combination of accelerometer, gyroscope, and
magnetometer sensors produced the best F1 scores of 0.95 (SD
0.03) and 0.91 (SD 0.11) for the exercise (RF model) and
posture (RF model) data sets, respectively. The IMU
combinations that were included in the grid search for the RF
and XGBoost models are displayed in Figure 5. Using all
available IMUs produced the highest performance. Limiting
the number of sensors to 3 IMUs, the lower back (5), left thigh
(6), and right ankle (7) locations yielded the best performance
for both exercise (F1 score 0.94, SD 0.04) and e posture (F1

score 0.90, SD 0.11) using the XGBoost model. Confusion

matrices for the final optimized IMU (5, 6, and 7) and sensor
(accelerometer, gyroscope, and magnetometer) setup for RF
and XGBoost models, trained with 10-fold cross-validation
grouped based on participants, are provided in Figure S2 in
Multimedia Appendix 1.

Following the results showing that the low back, thigh, and
ankle sensors performed optimally for exercise and posture
classification with engineered feature models, a smaller subset
of IMU combinations was tested with the CNN (Figure 6). A
grid search was performed over the set of single IMUs in
addition to the set of 2-IMU combinations, which could form
a lower extremity garment (eg, pants or shorts). Furthermore,
3- and 4-IMU combinations that could form a lower extremity
garment with a watch were examined. In the CNN grid search,
the full set of IMUs provided the best performance (exercise
F1 score 0.96, SD 0.01; posture F1 score 0.91, SD 0.03). The 3
best IMU systems for exercise were again 5, 6, and 7 (F1 score
0.94, SD 0.03 for exercise; F1 score 0.88, SD 0.07 for posture).
The accelerometer and gyroscope proved to be the optimal
sensor channel combination for the CNN for exercise
classification, whereas only the accelerometer provided optimal
performance for posture. Confusion matrices for the final
optimized configurations for the CNN model, trained with
10-fold cross-validation, are also provided in Figure S2 in
Multimedia Appendix 1.
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Figure 4. Results of the grid search across a set of sensor channel combinations for the RF and XGBoost models for exercise and posture classification.
All IMUs were used for this test. Results are reported as the mean (SD) of the F1 score across 6-fold cross-validation for each sensor channel combination.
The highlighted row represents the optimized sensor channels for both exercise and posture classification. RF: random forest; XG: XGBoost.

Figure 5. Results of the grid search across a set of IMU location combinations for RF and XGBoost models, classifying exercise and posture. All
models were trained with the accelerometer, gyroscope, and magnetometer sensor channels. Results are reported as the mean (SD) of the F1 scores
across 6-fold cross-validation for each IMU combination. The highlighted row represents the optimized sensor locations using 3 IMUs for both exercise
and posture classification. Note that the bottom row containing all 8 IMUs is equivalent to the highlighted row in Figure 4. IMU: inertial measurement
unit; RF: random forest; XG: XGBoost.
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Figure 6. Results of the grid search across a subset of IMU locations and channel combinations for the CNN classifier. All models were trained with
a segment width of 300, sampling rate of 25 Hz (total segment width of 12 seconds), overlap of 50, and learning rate of 0.001. These CNN grid search
results used acceleration and gyroscope sensor channels for exercise classification and only the acceleration channel for posture classification. The
reported F1 scores are the average (SD) across 6-fold cross-validation, stratified based on participant. CNN: convolutional neural network; IMU: inertial
measurement unit.

Discussion

Principal Findings
This study demonstrated the ability of SPARS-LBP to
successfully identify the performance of rehabilitation exercises
and good posture based on sensor time series data collected
from a multi-IMU–based wearable device arrangement. A large
set of ML models were initially trained to classify exercise and
posture activities by using the full set of sensors. RF and
XGBoost were found to outperform 7 other engineered feature
models during initial testing.

Mechanical pain of discogenic origin is perhaps the most
common and treatable type of LBP. The application of
McKenzie-based exercises requires extensive training by the
clinicians to understand the pattern of disc derangement and
directional preferences. Once the leg or buttock pain is
centralized to the lumbar spine, the therapist can proceed with
core strengthening exercises. We specifically chose
McKenzie-based exercises as they do not address specific
muscles and rather focus on the symptoms that originate from
stimulation or deformation of the pain-sensitive structures by
using mechanical means such as static positions or repeated end
range movements.

In considering the practical deployment of the SPARS-LBP
system, a reduction in the number of IMU and sensor signals
was required. To this end, the relative importance of input
features was computed and grouped by device and sensor for
the RF model. This was performed using both the inherent Gini
importance of each feature and the permutation importance.
The Gini importance of a feature is determined by the number
of splits in the tree originating from that feature. Therefore, it
is a measure of a particular feature’s importance in the training
data and can be misleading when the model overfits. For this
reason, the permutation importance was also considered, as this
can be computed on a held-out validation set using
cross-validation [25]. The permutation importance is also limited
by its tendency to assign low importance to highly correlated

features. Owing to the drawbacks of each importance technique,
the results of both methods were considered. This revealed that
the thigh, ankle, wrist, lower back, and shoulder sensors along
with the acceleration, gyroscope, and quaternion channels
contributed the most to the performance of the model.

Ultimately, the ideal sensor and device combination was
determined based on the grid search results and practical
considerations for combining these sensors into a wearable
system. An XGBoost model with 3 IMU devices placed at the
lower back, thigh, and ankle, each recording accelerometer,
gyroscope, and magnetometer data, was found to provide an
optimal platform for exercise and posture classification. These
3 standard IMUs placed on the lower back, thigh, and ankle
could ultimately be embedded into a single wearable garment
(eg, pants).

The finding that the low back, thigh, and ankle sensors offered
the optimal performance does not come as a surprise, as the low
back exercises used in this study involve a variety of movements
in the lower body. In particular, all the exercises and postures
cause a displacement in the low back, which was found to have
high importance in both the feature importance analysis and
grid search. Interestingly, the sensors on the upper body (ear,
shoulder, and wrist) offered relatively little improvement in
performance. However, this result supports the future
development of a single lower extremity garment.

We also found that the CNN had a comparable performance
with the XGBoost model for exercise classification with these
3 device locations using accelerometer and gyroscope channels.
The CNN was limited by the fact that longer segment widths
of between 250 and 300 (10-12 seconds) were required for
optimal exercise classification performance. This could present
challenges in clinical settings where patients cannot perform
exercises for more than a few seconds because of pain or other
factors. However, for posture classification, the CNN’s best
performance was achieved using just the acceleration sensor of
all devices (F1 score 0.91, SD 0.03), and segment width did not
seem to relate to performance. This is likely because of the
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stationary nature of the posture data, as the recording was
performed once participants had already moved into position.

Comparison With Prior Work
Although varied IMU setups have been studied for exercise
classification (as in the study by Rodriguez et al [26]), none of
them have explored simultaneous posture and exercise detection
[27-31]. Some studies focused on lower limb rehabilitation
exercises [15], whereas others focused only on postural
classification [16]. Studies that focused on lower extremity
rehabilitation found that the thigh, shin, and foot were useful
sensor locations [15,32,33]. For posture experiments, sensor
locations such as the lower back, upper back/sternum, feet, and
thigh were used successfully [16]. These device locations
described for exercise and posture studies coincide with our
current findings, except for the upper back/sternum. Most studies
that included the upper back/sternum as an IMU location used
dynamic angle measurements to model their system in which
they were used in relation to another device (usually a lower
back IMU) or to an absolute starting position. These dynamic
experiments also acquired data as participants repositioned
themselves from a bad posture to a good posture, yielding
time-varying fluctuations in the data. Using this approach, their
algorithms would just need to learn the oscillations that occur
in the upper back/sternum IMU when the posture changes to
classify the data. By contrast, the postural data set collected in
this study was static, where 1 good posture instance had the
patient staying stationary for the whole period of the recording,
with no time variation, limiting the importance of the upper
back sensor (IMU 4) in the current algorithm.

Strengths and Limitations
The performance of ML algorithms is generally dependent on
the size of the available training data sets. Owing to COVID-19
pandemic restrictions, the recruitment of study participants and
the resultant data set were limited. Participants were limited in
the number of exercises and repetitions to avoid fatigue and
prolonged session time. As such, the exercises used in this study
represent a subset of all McKenzie exercise variations.
Additional exercises may be explored to incorporate a larger
exercise set, which will widen the scope and applicability of
SPARS-LBP. This small data set resulted in greater interfold
variability in cross-validation, particularly when larger segment
widths were used, resulting in fewer training and validation
samples. A second limitation is that feature selection was not
used in the initial pipeline to select classifiers. This has the
potential to penalize some classifiers (eg, k-nearest neighbors)
and lead to overfitting. Third, this study demonstrated that the
use of this technology is feasible, and the results are accurate;
however, only healthy participants (without LBP and with
healthy BMI) were included, and only correct execution of the
LBP exercises was performed. Future work is needed to
determine whether the optimized SPARS-LBP system can
similarly classify exercises performed by those whose motion
may be compromised and also consider the impact of age, sex,
and BMI in relation to ML classification. A fourth limitation
of the study was the restriction of monitoring devices to IMUs
only. Testing a wider range of sensor technologies, such as

electromyography or video data, could add to the robustness
and accuracy of the classifications. However, there are
challenges to the acquisition, synchronization, and analysis of
multiple data streams, and the consideration of additional data
sources is outside the scope of this study.

Future Directions
As the use of wearable devices and artificial intelligence
technology is expanding to facilitate web-based care, it is critical
to explore the utility and accuracy of these devices in the
musculoskeletal field. Validating the performance of the
SPARS-LBP system with individuals prescribed McKenzie
exercises for acute and chronic LBP is essential to see whether
they generalize appropriately for these specific target
populations. Essential to a clinical study is a simple IMU data
acquisition system, such as a garment, incorporating the low
back, thigh, and ankle IMU sensors. Similar to our ongoing
work in the shoulder, this would allow elucidation of the
relationship between participation and outcome (including
functional assessment and patient-reported outcome measures).
This would ultimately help guide future research into the
effectiveness of physiotherapy programs and is key to
understanding the relationships among exercise, posture, and
clinical outcomes in individuals with LBP. App development
may enable remote monitoring of participation/adherence by
both patients and providers. This could allow for early
identification of barriers to recovery while ensuring safe and
effective management.

This work is also an important first step toward building
effective tools to assess the quantity and quality of physiotherapy
exercises. In particular, CNNs trained to classify physiotherapy
exercises may be used to generate quantitative performance
metrics based on generating embeddings for exercises performed
in the clinic and at home by the same patient. Passing both
recordings through the convolutional layers of the CNN, the
distances between pairs of embeddings could then be used as a
metric for the similarity between 2 exercises. Computing the
similarity of a supervised exercise to an unsupervised exercise
of the same class (performed at home) could give the patient
and their clinician valuable feedback on the quality of
unsupervised exercise performance.

Conclusions
This study evaluated a large set of IMU devices (8) and sensors
(5) during the performance of LBP exercises and sitting
postures. The best performance was found using an optimized
configuration of 3 IMUs (lower back, thigh, and ankle), with
sensors limited to the accelerometer, gyroscope, and
magnetometer. This device arrangement can be easily integrated
into a wearable garment (pants) with a more efficient, simple,
and clinically viable data acquisition system. No significant
differences in performance of the 3 IMU systems were observed
using the XGBoost, RF, and CNN models. This proof-of-concept
study motivates further development of SPARS-LBP as a
monitoring system that can help track participation and assist
with the early identification of problems encountered in the
performance of LBP exercise and correct posture, ultimately
enhancing the effectiveness of at-home rehabilitation delivery.
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LBP: low back pain
ML: machine learning
RF: random forest
SPARS: Smart Physiotherapy Adherence Recognition System
SVM: support vector machine
XGB: XGBoost
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